中文版 | English
题名

基于格子玻尔兹曼方法的局部网格加密研究—粗细网格间分布函数转换及网格加密界面非物理震荡分析

其他题名
LOCAL GRID REFINEMENT APPROACH FOR LATTICE BOLTZMANN METHOD DISTRIBUTION FUNCTION CONVERSION BETWEEN COARSE AND FINE GRIDS AND ANALYSIS OF NON-PHYSICAL OSCILLATIONS AT THE INTERFACE OF GRID REFINEMENT
姓名
姓名拼音
LIU Chunyou
学号
12032401
学位类型
硕士
学位专业
080103 流体力学
学科门类/专业学位类别
08 工学
导师
王连平
导师单位
力学与航空航天工程系
论文答辩日期
2023-05-10
论文提交日期
2023-06-29
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

格子Boltzmann方法作为一种高效的介观计算流体力学方法在过去二十多年里得到快速发展,其相对较高的计算效率和灵活性使其可以适用于各种复杂流动的模拟。然而标准的格子Boltzmann方法受限于自身的限制使其只能使用均匀的直角网格,这种网格排布方式并不利于复杂流动的计算。为此,基于格子Boltzmann方法的局部网格加密算法被提出。该算法需要在局部加密的界面处将粗细网格间的分布函数转换后交换。目前分布函数的转换方式大多是在没有源项的基础下推导的,而且现存考虑源项时转换公式的推导也都是基于Champan-Enskog展开寻找与分辨率无关的分布函数表达式。其推导过程相对复杂,且需要对分布函数的非平衡态部分做一阶Champan-Enskog近似,这有可能会限制局部网格加密算法在高阶格子Boltzmann方法中的应用。 为了进一步完善和扩展局部网格加密算法的适用范围,本文在忽略离散误差的前提下以保证粗细网格间时空离散前分布函数以及弛豫时间一致为基础,首次构建了一套规范且简洁的粗细网格间在考虑任意源项时分布函数转换关系的推导过程,该方法不依赖于Champan-Enskog展开以及Champan-Enskog近似,且该方法既可以适用于单松弛碰撞模型也可以适用于多松弛碰撞模型。此外,本文还首次从理论上证明了保证粗细网格间非平衡态部分的一阶 Champan-Enskog 近似一致,便可以保证整个非平衡态部分的一致,这也给之前学者对非平衡态部分做一阶 Champan-Enskog 近似提供了理论依据。 源项对于扩展格子Boltzmann方法的适用范围有着重要的意义。本文首次给出了考虑任意源项时递归正则化模型中非平衡态分布函数各阶Hermite矩间的递推关系并给出了考虑任意源项后该碰撞模型的具体实施方案,同时本文首次给出了混合递归正则化模型在考虑任意源项时需要做出的额外修正,这将有助于扩展两种碰撞模型的适用范围。针对分布函数的初始化问题,本文首次通过引入新的Hermite转换矩阵构建了考虑任意源项时多松弛碰撞模型下时空离散前后分布函数各阶Hermite矩间的关系,该方法的提出除了可以用于初始化分布函数外还有助于通过Hermite矩为桥梁将单松弛碰撞模型和多松弛碰撞模型有机统一。 为了验证分布函数转换公式对复杂源项的适应性,我们使用了局部网格加密算法模拟了具有复杂源项的强迫泰勒-格林涡流动以及二维平板泊肃叶流中的扩散问题并取得了较好的数值结果,同时我们以二维平板泊肃叶流和顶盖驱动方腔流为算例展示了局部网格加密算法对于计算效率的提升,其中我们在顶盖方腔驱动流中通过将整个顶盖附近加密使得计算时间节省了 2 倍以上。此外,我们以顶盖方腔驱动流为算例探索性的对比了不同碰撞模型对网格加密界面非物理震荡的抑制效果,实验结果表明在使用局部网格加密技术时除了合理选择加密区域的范围外,往往还需要配合使用具有良好数值稳定性的碰撞模型。在分析分布函数转换关系的推导过程后,我们认为网格加密界面附近非物理震荡的产生是由于粗细网格间离散误差不一致从而导致在加密界面处形成的“离散误差间断”引起的。 综上,本文的主要工作在于:完善了粗细网格间分布函数的转换关系,探索性的研究了局部加密网格界面处的非物理震荡并对震荡产生的本质给出了猜测。同时提出了不同碰撞模型下源项的处理方法,引入了Hermite转换矩阵用于多松弛碰撞模型的初始化。

关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2023-06
参考文献列表

[1] HANSSON T, OOSTENBRINK C, VAN GUNSTEREN W. Molecular dynamics simulations[J]. Current opinion in structural biology, 2002, 12(2): 190-196.
