[1] HANSSON T, OOSTENBRINK C, VAN GUNSTEREN W. Molecular dynamics simulations[J]. Current opinion in structural biology, 2002, 12(2): 190-196.
[2] KARPLUS M, PETSKO G A. Molecular dynamics simulations in biology[J]. Nature, 1990,347: 631-639.
[3] DIMARCO G, PARESCHI L. Numerical methods for kinetic equations[J]. Acta Numerica,2014, 23: 369-520.
[4] HU J, JIN S, LI Q. Asymptotic-preserving schemes for multiscale hyperbolic and kinetic equations[M]//Handbook of Numerical Analysis: volume 18. Elsevier, 2017: 103-129.
[5] JIN S. Asymptotic preserving (AP) schemes for multiscale kinetic and hyperbolic equations: a review[J]. Lecture notes for summer school on methods and models of kinetic theory (M&MKT), Porto Ercole (Grosseto, Italy), 2010: 177-216.
[6] KERIMO J, GIRIMAJI S S. Boltzmann–BGK approach to simulating weakly compressible 3D turbulence: comparison between lattice Boltzmann and gas kinetic methods[J]. Journal of Turbulence, 2007(8): N46.
[7] LIN C, XU A, ZHANG G, et al. Double-distribution-function discrete Boltzmann model for combustion[J]. Combustion and Flame, 2016, 164: 137-151.
[8] SHAN X, CHEN H. Lattice Boltzmann model for simulating flows with multiple phases and components[J]. Physical review E, 1993, 47(3): 1815.
[9] DELLAR P. Electromagnetic waves in lattice Boltzmann magnetohydrodynamics[J]. Europhysics Letters, 2010, 90(5): 50002.
[10] AIDUN C K, CLAUSEN J R. Lattice-Boltzmann method for complex flows[J]. Annual review of fluid mechanics, 2010, 42: 439-472.
[11] LALLEMAND P, LUO L S, KRAFCZYK M, et al. The lattice Boltzmann method for nearly incompressible flows[J]. Journal of Computational Physics, 2021, 431: 109713.
[12] MARIÉ S, RICOT D, SAGAUT P. Comparison between lattice Boltzmann method and Navier–Stokes high order schemes for computational aeroacoustics[J]. Journal of Computational Physics, 2009, 228(4): 1056-1070.
[13] XU H, SAGAUT P. Optimal low-dispersion low-dissipation LBM schemes for computational aeroacoustics[J]. Journal of Computational Physics, 2011, 230(13): 5353-5382.
[14] LIU H, KANG Q, LEONARDI C R, et al. Multiphase lattice Boltzmann simulations for porous media applications: A review[J]. Computational Geosciences, 2016, 20: 777-805.
[15] BHATNAGAR P L, GROSS E P, KROOK M. A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems[J]. Physical review, 1954,94(3): 511.
[16] KUZNIK F, OBRECHT C, RUSAOUEN G, et al. LBM based flow simulation using GPU computing processor[J]. Computers & Mathematics with Applications, 2010, 59(7): 2380-2392.
[17] BLAIR S, ALBING C, GRUND A, et al. Accelerating an MPI lattice Boltzmann code using OpenACC[C]//Proceedings of the second workshop on accelerator programming using directives. 2015: 1-9.
[18] CHEN T, WANG L P, LAI J, et al. Inverse design of mesoscopic models for compressible flow using the Chapman-Enskog analysis[J]. Advances in Aerodynamics, 2021, 3(1): 1-25.
[19] SHI B, GUO Z. Lattice Boltzmann model for nonlinear convection-diffusion equations[J]. Physical Review E, 2009, 79(1): 016701.
[20] ZHOU Z, MA J. Lattice Boltzmann methods for solving partial differential equations of exotic option pricing[J]. Frontiers of Mathematics in China, 2016, 11: 237-254.
[21] KOTAPATI R, KEATING A, KANDASAMY S, et al. The lattice-Boltzmann-VLES Method for automotive fluid dynamics simulation, a review[R]. SAE Technical Paper, 2009.
[22] KHORRAMI M R, FARES E, CASALINO D. Towards full aircraft airframe noise prediction: lattice Boltzmann simulations[C]//20th AIAA/CEAS aeroacoustics conference. 2014: 2481.
[23] DUDA B M, FARES E, WESSELS M, et al. Unsteady flow simulation of a sweeping jet actuator using a Lattice-Boltzmann method[C]//54th AIAA Aerospace Sciences Meeting. 2016: 1818.
[24] LATT J, MALASPINAS O, KONTAXAKIS D, et al. Palabos: parallel lattice Boltzmann solver[J]. Computers & Mathematics with Applications, 2021, 81: 334-350.
