中文版 | English
题名

二维半导体黑磷物性及光电探测器研究

其他题名
A RESEARCH ON PHYSICAL PROPERTIES AND PHOTODETECTORS OF TWO-DIMENSIONAL SEMICONDUCTOR BLACK PHOSPHORUS
姓名
姓名拼音
WANG Han
学号
12032219
学位类型
硕士
学位专业
080901 物理电子学
学科门类/专业学位类别
08 工学
导师
陈晓龙
导师单位
电子与电气工程系
外机构导师单位
南方科技大学
论文答辩日期
2023-05-12
论文提交日期
2023-06-29
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

黑磷(BP)作为一种窄带隙二维材料,具有高迁移率、随层数和电场可调的 带隙、晶体各向异性等优点,在光电探测,尤其是中红外探测方面具有巨大的潜 力。相较于单纯使用黑磷,采用过渡金属二硫化物等二维材料与黑磷形成异质结, 可以极大地丰富器件的结构和功能,实现高探测率、低噪声的光电探测器。目前 文献中的二维黑磷光电探测器多使用二硫化钼(MoS2)与黑磷形成异质结。相较 于二硫化钼,二硫化铼(ReS2)具有晶体各向异性以及多层直接带隙等优势,并 且可以与黑磷形成 p-n 结,实现高效的光电探测。但目前对于黑磷-二硫化铼异质 结的中红外光电探测器研究还十分缺乏。 本次研究工作中我们制备了基于黑磷-二硫化铼异质结的自供电中红外探测 器,研究了黑磷的电学和光电响应特性。探测器具有从可见光至中红外波段的宽 谱光电流响应,零偏压下红外波段的光响应最高达到 0.3 mA/W,归一化探测率达 到 3 × 105 cm ⋅ Hz1/2/W,光电流信号强度可以通过栅压调控。探测器对红外光的 探测具有偏振选择性,对 3.3 μm 入射光探测的偏振比高达 270。 同时,我们通过在高反射率底电极上堆叠材料,增强了探测器对特定红外波 段入射光的吸收,有效调控了探测器的响应光谱。通过引入石墨烯作为缓冲层,我 们改善了材料与金属界面的接触特性,不仅增强了器件的电学整流特性,更提高 了探测器的红外光电响应性能。本篇工作展现了黑磷-二硫化铼异质结在未来中红 外光电探测方面的巨大潜力,为未来二维材料光电探测器的研究提供了有用的信 息。