[2] KARPLUS M, PETSKO G A. Molecular dynamics simulations in biology[J]. Nature, 1990,347: 631-639.
[3] DIMARCO G, PARESCHI L. Numerical methods for kinetic equations[J]. Acta Numerica,2014, 23: 369-520.
[4] HU J, JIN S, LI Q. Asymptotic-preserving schemes for multiscale hyperbolic and kinetic equations[M]//Handbook of Numerical Analysis: volume 18. Elsevier, 2017: 103-129.
[5] JIN S. Asymptotic preserving (AP) schemes for multiscale kinetic and hyperbolic equations: a review[J]. Lecture notes for summer school on methods and models of kinetic theory (M&MKT), Porto Ercole (Grosseto, Italy), 2010: 177-216.
[6] KERIMO J, GIRIMAJI S S. Boltzmann–BGK approach to simulating weakly compressible 3D turbulence: comparison between lattice Boltzmann and gas kinetic methods[J]. Journal of Turbulence, 2007(8): N46.
[7] LIN C, XU A, ZHANG G, et al. Double-distribution-function discrete Boltzmann model for combustion[J]. Combustion and Flame, 2016, 164: 137-151.
[8] SHAN X, CHEN H. Lattice Boltzmann model for simulating flows with multiple phases and components[J]. Physical review E, 1993, 47(3): 1815.
[9] DELLAR P. Electromagnetic waves in lattice Boltzmann magnetohydrodynamics[J]. Europhysics Letters, 2010, 90(5): 50002.
[10] AIDUN C K, CLAUSEN J R. Lattice-Boltzmann method for complex flows[J]. Annual review of fluid mechanics, 2010, 42: 439-472.
[11] LALLEMAND P, LUO L S, KRAFCZYK M, et al. The lattice Boltzmann method for nearly incompressible flows[J]. Journal of Computational Physics, 2021, 431: 109713.
[12] MARIÉ S, RICOT D, SAGAUT P. Comparison between lattice Boltzmann method and Navier–Stokes high order schemes for computational aeroacoustics[J]. Journal of Computational Physics, 2009, 228(4): 1056-1070.
[13] XU H, SAGAUT P. Optimal low-dispersion low-dissipation LBM schemes for computational aeroacoustics[J]. Journal of Computational Physics, 2011, 230(13): 5353-5382.
[14] LIU H, KANG Q, LEONARDI C R, et al. Multiphase lattice Boltzmann simulations for porous media applications: A review[J]. Computational Geosciences, 2016, 20: 777-805.
[15] BHATNAGAR P L, GROSS E P, KROOK M. A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems[J]. Physical review, 1954,94(3): 511.
[16] KUZNIK F, OBRECHT C, RUSAOUEN G, et al. LBM based flow simulation using GPU computing processor[J]. Computers & Mathematics with Applications, 2010, 59(7): 2380-2392.
[17] BLAIR S, ALBING C, GRUND A, et al. Accelerating an MPI lattice Boltzmann code using OpenACC[C]//Proceedings of the second workshop on accelerator programming using directives. 2015: 1-9.
[18] CHEN T, WANG L P, LAI J, et al. Inverse design of mesoscopic models for compressible flow using the Chapman-Enskog analysis[J]. Advances in Aerodynamics, 2021, 3(1): 1-25.
