[1] 徐湛; 李青宇; 巩译; 孟繁轲; 张校旗;. 适用于高多普勒扩展场景的调制技术[J]. 西安邮电大学学报, 2021, 26: 1-14.
[2] CHOWDHURY M Z, SHAHJALAL M, AHMED S, et al. 6G wireless communication systems:Applications, requirements, technologies, challenges, and research directions[J]. IEEE OpenJournal of the Communications Society, 2020, 1: 957-975.
[3] 李爽; 肖伟; 董志诚; 周维曦;. 高速移动场景下的多用户OFDM 系统功率分配[J]. 长江信息通信, 2021, 34: 46-49.
[4] 王莹; 任军; 史可; 林彬;;. 基于深度学习的广义频分复用系统时频双选择信道估计[J]. 通信学报, 2021, 43: 233-242.
[5] HADANI R, MONK A. OTFS: A new generation of modulation addressing the challenges of5G[A]. 2018.
[6] XIAO L, LI S, QIAN Y, et al. An overview of OTFS for Internet of Things: Concepts, benefits,and challenges[J]. IEEE Internet of Things Journal, 2021, 9(10): 7596-7618.
[7] BELLO P. Characterization of randomly time-variant linear channels[J]. IEEE transactions onCommunications Systems, 1963, 11(4): 360-393.
[8] DANG S, AMIN O, SHIHADA B, et al. What should 6G be?[J]. Nature Electronics, 2020, 3(1): 20-29.
[9] LI S, YUAN J, YUAN W, et al. Performance analysis of coded OTFS systems over high-mobilitychannels[J]. IEEE transactions on wireless communications, 2021, 20(9): 6033-6048.
[10] LIU F, YUAN Z, GUO Q, et al. Message passing-based structured sparse signal recovery forestimation of OTFS channels with fractional Doppler shifts[J]. IEEE transactions on wirelesscommunications, 2021, 20(12): 7773-7785.
[11] TIWARI S, DAS S S, RANGAMGARI V. Low complexity LMMSE receiver for OTFS[J]. IEEEcommunications letters, 2019, 23(12): 2205-2209.
[12] LI L, LIANG Y, FAN P, et al. Low complexity detection algorithms for OTFS under rapidlytime-varying channel[C]//2019 IEEE 89th Vehicular Technology Conference (VTC2019-Spring). IEEE, 2019: 1-5.
[13] AKYILDIZ I F, POMPILI D, MELODIA T. Underwater acoustic sensor networks: researchchallenges[J]. Ad hoc networks, 2005, 3(3): 257-279.
[14] LARSSON E G, EDFORS O, TUFVESSON F, et al. Massive MIMO for next generation wirelesssystems[J]. IEEE communications magazine, 2014, 52(2): 186-195.
[15] YE H, LI G Y, JUANG B H. Power of deep learning for channel estimation and signal detectionin OFDM systems[J]. IEEE Wireless Communications Letters, 2017, 7(1): 114-117.
[16] 廖勇; 李雪; 王幕熙; 杨植景; 周晨虹;. 基于深度学习的信道估计技术研究进展[J]. 大连工业大学学报, 2021: 1-13.
[17] 石佳琪; 金桂月; 金基宇; 樊磊;. 基于深度学习的信道估计[J]. 大连工业大学学报, 2021,40: 367-376.
[18] HADANI R, RAKIB S, MOLISCH A, et al. Orthogonal time frequency space (OTFS) modulationfor millimeter-wave communications systems[C]//2017 IEEE MTT-S International MicrowaveSymposium (IMS). IEEE, 2017: 681-683.
[19] 韩知雨, 董静薇, 闫宁, 等. 大规模MIMO 系统中伪随机序列加扰法的导频分配.[J]. Journalof Harbin University of Science & Technology, 2021, 26(1).
[20] RAVITEJA P, PHAN K T, HONG Y. Embedded pilot-aided channel estimation for OTFS indelay–Doppler channels[J]. IEEE transactions on vehicular technology, 2019, 68(5): 4906-4917.
[21] GAUDIO L, KOBAYASHI M, BISSINGER B, et al. Performance analysis of joint radar andcommunication using OFDM and OTFS[C]//2019 IEEE International Conference on CommunicationsWorkshops (ICC Workshops). IEEE, 2019: 1-6.
