[1] SIMPSON G G, DEAN C. Arabidopsis, the Rosetta stone of flowering time?[J]. Science, 2002, 296(5566): 285-289.
[2] WELLMER F, RIECHMANN J L. Gene networks controlling the initiation of flower development[J]. Trends Genet, 2010, 26(12): 519-527.
[3] JUNG C, MULLER A E. Flowering time control and applications in plant breeding[J]. Trends Plant Science, 2009, 14(10): 563-573.
[4] SRIKANTH A, SCHMID M. Regulation of flowering time: all roads lead to Rome[J]. Cellular and Molecular Life Sciences, 2011, 68(12): 2013-2037.
[5] PARCY F. Flowering: a time for integration[J]. The International Journal of Decelopmental Biology, 2005, 49(5-6): 585-593.
[6] KINOSHITA A, RICHTER R. Genetic and molecular basis of floral induction in Arabidopsis thaliana[J]. Journal of Experimental Botany, 2020, 71(9): 2490-2504.
[7] CORBESIER L, COUPLAND G. The quest for florigen: a review of recent progress[J]. Journal of Experimental Botany, 2006, 57(13): 3395-3403.
[8] SAMACH A, ONOUCHI H, GOLD S E, et al. Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis[J]. Science, 2000, 288(5471): 1613-1616.
[9] SEARLE I, HE Y, TURCK F, et al. The transcription factor FLC confers a flowering response to vernalization by repressing meristem competence and systemic signaling in Arabidopsis[J]. Genes & Development, 2006, 20(7): 898-912.
[10] HELLIWELL C A, WOOD C C, ROBERTSON M, et al. The Arabidopsis FLC protein interacts directly in vivo with SOC1 and FT chromatin and is part of a high-molecular-weight protein complex[J]. The Plant Journal, 2006, 46(2): 183-192.
[11] POSE D, VERHAGE L, OTT F, et al. Temperature-dependent regulation of flowering by antagonistic FLM variants[J]. Nature, 2013, 503(7476): 414-417.
[12] SCORTECCI K C, MICHAELS S D, AMASINO R M. Identification of a MADS-box gene, FLOWERING LOCUS M, that represses flowering[J]. The Plant Journal, 2001, 26(2): 229-236.
[13] LEIJTEN W, KOES R, ROOBEEK I, et al. Translating flowering time from Arabidopsis thaliana to Brassicaceae and Asteraceae Crop Species[J]. Plants, 2018, 7(4).
[14] SONG Y H, SHIM J S, KINMONTH-SCHULTZ H A, et al. Photoperiodic flowering: time measurement mechanisms in leaves[J]. Annual Review of Plant Biology, 2015, 66: 441-464.
[15] PUTTERILL J, LAURIE R, MACKNIGHT R. It's time to flower: the genetic control of flowering time[J]. Bioessays, 2004, 26(4): 363-373.
[16] SUNG S B, AMASINO R M. Vernalization and epigenetics: how plants remember winter[J]. Current Opinion in Plant Biology, 2004, 7(1): 4-10.
[17] GENDALL A R, LEVY Y Y, WILSON A, et al. The VERNALIZATION 2 gene mediates the epigenetic regulation of vernalization in Arabidopsis[J]. Cell, 2001, 107(4): 525-535.
[18] CHOI K, KIM J, HWANG H J, et al. The FRIGIDA complex activates transcription of FLC, a strong flowering repressor in Arabidopsis, by recruiting chromatin modification factors[J]. The Plant Cell, 2011, 23(1): 289-303.
[19] HEO J B, SUNG S. Vernalization-mediated epigenetic silencing by a long intronic noncoding RNA[J]. Science, 2011, 331(6013): 76-79.
[20] SEO E, LEE H, JEON J, et al. Crosstalk between cold response and flowering in Arabidopsis is mediated through the flowering-time gene SOC1 and its upstream negative regulator FLC[J]. The Plant Cell, 2009, 21(10): 3185-3197.
