[1] DAI X L, ZHANG Z X, JIN Y Z, et al. Solution-Processed, High-Performance Light-Emitting Diodes Based on Quantum Dots[J]. Nature, 2014, 515(7525): 96-99.
[2] WON Y H, CHO O, KIM T, et al. Highly Efficient and Stable InP/ZnSe/ZnS Quantum Dot Light-Emitting Diodes[J]. Nature, 2019, 575(7784): 634-638.
[3] LIN X, DAI X L, YE Z K, et al. Highly-Efficient Thermoelectric-Driven Light Emitting Diodes Based on Colloidal Quantum Dots[J]. Nano Research, 2022, 15(10): 9402-9409.
[4] JANG H J, LEE J Y, KWAK J, et al. Progress of Display Performances: AR, VR, QLED, and OLED, Journal of Information Display[J]. Journal of Information Display, 2020, 21(1): 1-9.
[5] SHIRASAKI Y, SUPRAN G, BAWENDI M, et al. Emergence of Colloidal Quantum-Dot Light-Emitting Technologies[J]. Nature Photonics, 2013, 7(1): 13- 23.
[6] CHEN O, WEI H, MAURICE A, et al. Pure Colors from Core–Shell Quantum Dots[J]. MRS Bulletin, 2013, 38(9): 696-702.
[7] KIM T H, JUN S, CHO K S, et al. Bright and Stable Quantum Dots and Their Applications in Full-Color Displays[J]. MRS Bulletin, 2013, 38(9): 712-720.
[8] DABBOUSI B O, RODRIGUEZ-VIEJO J, MIKULEC F V, et al. (CdSe) ZnS Core-Shell Quantum Dots: Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites[J]. The Journal of Physical Chemistry B, 1997, 101(46): 9463-9475.
[9] WANG R L, SHANG Y Q, NING Z J, et al. Colloidal Quantum Dot Ligand Engineering for High Performance Solar Cells[J]. Energy & Environmental Science, 2016, 9(4): 1130-1143.
[10] QIAO K K, DENG H, YANG X K, et al. Spectra-Selective PbS Quantum Dot Infrared Photodetectors[J]. Nanoscale, 2016, 8(13): 7137-7143.
[11] KIM J H, JO D Y, LEE K H, et al. White Electroluminescent Lighting Device Based on a Single Quantum Dot Emitter[J]. Advanced Materials, 2016, 28(25): 5093-5098.
[12] MEDINTZ I L, UYEDA H T, GOLDMAN E R, et al. Quantum Dot Bioconjugates for Imaging, Labelling and Sensing[J]. Nature Materials, 2005, 4(6): 435-446.
[13] CHEN O, ZHAO J, CHAUHAN V P, et al. Compact High-Quality CdSe-CdS Core-Shell Nanocrystals with Narrow Emission Linewidths and Suppressed Blinking[J]. Nature Materials, 2013, 12(5): 445-451.
[14] REISS P, CARRIЀRE M, LINCHENEAU C, et al. Synthesis of Semiconductor Nanocrystals, Focusing on Nontoxic and Earth-Abundant Materials[J]. Chemical Reviews, 2016, 116(18): 10731-10819.
[15] CHEN H S, LO B, HWANG J Y, et al. Colloidal ZnSe, ZnSe/ZnS, and ZnSe/ZnSeS Quantum Dots Synthesized from ZnO[J]. The Journal of Physical Chemistry B, 2004, 108(44): 17119-17123.
[16] BAE W K, KWAK J, PARK J W, et al. Highly Efficient Green-Light-Emitting Diodes Based on CdSe@ZnS Quantum Dots with a Chemical-Composition Gradient[J]. Advanced Materials, 2009, 21(17): 1690-1694.
[17] ZOU Y T, BAN M Y, CUI W, et al. A General Solvent Selection Strategy for Solution Processed Quantum Dots Targeting High Performance Light-Emitting Diode[J]. Advanced Functional Materials, 2017, 27(1): 1603325.
[18] ROSSETTI R, NAKAHARA S, BRUS L E. Quantum Size Effects in The Redox Potentials, Resonance Raman Spectra, and Electronic Spectra of CdS Crystallites in Aqueous Solution[J]. The Journal of Chemical Physics, 1983, 79(1): 1086 - 1088.
[19] WANG Y, HERRON N. Nanometer-Sized Semiconductor Clusters: Materials Synthesis, Quantum Size Effects, and Photophysical Properties[J]. The Journal of Physical Chemistry, 1991, 95(2): 525-532.