[25] KRAUSE M J, KUMMERLÄNDER A, AVIS S J, et al. OpenLB—Open source lattice Boltzmann code[J]. Computers & Mathematics with Applications, 2021, 81: 258-288.
[26] JAHANSHALOO L, POURYAZDANPANAH E, CHE SIDIK N A. A review on the application of the lattice Boltzmann method for turbulent flow simulation[J]. Numerical Heat Transfer, Part A: Applications, 2013, 64(11): 938-953.
[27] POPE S B, POPE S B. Turbulent flows[M]. Cambridge university press, 2000.
[28] CAO N, CHEN S, JIN S, et al. Physical symmetry and lattice symmetry in the lattice Boltzmann method[J]. Physical review E, 1997, 55(1): R21.
[29] TSUTAHARA M. The finite-difference lattice Boltzmann method and its application in computational aero-acoustics[J]. Fluid Dynamics Research, 2012, 44(4): 045507.
[30] GUO Z, XU K, WANG R. Discrete unified gas kinetic scheme for all Knudsen number flows: Low-speed isothermal case[J]. Physical Review E, 2013, 88(3): 033305.
[31] LEE T, LIN C L. A characteristic Galerkin method for discrete Boltzmann equation[J]. Journal of Computational Physics, 2001, 171(1): 336-356.
[32] FILIPPOVA O, HÄNEL D. Grid refinement for lattice-BGK models[J]. Journal of computational Physics, 1998, 147(1): 219-228.
[33] CHAPMAN S, COWLING T G. The mathematical theory of non-uniform gases: an account of the kinetic theory of viscosity, thermal conduction and diffusion in gases[M]. Cambridge university press, 1990.
[34] LAGRAVA D, MALASPINAS O, LATT J, et al. Advances in multi-domain lattice Boltzmann grid refinement[J]. Journal of Computational Physics, 2012, 231(14): 4808-4822.
[35] DUPUIS A, CHOPARD B. Theory and applications of an alternative lattice Boltzmann grid refinement algorithm[J]. Physical Review E, 2003, 67(6): 066707.
[36] LIN C L, LAI Y G. Lattice Boltzmann method on composite grids[J]. Physical Review E, 2000,62(2): 2219.
[37] TOUIL H, RICOT D, LÉVÊQUE E. Direct and large-eddy simulation of turbulent flows on composite multi-resolution grids by the lattice Boltzmann method[J]. Journal of Computational Physics, 2014, 256: 220-233.
[38] YU D, MEI R, SHYY W. A multi-block lattice Boltzmann method for viscous fluid flows[J]. International journal for numerical methods in fluids, 2002, 39(2): 99-120.
[39] GENDRE F, RICOT D, FRITZ G, et al. Grid refinement for aeroacoustics in the lattice Boltzmann method: A directional splitting approach[J]. Physical Review E, 2017, 96(2): 023311.
[40] CHEN H, FILIPPOVA O, HOCH J, et al. Grid refinement in lattice Boltzmann methods based on volumetric formulation[J]. Physica A: Statistical Mechanics and its Applications, 2006, 362(1): 158-167.
[41] ROHDE M, KANDHAI D, DERKSEN J, et al. A generic, mass conservative local grid refinement technique for lattice-Boltzmann schemes[J]. International journal for numerical methods in fluids, 2006, 51(4): 439-468.
[42] GEIER M, GREINER A, KORVINK J G. Bubble functions for the lattice Boltzmann method and their application to grid refinement[J]. The European Physical Journal Special Topics, 2009, 171(1): 173-179.
[43] CHEN S, PENG C, TENG Y, et al. Improving lattice Boltzmann simulation of moving particles in a viscous flow using local grid refinement[J]. Computers & Fluids, 2016, 136: 228-246.
[44] D’HUMIÈRES D. Multiple–relaxation–time lattice Boltzmann models in three dimensions[J]. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 2002, 360(1792): 437-451.
[45] ASTOUL T, WISSOCQ G, BOUSSUGE J F, et al. Lattice Boltzmann method for computational aeroacoustics on non-uniform meshes: A direct grid coupling approach[J]. Journal of Computational Physics, 2021, 447: 110667.
[46] ASTOUL T, WISSOCQ G, BOUSSUGE J F, et al. Analysis and reduction of spurious noise generated at grid refinement interfaces with the lattice Boltzmann method[J]. Journal of Computational Physics, 2020, 418: 109645.
[47] WAN D, WANG G, CHEN S. Numerical Investigation of Lid-Driven Deep Cavity with Local Grid Refinement of MRT-LBM[J]. Journal of Beijing Institute of Technology, 2019, 28(3):536-548.