[21] BALASUBRAMANIAN S, SURESHKUMAR S, LEMPE J, et al. Potent induction of Arabidopsis thaliana flowering by elevated growth temperature[J]. PLOS Genetics, 2006, 2(7): e106.
[22] JAGADISH S V, BAHUGUNA R N, DJANAGUIRAMAN M, et al. Implications of high temperature and elevated CO2 on flowering time in plants[J]. Frontiers in Plant Science, 2016, 7: 913.
[23] LEE J H, RYU H S, CHUNG K S, et al. Regulation of temperature-responsive flowering by MADS-box transcription factor repressors[J]. Science, 2013, 342(6158): 628-632.
[24] CAPOVILLA G, SYMEONIDI E, WU R, et al. Contribution of major FLM isoforms to temperature-dependent flowering in Arabidopsis thaliana[J]. Journal of Experimental Botany, 2017, 68(18): 5117-5127.
[25] KUMAR S V, WIGGE P A. H2A.Z-containing nucleosomes mediate the thermosensory response in Arabidopsis[J]. Cell, 2010, 140(1): 136-147.
[26] MUTASA-GOTTGENS E, HEDDEN P. Gibberellin as a factor in floral regulatory networks[J]. Journal of Experimental Botany, 2009, 60(7): 1979-1989.
[27] PORRI A, TORTI S, ROMERA-BRANCHAT M, et al. Spatially distinct regulatory roles for gibberellins in the promotion of flowering of Arabidopsis under long photoperiods[J]. Development, 2012, 139(12): 2198-2209.
[28] BAO S, HUA C, SHEN L, et al. New insights into gibberellin signaling in regulating flowering in Arabidopsis[J]. Journal of Integrative Plant Biology, 2020, 62(1): 118-131.
[29] WANG H, PAN J, LI Y, et al. The DELLA-CONSTANS transcription factor cascade integrates gibberellic acid and photoperiod signaling to regulate flowering[J]. Plant Physiology, 2016, 172(1): 479-488.
[30] CHENG J Z, ZHOU Y P, LV T X, et al. Research progress on the autonomous flowering time pathway in Arabidopsis[J]. Physiology and Molecular Biology of Plants, 2017, 23(3): 477-485.
[31] LIU F, QUESADA V, CREVILLEN P, et al. The Arabidopsis RNA-binding protein FCA requires a lysine-specific demethylase 1 homolog to downregulate FLC[J]. Molecular Cell, 2007, 28(3): 398-407.
[32] WU G, PARK M Y, CONWAY S R, et al. The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis[J]. Cell, 2009, 138(4): 750-759.
[33] HE J, XU M, WILLMANN M R, et al. Threshold-dependent repression of SPL gene expression by miR156/miR157 controls vegetative phase change in Arabidopsis thaliana[J]. PLOS Genetics, 2018, 14(4): e1007337.
[34] FORNARA F, COUPLAND G. Plant phase transitions make a SPLash[J]. Cell, 2009, 138(4): 625-627.
[35] XU M L, HU T Q, ZHAO J F, et al. Developmental functions of miR156-regulated SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) genes in Arabidopsis thaliana[J]. PLOS Genetics, 2016, 12(8).
[36] HYUN Y, RICHTER R, VINCENT C, et al. Multi-layered regulation of SPL15 and cooperation with SOC1 integrate endogenous flowering pathways at the Arabidopsis shoot meristem[J]. Developmental Cell, 2016, 37(3): 254-266.
[37] HYUN Y, RICHTER R, COUPLAND G. Competence to flower: age-controlled sensitivity to environmental cues[J]. Plant Physiology, 2017, 173(1): 36-46.
[38] GRAMZOW L, RITZ M S, THEISSEN G. On the origin of MADS-domain transcription factors[J]. Trends in Genetics, 2010, 26(4): 149-153.