关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2023-06
参考文献列表

[1] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thincarbon films[J]. Science, 2004, 306(5696): 666-669.
[2] BOLOTIN K I, SIKES K, JIANG Z, et al. Ultrahigh electron mobility in suspended graphene[J]. Solid State Communications, 2008, 146(9-10): 351-355.
[3] LIU H, NEAL A T, ZHU Z, et al. Phosphorene: an unexplored 2D semiconductor with a highhole mobility[J]. ACS Nano, 2014, 8(4): 4033-4041.
[4] CHEN C, CHEN F, CHEN X, et al. Bright mid-infrared photoluminescence from thin-filmblack phosphorus[J]. Nano Letters, 2019, 19(3): 1488-1493.
[5] LI L, KIM J, JIN C, et al. Direct observation of the layer-dependent electronic structure inphosphorene[J]. Nature Nanotechnology, 2017, 12(1): 21-25.
[6] LI X, ZHU H. Two-dimensional MoS2: Properties, preparation, and applications[J]. Journalof Materiomics, 2015, 1(1): 33-44.
[7] ELLIS J K, LUCERO M J, SCUSERIA G E. The indirect to direct band gap transition in mul tilayered MoS2 as predicted by screened hybrid density functional theory[J]. Applied PhysicsLetters, 2011, 99(26): 261908.
[8] HULTGREN R, GINGRICH N, WARREN B. The atomic distribution in red and black phos phorus and the crystal structure of black phosphorus[J]. The Journal of Chemical Physics, 1935,3(6): 351-355.
[9] MARUYAMA Y, SUZUKI S, KOBAYASHI K, et al. Synthesis and some properties of blackphosphorus single crystals[J]. Physica B+C, 1981, 105(1-3): 99-102.
[10] ZHANG G, HUANG S, WANG F, et al. Layer-Dependent Electronic and Optical Properties of2D Black Phosphorus: Fundamentals and Engineering[J]. Laser & Photonics Reviews, 2021,15(6): 2000399.
[11] BRIDGMAN P. Two new modifications of phosphorus.[J]. Journal of the American ChemicalSociety, 1914, 36(7): 1344-1363.
[12] KEYES R W. The electrical properties of black phosphorus[J]. Physical Review, 1953, 92(3):580.
[13] WARSCHAUER D. Electrical and optical properties of crystalline black phosphorus[J]. Journalof Applied Physics, 1963, 34(7): 1853-1860.
[14] LI L, YU Y, YE G J, et al. Black phosphorus field-effect transistors[J]. Nature Nanotechnology,2014, 9(5): 372-377.
[15] XIA F, WANG H, JIA Y. Rediscovering black phosphorus as an anisotropic layered materialfor optoelectronics and electronics[J]. Nature Communications, 2014, 5(1): 4458.
[16] QIAO J, KONG X, HU Z X, et al. High-mobility transport anisotropy and linear dichroism infew-layer black phosphorus[J]. Nature Communications, 2014, 5(1): 4475.
[17] LONG G, MARYENKO D, SHEN J, et al. Achieving ultrahigh carrier mobility in two dimensional hole gas of black phosphorus[J]. Nano Letters, 2016, 16(12): 7768-7773.
[18] RUDENKO A, BRENER S, KATSNELSON M. Intrinsic charge carrier mobility in single-layerblack phosphorus[J]. Physical Review Letters, 2016, 116(24): 246401.
[19] XU Y, SHI Z, SHI X, et al. Recent progress in black phosphorus and black-phosphorus-analoguematerials: properties, synthesis and applications[J]. Nanoscale, 2019, 11(31): 14491-14527.
[20] ZHANG G, HUANG S, CHAVES A, et al. Infrared fingerprints of few-layer black phosphorus[J]. Nature Communications, 2017, 8(1): 14071.
[21] CHEN C, LU X, DENG B, et al. Widely tunable mid-infrared light emission in thin-film blackphosphorus[J]. Science Advances, 2020, 6(7): eaay6134.
[22] ZONG X, HU H, OUYANG G, et al. Black phosphorus-based van der Waals heterostructuresfor mid-infrared light-emission applications[J]. Light: Science & Applications, 2020, 9(1): 114.
[23] MU H, LIN S, WANG Z, et al. Black phosphorus–polymer composites for pulsed lasers[J].Advanced Optical Materials, 2015, 3(10): 1447-1453.
[24] AHMAD H, SALIM M, THAMBIRATNAM K, et al. A black phosphorus-based tunable Q switched ytterbium fiber laser[J]. Laser Physics Letters, 2016, 13(9): 095103.
[25] GUPTA N, KIM H, AZAR N S, et al. Bright mid-wave infrared resonant-cavity light-emittingdiodes based on black phosphorus[J]. Nano Letters, 2022, 22(3): 1294-1301.
[26] BULLOCK J, AMANI M, CHO J, et al. Polarization-resolved black phosphorus/molybdenumdisulfide mid-wave infrared photodiodes with high detectivity at room temperature[J]. NaturePhotonics, 2018, 12(10): 601-607.