[19] SHI B, GUO Z. Lattice Boltzmann model for nonlinear convection-diffusion equations[J]. Physical Review E, 2009, 79(1): 016701.
[20] ZHOU Z, MA J. Lattice Boltzmann methods for solving partial differential equations of exotic option pricing[J]. Frontiers of Mathematics in China, 2016, 11: 237-254.
[21] KOTAPATI R, KEATING A, KANDASAMY S, et al. The lattice-Boltzmann-VLES Method for automotive fluid dynamics simulation, a review[R]. SAE Technical Paper, 2009.
[22] KHORRAMI M R, FARES E, CASALINO D. Towards full aircraft airframe noise prediction: lattice Boltzmann simulations[C]//20th AIAA/CEAS aeroacoustics conference. 2014: 2481.
[23] DUDA B M, FARES E, WESSELS M, et al. Unsteady flow simulation of a sweeping jet actuator using a Lattice-Boltzmann method[C]//54th AIAA Aerospace Sciences Meeting. 2016: 1818.
[24] LATT J, MALASPINAS O, KONTAXAKIS D, et al. Palabos: parallel lattice Boltzmann solver[J]. Computers & Mathematics with Applications, 2021, 81: 334-350.
[25] KRAUSE M J, KUMMERLÄNDER A, AVIS S J, et al. OpenLB—Open source lattice Boltzmann code[J]. Computers & Mathematics with Applications, 2021, 81: 258-288.
[26] JAHANSHALOO L, POURYAZDANPANAH E, CHE SIDIK N A. A review on the application of the lattice Boltzmann method for turbulent flow simulation[J]. Numerical Heat Transfer, Part A: Applications, 2013, 64(11): 938-953.
[27] POPE S B, POPE S B. Turbulent flows[M]. Cambridge university press, 2000.
[28] CAO N, CHEN S, JIN S, et al. Physical symmetry and lattice symmetry in the lattice Boltzmann method[J]. Physical review E, 1997, 55(1): R21.
[29] TSUTAHARA M. The finite-difference lattice Boltzmann method and its application in computational aero-acoustics[J]. Fluid Dynamics Research, 2012, 44(4): 045507.
[30] GUO Z, XU K, WANG R. Discrete unified gas kinetic scheme for all Knudsen number flows: Low-speed isothermal case[J]. Physical Review E, 2013, 88(3): 033305.
[31] LEE T, LIN C L. A characteristic Galerkin method for discrete Boltzmann equation[J]. Journal of Computational Physics, 2001, 171(1): 336-356.
[32] FILIPPOVA O, HÄNEL D. Grid refinement for lattice-BGK models[J]. Journal of computational Physics, 1998, 147(1): 219-228.
[33] CHAPMAN S, COWLING T G. The mathematical theory of non-uniform gases: an account of the kinetic theory of viscosity, thermal conduction and diffusion in gases[M]. Cambridge university press, 1990.
[34] LAGRAVA D, MALASPINAS O, LATT J, et al. Advances in multi-domain lattice Boltzmann grid refinement[J]. Journal of Computational Physics, 2012, 231(14): 4808-4822.
[35] DUPUIS A, CHOPARD B. Theory and applications of an alternative lattice Boltzmann grid refinement algorithm[J]. Physical Review E, 2003, 67(6): 066707.
[36] LIN C L, LAI Y G. Lattice Boltzmann method on composite grids[J]. Physical Review E, 2000,62(2): 2219.
[37] TOUIL H, RICOT D, LÉVÊQUE E. Direct and large-eddy simulation of turbulent flows on composite multi-resolution grids by the lattice Boltzmann method[J]. Journal of Computational Physics, 2014, 256: 220-233.
[38] YU D, MEI R, SHYY W. A multi-block lattice Boltzmann method for viscous fluid flows[J]. International journal for numerical methods in fluids, 2002, 39(2): 99-120.
[39] GENDRE F, RICOT D, FRITZ G, et al. Grid refinement for aeroacoustics in the lattice Boltzmann method: A directional splitting approach[J]. Physical Review E, 2017, 96(2): 023311.