[22] ZHAO L, GAO W J, GUO W. Sparse Bayesian learning of delay-Doppler channel for OTFSsystem[J]. IEEE communications letters, 2020, 24(12): 2766-2769.
[23] LIU Y, ZHANG S, GAO F, et al. Uplink-Aided High Mobility Downlink Channel EstimationOver Massive MIMO-OTFS System[J/OL]. IEEE Journal on Selected Areas in Communications,2020, 38(9): 1994-2009. DOI: 10.1109/JSAC.2020.3000884.
[24] RAVITEJA P, HONG Y, VITERBO E, et al. Practical pulse-shaping waveforms for reducedcyclic-prefix OTFS[J]. IEEE Transactions on Vehicular Technology, 2018, 68(1): 957-961.
[25] LI S, YUAN W, WEI Z, et al. Hybrid MAP and PIC detection for OTFS modulation[J]. IEEEtransactions on vehicular technology, 2021, 70(7): 7193-7198.
[26] RAVITEJA P, PHAN K T, HONG Y, et al. Interference cancellation and iterative detectionfor orthogonal time frequency space modulation[J]. IEEE transactions on wireless communications,2018, 17(10): 6501-6515.
[27] YUAN Z, LIU F, YUAN W, et al. Iterative detection for orthogonal time frequency spacemodulation with unitary approximate message passing[J]. IEEE transactions on wireless communications,2021, 21(2): 714-725.
[28] LIU F, YUAN Z, GUO Q, et al. Multi-block UAMP-based detection for OTFS with rectangularwaveform[J]. IEEE Wireless Communications Letters, 2021, 11(2): 323-327.
[29] ERPEK T, O’SHEA T J, SAGDUYU Y E, et al. Deep learning for wireless communications[J]. Development and Analysis of Deep Learning Architectures, 2020: 223-266.
[30] HU Q, GAO F, ZHANG H, et al. Understanding deep MIMO detection[A]. 2021.
[31] LIU C, LIU X, NG D W K, et al. Deep residual learning for channel estimation in intelligentreflecting surface-assisted multi-user communications[J]. IEEE Transactions on WirelessCommunications, 2021, 21(2): 898-912.
[32] ZHANG X, YUAN W, LIU C. Deep Residual Learning for OTFS Channel Estimation withArbitrary Noise[C]//2022 IEEE/CIC International Conference on Communications in China(ICCC Workshops). IEEE, 2022: 320-324.
[33] SOLTANI M, POURAHMADI V, MIRZAEI A, et al. Deep learning-based channel estimation[J]. IEEE Communications Letters, 2019, 23(4): 652-655.
[34] LIAO Y, HUA Y, DAI X, et al. ChanEstNet: A deep learning based channel estimation for highspeedscenarios[C]//ICC 2019-2019 IEEE international conference on communications (ICC).IEEE, 2019: 1-6.
[35] HE H, WEN C K, JIN S, et al. Model-driven deep learning for MIMO detection[J]. IEEETransactions on Signal Processing, 2020, 68: 1702-1715.
[36] SCHYNOL L, PESAVENTO M. Deep Unfolding in Multicell MU-MIMO[C]//2022 30th EuropeanSignal Processing Conference (EUSIPCO). IEEE, 2022: 1631-1635.
[37] YE H, LIANG L, LI G Y, et al. Deep learning-based end-to-end wireless communication systemswith conditional GANs as unknown channels[J]. IEEE Transactions on Wireless Communications,2020, 19(5): 3133-3143.
[38] YUAN W, WEI Z, YUAN J, et al. A simple variational Bayes detector for orthogonal timefrequency space (OTFS) modulation[J]. IEEE transactions on vehicular technology, 2020, 69(7): 7976-7980.
[39] LI S, YUAN W, WEI Z, et al. Cross domain iterative detection for orthogonal time frequencyspace modulation[J]. IEEE transactions on wireless communications, 2021, 21(4): 2227-2242.
[40] WEI Z, YUAN W, LI S, et al. Off-grid channel estimation with sparse bayesian learning forOTFS systems[J]. IEEE Transactions on Wireless Communications, 2022, 21(9): 7407-7426.