[20] WANG X W, SUN G Z, LI N, et al. Quantum Dots Derived from Two Dimensional Materials and Their Applications for Catalysis and Energy[J]. Chemical Society Reviews, 2016, 45(8): 2239-2262.
[21] HINES M A, SCHOLES G D. Colloidal PbS Nanocrystals with Size-Tunable Near-Infrared Emission: Observation of Post-Synthesis Self-Narrowing of The Particle Size Distribution[J]. Advanced Materials, 2003, 15(21): 1844-1849.
[22] LEE J, SUNDAR V C, HEINE J R, et al. Full Color Emission from II-VI Semiconductor Quantum Dot-Polymer Composites[J]. Advanced Materials, 2000, 12(15): 1102-1105.
[23] MOREELS I, JUSTO Y, HENS Z et al. Size-Tunable, Bright, and Stable PbS Quantum Dots: A Surface Chemistry Study[J]. ACS Nano, 2011, 5(3): 2004-2012.
[24] OTTO T, MÜLLER M, MUNDRA P, et al. Colloidal Nanocrystals Embedded in Macrocrystals: Robustness, Photostability, and Color purity[J]. Nano Letters, 2012, 12(10): 5348-5354.
[25] SUPRAN G, SHIRASAKI Y, SONG K, et al. QLEDs for Displays and Solid-State Lighting[J]. MRS Bulletin, 2013, 38(9): 703-711.
[26] PENG Z A, PENG X G. Formation of High-Quality CdTe, CdSe, and CdS Nanocrystals Using CdO as Precursor[J]. Journal of the American Chemical Society, 2001, 123(1): 183-184.
[27] PENG Z A, PENG X G. Nearly Monodisperse and Shape-Controlled CdSe Nanocrystals Via Alternative Routes: Nucleation and Growth[J]. Journal of the American Chemical Society, 2002, 124(13): 3343-3353.
[28] BAE W K, BROVELLI S, KLIMOV V I. Spectroscopic Insights into The Performance of Quantum Dot Light-Emitting Diodes[J]. MRS Bulletin, 2013, 38(9): 721-730.
[29] SADASIVAN S, BAUSEMER K, CORLISS S, et al. Invited Paper: Performance Benchmarking of Wide Color Gamut Televisions and Monitors[C]//SID International Symposium Digest of Technical Papers, 2016, 47(1): 333-335.
[30] LI X Y, ZHAO Y B, FAN F J, et al. Bright Colloidal Quantum Dot Light-Emitting Diodes Enabled by Efficient Chlorination[J]. Nature Photonics, 2018, 12(3): 159- 164.
[31] TALAPIN D V, STECKEL J. Quantum Dot Light-Emitting Devices[J]. MRS Bulletin, 2013, 38(9): 685-691.
[32] DAI X L, DENG Y Z, PENG X G, et al. Quantum-Dot Light-Emitting Diodes for Large-Area Displays: Towards the Dawn of Commercialization [J]. Advanced Materials, 2017, 29(14): 1607022.
[33] BAE W K, PARK Y S, LIM J, et al. Controlling the Influence of Auger Recombination on The Performance of Quantum-Dot Light-Emitting Diodes[J]. Nature Communications, 2013, 4(1): 2661.
[34] KWAK J, BAE W K, LEE D, et al. Bright and Efficient Full-Color Colloidal Quantum Dot Light-Emitting Diodes Using an Inverted Device Structure[J]. Nano Letters, 2012, 12(5): 2362-2366.
[35] WANG W G, PENG H R, CHEN S M. Highly Transparent Quantum-Dot Light Emitting Diodes with Sputtered Indium-Tin-Oxide Electrodes[J]. Journal of Materials Chemistry C, 2016, 4(9): 1838-1841.
[36] WANG F Z, SUN W D, LIU P, et al. Achieving Balanced Charge Injection of Blue Quantum Dot Light-Emitting Diodes Through Transport Layer Doping Strategies[J]. The Journal of Physical Chemistry Letters, 2019, 10(5): 960-965.
[37] DENG Y Z, PENG F, JIN Y Z, et al. Solution-Processed Green and Blue Quantum-Dot Light-Emitting Diodes with Eliminated Charge Leakage[J]. Nature Photonics, 2022, 16(7): 505-511.
[38] BATHELT R, BUCHHAUSER D, GÄRDITZ C, et al. Light Extraction from OLEDs for Lighting Applications Through Light Scattering[J]. Organic Electronics, 2007, 8(4): 293-299.