[48] JACOB J, MALASPINAS O, SAGAUT P. A new hybrid recursive regularised Bhatnagar–Gross–Krook collision model for lattice Boltzmann method-based large eddy simulation[J]. Journal of Turbulence, 2018, 19(11-12): 1051-1076.
[49] GUZIK S M, WEISGRABER T H, COLELLA P, et al. Interpolation methods and the accuracy of lattice-Boltzmann mesh refinement[J]. Journal of Computational Physics, 2014, 259: 461-487.
[50] LAI J, CHEN T, ZHANG S, et al. Study of a droplet breakup process in decaying homogeneous isotropic turbulence based on the phase-field DUGKS approach[A]. 2022.
[51] ZHANG C, YANG K, GUO Z. A discrete unified gas-kinetic scheme for immiscible two-phase flows[J]. International Journal of Heat and Mass Transfer, 2018, 126: 1326-1336.
[52] HUANG R, WU H. Multiblock approach for the passive scalar thermal lattice Boltzmann method[J]. Physical Review E, 2014, 89(4): 043303.
[53] LIOU T M, WANG C S. Three-dimensional multidomain lattice Boltzmann grid refinement for passive scalar transport[J]. Physical Review E, 2018, 98(1): 013306.
[54] SHI Y, WU L, SHAN X. Accuracy of high-order lattice Boltzmann method for non-equilibrium gas flow[J]. Journal of Fluid Mechanics, 2021, 907.
[55] GRAD H. On the kinetic theory of rarefied gases[J]. Communications on pure and applied mathematics, 1949, 2(4): 331-407.
[56] LEVERMORE C D, MOROKOFF W J. The Gaussian moment closure for gas dynamics[J]. SIAM Journal on Applied Mathematics, 1998, 59(1): 72-96.
[57] GRAD H. Note on N-dimensional hermite polynomials[J]. Communications on Pure and Applied Mathematics, 1949, 2(4): 325-330.
[58] SHAN X, YUAN X F, CHEN H. Kinetic theory representation of hydrodynamics: a way beyond the Navier–Stokes equation[J]. Journal of Fluid Mechanics, 2006, 550: 413-441.
[59] QIAN Y H, D’HUMIÈRES D, LALLEMAND P. Lattice BGK models for Navier-Stokes equation[J]. Europhysics letters, 1992, 17(6): 479.
[60] QIAN Y, ORSZAG S. Lattice BGK models for the Navier-Stokes equation: Nonlinear deviation in compressible regimes[J]. Europhysics letters, 1993, 21(3): 255.
[61] SHAN X. The mathematical structure of the lattices of the lattice Boltzmann method[M]. Elsevier B.V., 2016.
[62] WEN X, WANG L P, GUO Z. Designing a consistent implementation of the discrete unified gas-kinetic scheme for the simulation of three-dimensional compressible natural convection[J]. Physics of Fluids, 2021, 33(4): 046101.
[63] HE X, SHAN X, DOOLEN G D. Discrete Boltzmann equation model for nonideal gases[J]. Physical Review E, 1998, 57(1): R13.
[64] WISSOCQ G, SAGAUT P, BOUSSUGE J F. An extended spectral analysis of the lattice Boltzmann method: modal interactions and stability issues[J]. Journal of Computational Physics, 2019, 380: 311-333.
[65] LATT J, CHOPARD B. Lattice Boltzmann method with regularized pre-collision distribution functions[J]. Mathematics and Computers in Simulation, 2006, 72(2-6): 165-168.
[66] MALASPINAS O. Increasing stability and accuracy of the lattice Boltzmann scheme: recursivity and regularization[A]. 2015.
[67] WISSOCQ G, COREIXAS C, BOUSSUGE J F. Linear stability and isotropy properties of athermal regularized lattice Boltzmann methods[J]. Physical Review E, 2020, 102(5): 053305.
[68] ZHANG R, SHAN X, CHEN H. Efficient kinetic method for fluid simulation beyond the Navier-Stokes equation[J]. Physical Review E, 2006, 74(4): 046703.
[69] MONTESSORI A, FALCUCCI G, PRESTININZI P, et al. Regularized lattice Bhatnagar-Gross-Krook model for two-and three-dimensional cavity flow simulations[J]. Physical Review E, 2014, 89(5): 053317.
[70] COREIXAS C, WISSOCQ G, PUIGT G, et al. Recursive regularization step for high-order lattice Boltzmann methods[J]. Physical Review E, 2017, 96(3): 033306.
[71] FENG Y, BOIVIN P, JACOB J, et al. Hybrid recursive regularized lattice Boltzmann simulation of humid air with application to meteorological flows[J]. Physical Review E, 2019, 100(2): 023304.
[72] LALLEMAND P, LUO L S. Theory of the lattice Boltzmann method: Dispersion, dissipation, isotropy, Galilean invariance, and stability[J]. Physical review E, 2000, 61(6): 6546.