[40] CHEN H, FILIPPOVA O, HOCH J, et al. Grid refinement in lattice Boltzmann methods based on volumetric formulation[J]. Physica A: Statistical Mechanics and its Applications, 2006, 362(1): 158-167.
[41] ROHDE M, KANDHAI D, DERKSEN J, et al. A generic, mass conservative local grid refinement technique for lattice-Boltzmann schemes[J]. International journal for numerical methods in fluids, 2006, 51(4): 439-468.
[42] GEIER M, GREINER A, KORVINK J G. Bubble functions for the lattice Boltzmann method and their application to grid refinement[J]. The European Physical Journal Special Topics, 2009, 171(1): 173-179.
[43] CHEN S, PENG C, TENG Y, et al. Improving lattice Boltzmann simulation of moving particles in a viscous flow using local grid refinement[J]. Computers & Fluids, 2016, 136: 228-246.
[44] D’HUMIÈRES D. Multiple–relaxation–time lattice Boltzmann models in three dimensions[J]. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 2002, 360(1792): 437-451.
[45] ASTOUL T, WISSOCQ G, BOUSSUGE J F, et al. Lattice Boltzmann method for computational aeroacoustics on non-uniform meshes: A direct grid coupling approach[J]. Journal of Computational Physics, 2021, 447: 110667.
[46] ASTOUL T, WISSOCQ G, BOUSSUGE J F, et al. Analysis and reduction of spurious noise generated at grid refinement interfaces with the lattice Boltzmann method[J]. Journal of Computational Physics, 2020, 418: 109645.
[47] WAN D, WANG G, CHEN S. Numerical Investigation of Lid-Driven Deep Cavity with Local Grid Refinement of MRT-LBM[J]. Journal of Beijing Institute of Technology, 2019, 28(3):536-548.
[48] JACOB J, MALASPINAS O, SAGAUT P. A new hybrid recursive regularised Bhatnagar–Gross–Krook collision model for lattice Boltzmann method-based large eddy simulation[J]. Journal of Turbulence, 2018, 19(11-12): 1051-1076.
[49] GUZIK S M, WEISGRABER T H, COLELLA P, et al. Interpolation methods and the accuracy of lattice-Boltzmann mesh refinement[J]. Journal of Computational Physics, 2014, 259: 461-487.
[50] LAI J, CHEN T, ZHANG S, et al. Study of a droplet breakup process in decaying homogeneous isotropic turbulence based on the phase-field DUGKS approach[A]. 2022.
[51] ZHANG C, YANG K, GUO Z. A discrete unified gas-kinetic scheme for immiscible two-phase flows[J]. International Journal of Heat and Mass Transfer, 2018, 126: 1326-1336.
[52] HUANG R, WU H. Multiblock approach for the passive scalar thermal lattice Boltzmann method[J]. Physical Review E, 2014, 89(4): 043303.
[53] LIOU T M, WANG C S. Three-dimensional multidomain lattice Boltzmann grid refinement for passive scalar transport[J]. Physical Review E, 2018, 98(1): 013306.
[54] SHI Y, WU L, SHAN X. Accuracy of high-order lattice Boltzmann method for non-equilibrium gas flow[J]. Journal of Fluid Mechanics, 2021, 907.
[55] GRAD H. On the kinetic theory of rarefied gases[J]. Communications on pure and applied mathematics, 1949, 2(4): 331-407.
[56] LEVERMORE C D, MOROKOFF W J. The Gaussian moment closure for gas dynamics[J]. SIAM Journal on Applied Mathematics, 1998, 59(1): 72-96.
[57] GRAD H. Note on N-dimensional hermite polynomials[J]. Communications on Pure and Applied Mathematics, 1949, 2(4): 325-330.
[58] SHAN X, YUAN X F, CHEN H. Kinetic theory representation of hydrodynamics: a way beyond the Navier–Stokes equation[J]. Journal of Fluid Mechanics, 2006, 550: 413-441.