[39] MÖLLER S, FORREST S R. Improved Light Out-Coupling in Organic Light Emitting Diodes Employing Ordered Microlens Arrays[J]. Journal of Applied Physics, 2002, 91(5): 3324-3327.
[40] COLVIN V L, SCHLAMP M C, ALIVISATOS A P. Light-Emitting Diode Made from Cadmium Selenide Nanocrystals and a Semiconducting Polymer[J]. Nature, 1994, 370(6488): 354-357.
[41] COE S, WOO W K, BAWENDI M, et al. Electroluminescence from Single Monolayers of Nanocrystals in Molecular Organic Devices[J]. Nature, 2002, 420(6917): 800-803.
[42] CARUGE J M, HALPERT J E, WOOD V, et al. Colloidal Quantum-Dot Light Emitting Diodes with Metal-Oxide Charge Transport Layers[J]. Nature Photonics, 2008, 2(4): 247-250.
[43] QIAN L, ZHENG Y, XUE J G, et al. Stable and Efficient Quantum-Dot Light Emitting Diodes Based on Solution-Processed Multilayer Structures[J]. Nature Photonics, 2011, 5(9): 543-548.
[44] CHEN Z N, SU Q, QIN Z Y, et al. Effect and Mechanism of Encapsulation on Aging Characteristics of Quantum-Dot Light-Emitting Diodes[J]. Nano Research, 2021, 14(1): 320-327.
[45] SU Q, CHEN S M. Thermal Assisted Up-Conversion Electroluminescence in Quantum Dot Light Emitting Diodes[J]. Nature Communications, 2022, 13(1): 369.
[46] SU Q, ZHANG H, CHEN S M. Identification of Excess Charge Carriers in InP Based Quantum-Dot Light-Emitting Diodes[J]. Applied Physics Letters, 2020, 117(5): 53502.
[47] SONG J J, WANG O Y, SHEN H B, et al. Over 30% External Quantum Efficiency Light-Emitting Diodes by Engineering Quantum Dot-Assisted Energy Level Match for Hole Transport Layer[J]. Advanced Functional Materials, 2019, 29(33): 1808377.
[48] YANG Z W, WU Q Q, YANG X Y, et al. All-Solution Processed Inverted Green Quantum Dot Light-Emitting Diodes with Concurrent High Efficiency and Long Lifetime[J]. Materials Horizons, 2019, 6(1): 2009-2015.
[49] WANG L S, LIN J, ZHAO J L, et al. Blue Quantum Dot Light-Emitting Diodes with High Electroluminescent Efficiency[J]. ACS Applied Materials & Interfaces, 2017, 9(44): 38755-38760.
[50] LEE T, KIM B J, LEE H, et al. Bright and Stable Quantum Dot Light-Emitting Diodes[J]. Advanced Materials, 2022, 34(4): 2106276.
[51] SUN Y Z, SU Q, CHEN S M, et al. Investigation on Thermally Induced Efficiency Roll-Off: Toward Efficient and Ultrabright Quantum-Dot Light Emitting Diodes[J]. ACS Nano, 2019, 13(10): 11433-11442.
[52] SHEN H B, GAO Q, ZHANG Y B, et al. Visible Quantum Dot Light-Emitting Diodes with Simultaneous High Brightness and Efficiency[J]. Nature Photonics, 2019, 13(3): 192-197.
[53] SUN Y Z, JIANG Y B, CHEN S M, et al. Beyond OLED: Efficient Quantum Dot Light-Emitting Diodes for Display and Lighting Application[J]. Chemical Record, 2019, 19(8): 1729-1752.
[54] YUAN Q L, WANG T, JI W Y, et al. A Review on The Electroluminescence Properties of Quantum-Dot Light-Emitting Diodes[J]. Organic Electronics, 2021, 90(1): 106086.
[55] LI X Y, ZHAO Y B, SARGENT E H, et al. Bright Colloidal Quantum Dot Light Emitting Diodes Enabled by Efficient Chlorination[J]. Nature Photonics, 2018, 12(3): 159-164.
[56] WU W H, CHEN Z, ZHAN Y F, et al. An Efficient Hole Transporting Polymer for Quantum Dot Light-Emitting Diodes[J]. Advanced Materials Interfaces, 2021, 8(1): 2100731.
[57] WANG L X, PAN J Y, QIAN J P, et al. A Highly Efficient White Quantum Dot Light-Emitting Diode Employing Magnesium Doped Zinc Oxide as The Electron Transport Layer Based on Bilayered Quantum Dot Layers[J]. Journal of Materials Chemistry C, 2018, 6(30): 8099-8104.