[41] CAO B, XIANG Z, REN P. Low complexity transmitter precoding for MU MIMO-OTFS[J].Digital Signal Processing, 2021, 115: 103083.
[42] 邢旺; 唐晓刚; 周一青; 张冲; 潘振岗. 面向OTFS 的时延-多普勒域信道估计方法综述[J].通信学报, 2022, 43: 188-201.
[43] LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. nature, 2015, 521(7553): 436-444.
[44] 钱蓉蓉; 吕孝明; 任文平;. 基于深度学习的高维信号信道估计算法[J]. 电讯技术, 2022, 62:1554-1559.
[45] 郭晟; 余乐; 朱立东;. 星地场景下基于CNN 的OTFS 系统信道估计方法[J]. 天地一体化信息网络, 2022, 3: 37-45.
[46] CHOI D, SHALLUE C J, NADO Z, et al. On empirical comparisons of optimizers for deeplearning[A]. 2019.
[47] CUNNINGHAM P, CORD M, DELANY S J. Supervised learning[J]. Machine learning techniquesfor multimedia: case studies on organization and retrieval, 2008: 21-49.
[48] 卢梅. 基于深度学习的低频SKA 点扩展函数效应消除研究[D]. 贵州大学, 2022.
[49] 甘亚斌; 张代青; 于国荣; 徐丽华; 邹进. 滇中受水区用水结构时空演变态势分析[C]//水力发电. 昆明理工大学电力工程学院, 2022.
[50] ZOU F, SHEN L, JIE Z, et al. A sufficient condition for convergences of adam and rmsprop[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2019:11127-11135.
[51] ALI M N Y, SAROWAR M G, RAHMAN M L, et al. Adam deep learning with SOM forhuman sentiment classification[J]. International Journal of Ambient Computing and Intelligence(IJACI), 2019, 10(3): 92-116.
[52] 涂岳. 基于深度学习的OTFS 信号解调技术研究[D]. 北京邮电大学, 2021.
[53] KATTENBORN T, LEITLOFF J, SCHIEFER F, et al. Review on Convolutional Neural Networks(CNN) in vegetation remote sensing[J]. ISPRS journal of photogrammetry and remotesensing, 2021, 173: 24-49.
[54] IOFFE S, SZEGEDY C. Batch normalization: Accelerating deep network training by reducinginternal covariate shift[C]//International conference on machine learning. pmlr, 2015: 448-456.
[55] SAFARI M S, POURAHMADI V, SODAGARI S. Deep UL2DL: Data-driven channel knowledgetransfer from uplink to downlink[J]. IEEE Open Journal of Vehicular Technology, 2019,1: 29-44.
[56] MOLISCH A F. Statistical description of the wireless channel[M]. Wiley-IEEE Press, 2011.
[57] 林珠, 刘勃, 归琳. C 频段空地链路无线信道大尺度衰落模型[J]. 电讯技术, 2010, 50(12):112-115.
[58] 蔺伟, 沈京川, 李辉, 等. 高速铁路电波小尺度衰落特性分析[J]. 中国铁道科学, 2004, 25(3): 97-102.
[59] SCHNITER P. Low-complexity equalization of OFDM in doubly selective channels[J]. IEEETransactions on Signal processing, 2004, 52(4): 1002-1011.
[60] MURALI K, CHOCKALINGAM A. On OTFS modulation for high-Doppler fading channels[C]//2018 Information Theory and Applications Workshop (ITA). IEEE, 2018: 1-10.
[61] DENG L, YU D, et al. Deep learning: methods and applications[J]. Foundations and trends®in signal processing, 2014, 7(3–4): 197-387.
[62] LIU Y, AL-NAHHAL I, DOBRE O A, et al. Deep-Learning-Based Channel Estimation forIRS-Assisted ISAC System[C]//GLOBECOM 2022-2022 IEEE Global Communications Conference.IEEE, 2022: 4220-4225.
[63] MA J, PING L. Orthogonal amp[J]. IEEE Access, 2017, 5: 2020-2033.
[64] MA J, PING L. Orthogonal AMP[J/OL]. IEEE Access, 2017, 5: 2020-2033. DOI: 10.1109/ACCESS.2017.2653119.
修改评论