[59] QIAN Y H, D’HUMIÈRES D, LALLEMAND P. Lattice BGK models for Navier-Stokes equation[J]. Europhysics letters, 1992, 17(6): 479.
[60] QIAN Y, ORSZAG S. Lattice BGK models for the Navier-Stokes equation: Nonlinear deviation in compressible regimes[J]. Europhysics letters, 1993, 21(3): 255.
[61] SHAN X. The mathematical structure of the lattices of the lattice Boltzmann method[M]. Elsevier B.V., 2016.
[62] WEN X, WANG L P, GUO Z. Designing a consistent implementation of the discrete unified gas-kinetic scheme for the simulation of three-dimensional compressible natural convection[J]. Physics of Fluids, 2021, 33(4): 046101.
[63] HE X, SHAN X, DOOLEN G D. Discrete Boltzmann equation model for nonideal gases[J]. Physical Review E, 1998, 57(1): R13.
[64] WISSOCQ G, SAGAUT P, BOUSSUGE J F. An extended spectral analysis of the lattice Boltzmann method: modal interactions and stability issues[J]. Journal of Computational Physics, 2019, 380: 311-333.
[65] LATT J, CHOPARD B. Lattice Boltzmann method with regularized pre-collision distribution functions[J]. Mathematics and Computers in Simulation, 2006, 72(2-6): 165-168.
[66] MALASPINAS O. Increasing stability and accuracy of the lattice Boltzmann scheme: recursivity and regularization[A]. 2015.
[67] WISSOCQ G, COREIXAS C, BOUSSUGE J F. Linear stability and isotropy properties of athermal regularized lattice Boltzmann methods[J]. Physical Review E, 2020, 102(5): 053305.
[68] ZHANG R, SHAN X, CHEN H. Efficient kinetic method for fluid simulation beyond the Navier-Stokes equation[J]. Physical Review E, 2006, 74(4): 046703.
[69] MONTESSORI A, FALCUCCI G, PRESTININZI P, et al. Regularized lattice Bhatnagar-Gross-Krook model for two-and three-dimensional cavity flow simulations[J]. Physical Review E, 2014, 89(5): 053317.
[70] COREIXAS C, WISSOCQ G, PUIGT G, et al. Recursive regularization step for high-order lattice Boltzmann methods[J]. Physical Review E, 2017, 96(3): 033306.
[71] FENG Y, BOIVIN P, JACOB J, et al. Hybrid recursive regularized lattice Boltzmann simulation of humid air with application to meteorological flows[J]. Physical Review E, 2019, 100(2): 023304.
[72] LALLEMAND P, LUO L S. Theory of the lattice Boltzmann method: Dispersion, dissipation, isotropy, Galilean invariance, and stability[J]. Physical review E, 2000, 61(6): 6546.
[73] DONG Z Q, WANG L P, PENG C, et al. A systematic study of hidden errors in the bounce-back scheme and their various effects in the lattice Boltzmann simulation of viscous flows[J]. Physics of Fluids, 2022, 34(9): 093608.
[74] SKORDOS P. Initial and boundary conditions for the lattice Boltzmann method[J]. Physical Review E, 1993, 48(6): 4823.
[75] HUANG J, WU H, YONG W A. On initial conditions for the lattice Boltzmann method[J]. Communications in Computational Physics, 2015, 18(2): 450-468.
[76] SALIMI M, TAEIBI-RAHNI M. New lifting relations for estimating LBM distribution functions from corresponding macroscopic quantities, based on equilibrium and non-equilibrium moments[J]. Journal of Computational Physics, 2015, 302: 155-175.
[77] MEI R, LUO L S, LALLEMAND P, et al. Consistent initial conditions for lattice Boltzmann simulations[J]. Computers & Fluids, 2006, 35(8-9): 855-862.
[78] KRÜGER T, VARNIK F, RAABE D. Second-order convergence of the deviatoric stress tensor in the standard Bhatnagar-Gross-Krook lattice Boltzmann method[J]. Physical Review E, 2010, 82(2): 025701.