[58] ZHANG H, SU Q, CHEN S M, et al. White Quantum-Dot LEDs: Efficient and Color Stable White Quantum-Dot Light-Emitting Diodes with External Quantum Efficiency Over 23%[J]. Advanced Optical Materials, 2018, 6(16): 1800354.
[59] ZHU Y B, XU R, LI F S, et al. Ultrahighly Efficient White Quantum Dot Light Emitting Diodes Operating at Low Voltage[J]. Advanced Optical Materials, 2020, 8(24): 2001479.
[60] SHEN P Y, LI X M, YANG X Y, et al. Highly Efficient, All-Solution-Processed, Flexible White Quantum Dot Light-Emitting Diodes[J]. Journal of Materials Chemistry C, 2018, 6(36): 9642-9648.
[61] LEE K H, HAN C Y, YANG H, et al. Highly Efficient, Color-Reproducible Full Color Electroluminescent Devices Based on Red/Green/Blue Quantum Dot-Mixed Multilayer[J]. ACS Nano, 2015, 9(11): 10941-10949.
[62] QI H, WANG S J, SHEN H B, et al. Synchronous Outcoupling of Tri-Colored Light for Ultra-Bright White Quantum Dot Light-Emitting Diodes by Using External Wrinkle Pattern[J]. Advanced Optical Materials, 2022, 10(7): 2102494.
[63] XIANG H Y, WANG R, LI F S, et al. Research Progress of Full Electroluminescent White Light-Emitting Diodes Based on a Single Emissive Layer[J]. Light: Science & Applications, 2021, 10(1): 206.
[64] FÖRSTER T. Zwischenmolekulare Energiewanderung und Fluoreszenz[J]. Annalen Der Physic, 1948, 437(1): 55-75.
[65] LERNER E, CORDES T, INGARGIOLA A, et al. Toward Dynamic Structural Biology: Two Decades of Single-Molecule Förster Resonance Energy Transfer[J]. Science, 2018, 359(6373): 1.
[66] CLAPP A R, MEDINTZ I L, MAURO J M, et al. Fluorescence Resonance Energy Transfer Between Quantum Dot Donors and Dye-Labeled Protein Acceptors[J]. Journal of the American Chemical Society, 2004, 126(1): 301-310.
[67] CHIN P T K, HIKMET R A M, JANSSEN R A J. Energy Transfer in Hybrid Quantum Dot Light-Emitting Diodes[J]. Journal of Applied Physics, 2008, 104(1): 013108.
[68] SHOUSTIKOV A, YOU Y, FORREST S R, et al. Orange and Red Organic Light Emitting Devices Using Aluminum Tris(5-Hydroxyquinoxaline) [J]. Synthetic Metals, 1997, 91(1): 217-221.
[69] TANG C W, VANSLYKE S A, CHEN C H. Electroluminescence of Doped Organic Thin Films[J]. Journal of Applied Physics, 1989, 65(9): 3610-3616.
[70] HEIMEL P, MONDAL A, MAY F, et al. Unicolored Phosphor-Sensitized Fluorescence for Efficient and Stable Blue OLEDs[J]. Nature Communications, 2018, 9(1): 4990.
[71] VIRGILI T, LIDZEY D G, BRADLEY D D C. Efficient Energy Transfer from Blue to Red in Tetraphenylporphyrin-Doped Poly(9,9-dioctylfluorene) Light Emitting Diodes[J]. Advanced Materials, 2000, 12(1): 58-62.
[72] BALDO M A, O’BRIEN D F, FORREST S R, et al. Highly Efficient Phosphorescent Emission from Organic Electroluminescent Devices[J]. Nature, 1998, 395(6698): 151-154.
[73] HONG H, WU C C, ZHAO Z X, et al. Giant Enhancement of Optical Nonlinearity in Two-Dimensional Materials by Multiphoton-Excitation Resonance Energy Transfer from Quantum Dots[J]. Nature Photonics, 2021, 15(7): 510-515.
[74] LIU C, LIANG J, WANG F F, et al. Tuning Energy Transfer Efficiency in Quantum Dots Mixture by Controlling Donor/Acceptor Ratio[J]. Chinese Physics B, 2021, 30(12): 127802.
[75] WANG R, XIANG H Y, CHEN J W, et al. Energy Regulation in White-Light Emitting Diodes[J]. ACS Energy Letters, 2022, 7(6): 2173-2188.
[76] CHANG C, ZHANG Q, SHEN H B, et al. Highly Efficient Trilayered White Quantum Dot Light Emitting Diodes Based on Organic Buffer Layers[J]. IEEE Electron Device Letters, 2018, 39(11): 1692-1695.