[73] DONG Z Q, WANG L P, PENG C, et al. A systematic study of hidden errors in the bounce-back scheme and their various effects in the lattice Boltzmann simulation of viscous flows[J]. Physics of Fluids, 2022, 34(9): 093608.
[74] SKORDOS P. Initial and boundary conditions for the lattice Boltzmann method[J]. Physical Review E, 1993, 48(6): 4823.
[75] HUANG J, WU H, YONG W A. On initial conditions for the lattice Boltzmann method[J]. Communications in Computational Physics, 2015, 18(2): 450-468.
[76] SALIMI M, TAEIBI-RAHNI M. New lifting relations for estimating LBM distribution functions from corresponding macroscopic quantities, based on equilibrium and non-equilibrium moments[J]. Journal of Computational Physics, 2015, 302: 155-175.
[77] MEI R, LUO L S, LALLEMAND P, et al. Consistent initial conditions for lattice Boltzmann simulations[J]. Computers & Fluids, 2006, 35(8-9): 855-862.
[78] KRÜGER T, VARNIK F, RAABE D. Second-order convergence of the deviatoric stress tensor in the standard Bhatnagar-Gross-Krook lattice Boltzmann method[J]. Physical Review E, 2010, 82(2): 025701.
[79] MIN H, PENG C, GUO Z, et al. An inverse design analysis of mesoscopic implementation of non-uniform forcing in MRT lattice Boltzmann models[J]. Computers & Mathematics with Applications, 2019, 78(4): 1095-1114.
[80] BIRD R B. Transport phenomena[J]. Appl. Mech. Rev., 2002, 55(1): R1-R4.
[81] FLEKKØY E. Lattice Bhatnagar-Gross-Krook models for miscible fluids[J]. Physical Review E, 1993, 47(6): 4247.
[82] GUO Z L, SHI B C, WANG N C. Fully Lagrangian and lattice Boltzmann methods for the advection-diffusion equation[J]. Journal of scientific computing, 1999, 14: 291-300.
[83] ZHANG M, ZHAO W, LIN P. Lattice Boltzmann method for general convection-diffusion equations: MRT model and boundary schemes[J]. Journal of Computational Physics, 2019, 389: 147-163.
[84] ZHENG H, SHU C, CHEW Y T. A lattice Boltzmann model for multiphase flows with large density ratio[J]. Journal of computational physics, 2006, 218(1): 353-371.
[85] CHAI Z, ZHAO T. Lattice Boltzmann model for the convection-diffusion equation[J]. Physical Review E, 2013, 87(6): 063309.
[86] GUO Z, ZHENG C, SHI B. An extrapolation method for boundary conditions in lattice Boltzmann method[J]. Physics of fluids, 2002, 14(6): 2007-2010.
[87] ZOU Q, HE X. On pressure and velocity boundary conditions for the lattice Boltzmann BGK model[J]. Physics of fluids, 1997, 9(6): 1591-1598.
[88] GUO Z L, ZHENG C. Theory and applications of lattice Boltzmann method[J]. Science, Beijing, 2009.
[89] HE X, ZOU Q, LUO L S, et al. Analytic solutions of simple flows and analysis of nonslip boundary conditions for the lattice Boltzmann BGK model[J]. Journal of Statistical Physics, 1997, 87: 115-136.
[90] ABDELMIGID T A, SAQR K M, KOTB M A, et al. Revisiting the lid-driven cavity flow problem: Review and new steady state benchmarking results using GPU accelerated code[J]. Alexandria engineering journal, 2017, 56(1): 123-135.
[91] LADD A J. Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 1. Theoretical foundation[J]. Journal of fluid mechanics, 1994, 271: 285-309.
[92] DORSCHNER B, FRAPOLLI N, CHIKATAMARLA S S, et al. Grid refinement for entropic lattice Boltzmann models[J]. Physical Review E, 2016, 94(5): 053311.
[93] HE X, LUO L S. Lattice Boltzmann model for the incompressible Navier–Stokes equation[J]. Journal of statistical Physics, 1997, 88: 927-944.
[94] GUO Z, LIU H, LUO L S, et al. A comparative study of the LBE and GKS methods for 2D near incompressible laminar flows[J]. Journal of Computational Physics, 2008, 227(10): 4955-4976.
[95] LADD A, VERBERG R. Lattice-Boltzmann simulations of particle-fluid suspensions[J]. Journal of statistical physics, 2001, 104: 1191-1251.
[96] MEI R, YU D, SHYY W, et al. Force evaluation in the lattice Boltzmann method involving curved geometry[J]. Physical Review E, 2002, 65(4): 041203.
修改评论