[79] MIN H, PENG C, GUO Z, et al. An inverse design analysis of mesoscopic implementation of non-uniform forcing in MRT lattice Boltzmann models[J]. Computers & Mathematics with Applications, 2019, 78(4): 1095-1114.
[80] BIRD R B. Transport phenomena[J]. Appl. Mech. Rev., 2002, 55(1): R1-R4.
[81] FLEKKØY E. Lattice Bhatnagar-Gross-Krook models for miscible fluids[J]. Physical Review E, 1993, 47(6): 4247.
[82] GUO Z L, SHI B C, WANG N C. Fully Lagrangian and lattice Boltzmann methods for the advection-diffusion equation[J]. Journal of scientific computing, 1999, 14: 291-300.
[83] ZHANG M, ZHAO W, LIN P. Lattice Boltzmann method for general convection-diffusion equations: MRT model and boundary schemes[J]. Journal of Computational Physics, 2019, 389: 147-163.
[84] ZHENG H, SHU C, CHEW Y T. A lattice Boltzmann model for multiphase flows with large density ratio[J]. Journal of computational physics, 2006, 218(1): 353-371.
[85] CHAI Z, ZHAO T. Lattice Boltzmann model for the convection-diffusion equation[J]. Physical Review E, 2013, 87(6): 063309.
[86] GUO Z, ZHENG C, SHI B. An extrapolation method for boundary conditions in lattice Boltzmann method[J]. Physics of fluids, 2002, 14(6): 2007-2010.
[87] ZOU Q, HE X. On pressure and velocity boundary conditions for the lattice Boltzmann BGK model[J]. Physics of fluids, 1997, 9(6): 1591-1598.
[88] GUO Z L, ZHENG C. Theory and applications of lattice Boltzmann method[J]. Science, Beijing, 2009.
[89] HE X, ZOU Q, LUO L S, et al. Analytic solutions of simple flows and analysis of nonslip boundary conditions for the lattice Boltzmann BGK model[J]. Journal of Statistical Physics, 1997, 87: 115-136.
[90] ABDELMIGID T A, SAQR K M, KOTB M A, et al. Revisiting the lid-driven cavity flow problem: Review and new steady state benchmarking results using GPU accelerated code[J]. Alexandria engineering journal, 2017, 56(1): 123-135.
[91] LADD A J. Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 1. Theoretical foundation[J]. Journal of fluid mechanics, 1994, 271: 285-309.
[92] DORSCHNER B, FRAPOLLI N, CHIKATAMARLA S S, et al. Grid refinement for entropic lattice Boltzmann models[J]. Physical Review E, 2016, 94(5): 053311.
[93] HE X, LUO L S. Lattice Boltzmann model for the incompressible Navier–Stokes equation[J]. Journal of statistical Physics, 1997, 88: 927-944.
[94] GUO Z, LIU H, LUO L S, et al. A comparative study of the LBE and GKS methods for 2D near incompressible laminar flows[J]. Journal of Computational Physics, 2008, 227(10): 4955-4976.
[95] LADD A, VERBERG R. Lattice-Boltzmann simulations of particle-fluid suspensions[J]. Journal of statistical physics, 2001, 104: 1191-1251.
[96] MEI R, YU D, SHYY W, et al. Force evaluation in the lattice Boltzmann method involving curved geometry[J]. Physical Review E, 2002, 65(4): 041203.

所在学位评定分委会
力学
国内图书分类号
O35
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/544560
专题工学院_力学与航空航天工程系
推荐引用方式
GB/T 7714
刘春友. 基于格子玻尔兹曼方法的局部网格加密研究—粗细网格间分布函数转换及网格加密界面非物理震荡分析[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032401-刘春友-力学与航空航天(22015KB)学位论文--限制开放CC BY-NC-SA请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[刘春友]的文章
百度学术
百度学术中相似的文章
[刘春友]的文章
必应学术
必应学术中相似的文章
[刘春友]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。