[77] LEE K H, HAN C Y, JANG E P, et al. Full-Color Capable Light-Emitting Diodes Based on Solution-Processed Quantum Dot Layer Stacking[J]. Nanoscale, 2018, 10(14): 6300-6305.
[78] ZHANG H, SU Q, CHEN S M. Quantum-Dot and Organic Hybrid Tandem Light Emitting Diodes with Multi-Functionality of Full-Color-Tunability and White Light-Emission[J]. Nature Communications, 2020, 11(1): 2826.
[79] JIANG C B, ZOU J H, PENG J B, et al. Fully Solution-Processed Tandem White Quantum-Dot Light-Emitting Diode with an External Quantum Efficiency Exceeding 25%[J]. ACS Nano, 2018, 12(6): 6040-6049.
[80] ZHANG H, CHEN S M, SUN X W. Efficient Red/Green/Blue Tandem Quantum Dot Light-Emitting Diodes with External Quantum Efficiency Exceeding 21%[J]. ACS Nano, 2018, 12(1): 697-704.
[81] CAO F, ZHAO D W, YANG X Y, et al. High-Efficiency, Solution-Processed White Quantum Dot Light-Emitting Diodes with Serially Stacked Red/Green/Blue Units[J]. Advanced Optical Materials, 2018, 6(20): 1800652.
[82] SU Q, ZHANG H, CHEN S M. Flexible and Tandem Quantum-Dot Light-Emitting Diodes with Individually Addressable Red/Green/Blue Emission[J]. npj Flexible Electronics, 2021, 5(1): 8.
[83] SHI L L, CHEN S M. Over 32.5% Efficient Top-Emitting Quantum-Dot LEDs with Angular-Independent Emission[J]. ACS Applied Materials & Interfaces, 2022, 14(26): 30039-30045.
[84] ISHIBASHI T, YAMADA J, HIRANO T, et al. Active Matrix Organic Light Emitting Diode Display Based on “Super Top Emission” Technology[J]. Japanese Journal of Applied Physics, 2006, 45(5B): 4392.
[85] LEE B W, JU Y G, SOUK J H, et al. Micro-Cavity Design of Bottom-Emitting AMOLED with White OLED and RGBW Color Filters for 100% Color Gamut[J]. Journal of the Society for Information Display, 2009, 17(2): 151-157.
[86] WINTERS D L. OLED Microcavity Subpixels and Color Filter Elements: U.S. Patent 7180238B2[P]. 2007-02-20.
[87] ZHANG W W, LIU H Y, SUN R G. Full Color Organic Light-Emitting Devices with Microcavity Structure and Color Filter[J]. Optics Express, 2009, 17(10): 8005-8011.
[88] LIN C L, LIN H W, WU C C. Examining Microcavity Organic Light-Emitting Devices Having Two Metal Mirrors[J]. Applied Physics Letters, 2005, 87(2): 021101.
[89] JORDAN R H, DODABALAPUR A, SLUSHER R E. Efficiency Enhancement of Microcavity Organic Light Emitting Diodes[J]. Applied Physics Letters, 1996, 69(14): 1997-1999.
[90] JUNG B Y, KIM N Y, LEE C, et al. Control of Resonant Wavelength from Organic Light Emitting Materials by Use of a Fabry-Perot Microcavity Structure[J]. Applied Optics, 2002, 41(16): 3312-3318.
[91] LIU G H, ZHOU X, CHEN S M. Very Bright and Efficient Microcavity Top Emitting Quantum Dot Light-Emitting Diodes with Ag Electrodes[J]. ACS Applied Materials & Interfaces, 2016, 8(26): 16768-16775.
[92] SENDEN T, RABOUW F T, MEIJERINK A. Photonic Effects on The Radiative Decay Rate and Luminescence Quantum Yield of Doped Nanocrystals[J]. ACS Nano, 2015, 9(2): 1801-1808.
[93] RABOUW F T, SENDEN T, MEIJERINK A, et al. Photonic Effects on The Förster Resonance Energy Transfer Efficiency[J]. Nature Communications, 2014, 5(1): 3610.
[94] NODA S, FUJITA M, ASANO T. Spontaneous-Emission Control by Photonic Crystals and Nanocavities[J]. Nature Photonics, 2007, 1(8): 449-458.
[95] CHO H, CHUNG J, SONG J, et al. Importance of Purcell Factor for Optimizing Structure of Organic Light-Emitting Diodes[J]. Optics Express, 2019, 27(8): 11057-11068.
修改评论