[39] BECKER A, THEISSEN G. The major clades of MADS-box genes and their role in the development and evolution of flowering plants[J]. Molecular Phylogenetics and Evolution, 2003, 29(3): 464-489.
[40] ALVAREZ-BUYLLA E R, PELAZ S, LILJEGREN S J, et al. An ancestral MADS-box gene duplication occurred before the divergence of plants and animals[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(10): 5328-5333.
[41] PARENICOVA L, DE FOLTER S, KIEFFER M, et al. Molecular and phylogenetic analyses of the complete MADS-box transcription factor family in Arabidopsis: new openings to the MADS world[J]. The Plant Cell, 2003, 15(7): 1538-1551.
[42] ALVAREZ-BUYLLA E R, GARCIA-PONCE B, SANCHEZ M P, et al. MADS-box genes underground becoming mainstream: plant root developmental mechanisms[J]. New Phytologist, 2019, 223(3): 1143-1158.
[43] SHARMA N, GEUTEN K, GIRI B S, et al. The molecular mechanism of vernalization in Arabidopsis and cereals: role of Flowering Locus C and its homologs[J]. Physiologia Plantarum, 2020, 170(3): 373-383.
[44] SMACZNIAK C, IMMINK R G, MUINO J M, et al. Characterization of MADS-domain transcription factor complexes in Arabidopsis flower development[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(5): 1560-1565.
[45] CHEN M K, HSU W H, LEE P F, et al. The MADS box gene, FOREVER YOUNG FLOWER, acts as a repressor controlling floral organ senescence and abscission in Arabidopsis[J]. The Plant Journal, 2011, 68(1): 168-185.
[46] PAOLO D, ROTASPERTI L, SCHNITTGER A, et al. The Arabidopsis MADS-domain transcription factor SEEDSTICK controls seed size via direct activation of E2Fa[J]. Plants, 2021, 10(2)
[47] EHLERS K, BHIDE A S, TEKLEYOHANS D G, et al. The MADS box genes ABS, SHP1, and SHP2 are essential for the coordination of cell divisions in ovule and seed coat development and for endosperm formation in Arabidopsis thaliana[J]. PLoS One, 2016, 11(10): e0165075.
[48] PAUL P, JOSHI S, TIAN R, et al. The MADS-domain factor AGAMOUS-Like18 promotes somatic embryogenesis[J]. Plant Physiology, 2022, 188(3): 1617-1631.
[49] CALLENS C, TUCKER M R, ZHANG D, et al. Dissecting the role of MADS-box genes in monocot floral development and diversity[J]. Journal of Experimental Botany, 2018, 69(10): 2435-2459.
[50] GRAMZOW L, THEISSEN G. A hitchhiker's guide to the MADS world of plants[J]. Genome Biology, 2010, 11(6): 214.
[51] LAI X L, VEGA-LEON R, HUGOUVIEUX V, et al. The intervening domain is required for DNA-binding and functional identity of plant MADS transcription factors[J]. Nature Communications, 2021, 12(1)
[52] PURANIK S, ACAJJAOUI S, CONN S, et al. Structural basis for the oligomerization of the MADS domain transcription factor SEPALLATA3 in Arabidopsis[J]. The Plant Cell, 2014, 26(9): 3603-3615.
[53] IMMINK R G, GADELLA T W, JR., FERRARIO S, et al. Analysis of MADS box protein-protein interactions in living plant cells[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(4): 2416-2421.
[54] DE FOLTER S, IMMINK R G H, KIEFFER M, et al. Comprehensive interaction map of the Arabidopsis MADS box transcription factors[J]. The Plant Cell, 2005, 17(5): 1424-1433.
[55] YAN W, CHEN D, KAUFMANN K. Molecular mechanisms of floral organ specification by MADS domain proteins[J]. Current Opinion Plant Biology, 2016, 29: 154-162.
[56] HUGOUVIEUX V, ZUBIETA C. MADS transcription factors cooperate: complexities of complex formation[J]. Journal of Experiment Botany, 2018, 69(8): 1821-1823.
[57] THEISSEN G, MELZER R, RUMPLER F. MADS-domain transcription factors and the floral quartet model of flower development: linking plant development and evolution[J]. Development, 2016, 143(18): 3259-3271.
[58] THEISSEN G, SAEDLER H. Floral quartets[J]. Nature, 2001, 409(6819): 469-471.
[59] BATTAGLIA R, BRAMBILLA V, COLOMBO L, et al. Functional analysis of MADS-box genes controlling ovule development in Arabidopsis using the ethanol-inducible alc gene-expression system[J]. Mechanisms of Development, 2006, 123(4): 267-276.
[60] LUGER K, RECHSTEINER T J, FLAUS A J, et al. Characterization of nucleosome core particles containing histone proteins made in bacteria[J]. Journal of Molecular Biology, 1997, 272(3): 301-311.
[61] NARDINI M, GNESUTTA N, DONATI G, et al. Sequence-specific transcription factor NF-Y displays histone-like DNA binding and H2B-like ubiquitination[J]. Cell, 2013, 152(1-2): 132-143.
[62] ONOUCHI H, IGENO M I, PERILLEUX C, et al. Mutagenesis of plants overexpressing CONSTANS demonstrates novel interactions among Arabidopsis flowering-time genes[J]. The Plant Cell, 2000, 12(6): 885-900.
[63] BORNER R, KAMPMANN G, CHANDLER J, et al. A MADS domain gene involved in the transition to flowering in Arabidopsis[J]. The Plant Journal, 2000, 24(5): 591-599.
[64] LEE H, SUH S S, PARK E, et al. The AGAMOUS-LIKE 20 MADS domain protein integrates floral inductive pathways in Arabidopsis[J]. Genes & Development, 2000, 14(18): 2366-2376.
[65] MOON J, SUH S S, LEE H, et al. The SOC1 MADS-box gene integrates vernalization and gibberellin signals for flowering in Arabidopsis[J]. The Plant Journal, 2003, 35(5): 613-623.
[66] CSEKE L J, ZHENG J, PODILA G K. Characterization of PTM5 in aspen trees: a MADS-box gene expressed during woody vascular development[J]. Gene, 2003, 318: 55-67.
[67] FERRARIO S, BUSSCHER J, FRANKEN J, et al. Ectopic expression of the petunia MADS box gene UNSHAVEN accelerates flowering and confers leaf-like characteristics to floral organs in a dominant-negative manner[J]. The Plant Cell, 2004, 16(6): 1490-1505.
[68] NAKAMURA T, SONG I J, FUKUDA T, et al. Characterization of TrcMADS1 gene of Trillium camtschatcense (Trilliaceae) reveals functional evolution of the SOC1/TM3-like gene family[J]. Journal of Plant Research, 2005, 118(3): 229-234.
[69] SRI T, GUPTA B, TYAGI S, et al. Homeologs of Brassica SOC1, a central regulator of flowering time, are differentially regulated due to partitioning of evolutionarily conserved transcription factor binding sites in promoters[J]. Molecular Phylogenetics and Evolution, 2020, 147.
[70] IMMINK R G H, POSE D, FERRARIO S, et al. Characterization of SOC1's central role in flowering by the identification of its upstream and downstream regulators[J]. Plant Physiology, 2012, 160(1): 433-449.
[71] TAO Z, SHEN L, LIU C, et al. Genome-wide identification of SOC1 and SVP targets during the floral transition in Arabidopsis[J]. The Plant Journal, 2012, 70(4): 549-561.
[72] LEE J, OH M, PARK H, et al. SOC1 translocated to the nucleus by interaction with AGL24 directly regulates leafy[J]. The Plant Journal, 2008, 55(5): 832-843.
修改评论