[27] WANG F, LIU Z, ZHANG T, et al. Fully Depleted Self-Aligned Heterosandwiched Van DerWaals Photodetectors[J]. Advanced Materials, 2022, 34(39): 2203283.
[28] LIU Y, QIU Z, CARVALHO A, et al. Gate-tunable giant stark effect in few-layer black phos phorus[J]. Nano Letters, 2017, 17(3): 1970-1977.
[29] DENG B, TRAN V, XIE Y, et al. Efficient electrical control of thin-film black phosphorusbandgap[J]. Nature Communications, 2017, 8(1): 14474.
[30] CHEN X, LU X, DENG B, et al. Widely tunable black phosphorus mid-infrared photodetector[J]. Nature Communications, 2017, 8(1): 1672.
[31] HUANG S, WANG F, ZHANG G, et al. From anomalous to normal: temperature dependenceof the band gap in two-dimensional black phosphorus[J]. Physical Review Letters, 2020, 125(15): 156802.
[32] LI D, XU J R, BA K, et al. Tunable bandgap in few-layer black phosphorus by electrical field[J]. 2D Materials, 2017, 4(3): 031009.
[33] CHEN X, ZHOU Z, DENG B, et al. Electrically tunable physical properties of two-dimensionalmaterials[J]. Nano Today, 2019, 27: 99-119.
[34] KIM H, UDDIN S Z, LIEN D H, et al. Actively variable-spectrum optoelectronics with blackphosphorus[J]. Nature, 2021, 596(7871): 232-237.
[35] MAO N, TANG J, XIE L, et al. Optical anisotropy of black phosphorus in the visible regime[J]. Journal of the American Chemical Society, 2016, 138(1): 300-305.
[36] RIBEIRO H B, PIMENTA M A, DE MATOS C J, et al. Unusual angular dependence of theRaman response in black phosphorus[J]. ACS Nano, 2015, 9(4): 4270-4276.
[37] WU J, MAO N, XIE L, et al. Identifying the crystalline orientation of black phosphorus usingangle-resolved polarized Raman spectroscopy[J]. Angewandte Chemie International Edition,2015, 54(8): 2366-2369.
[38] LI X K, GAO X G, SU B W, et al. Polarization-Dependent Photocurrent of Black Phos phorus/Rhenium Disulfide Heterojunctions[J]. Advanced Materials Interfaces, 2018, 5(22):1800960.
[39] JIAO H, WANG X, CHEN Y, et al. HgCdTe/black phosphorus van der Waals heterojunction forhigh-performance polarization-sensitive midwave infrared photodetector[J]. Science Advances,2022, 8(19): eabn1811.
[40] BISWAS S, GRAJOWER M Y, WATANABE K, et al. Broadband electro-optic polarizationconversion with atomically thin black phosphorus[J]. Science, 2021, 374(6566): 448-453.
[41] AKAMATSU T, IDEUE T, ZHOU L, et al. A van der Waals interface that creates in-planepolarization and a spontaneous photovoltaic effect[J]. Science, 2021, 372(6537): 68-72.
[42] LIU Y, SHIVANANJU B N, WANG Y, et al. Highly efficient and air-stable infrared photodetec tor based on 2D layered graphene–black phosphorus heterostructure[J]. ACS Applied Materials& Interfaces, 2017, 9(41): 36137-36145.
[43] DENG Y, LUO Z, CONRAD N J, et al. Black phosphorus–monolayer MoS2 van der Waalsheterojunction p–n diode[J]. ACS Nano, 2014, 8(8): 8292-8299.
[44] ZHU W, WEI X, YAN F, et al. Broadband polarized photodetector based on p-BP/n-ReS2heterojunction[J]. Journal of Semiconductors, 2019, 40(9): 092001.
[45] CHEN C, YOUNGBLOOD N, PENG R, et al. Three-dimensional integration of black phos phorus photodetector with silicon photonics and nanoplasmonics[J]. Nano Letters, 2017, 17(2):985-991.
[46] YOUNGBLOOD N, CHEN C, KOESTER S J, et al. Waveguide-integrated black phosphorusphotodetector with high responsivity and low dark current[J]. Nature Photonics, 2015, 9(4):247-252.
[47] LIU C, GUO J, YU L, et al. Silicon/2D-material photodetectors: from near-infrared to mid infrared[J]. Light: Science & Applications, 2021, 10(1): 123.
[48] 胡伟达, 李庆, 陈效双, 等. 具有变革性特征的红外光电探测器[J]. 物理学报, 2019, 68(12):120701.
[49] GUO Q, POSPISCHIL A, BHUIYAN M, et al. Black phosphorus mid-infrared photodetectorswith high gain[J]. Nano Letters, 2016, 16(7): 4648-4655.
[50] YE L, LI H, CHEN Z, et al. Near-infrared photodetector based on MoS2/black phosphorusheterojunction[J]. Acs Photonics, 2016, 3(4): 692-699.
[51] FAVRON A, GAUFRÈS E, FOSSARD F, et al. Photooxidation and quantum confinement effectsin exfoliated black phosphorus[J]. Nature Materials, 2015, 14(8): 826-832.
[52] AVSAR A, VERA-MARUN I J, TAN J Y, et al. Air-stable transport in graphene-contacted, fullyencapsulated ultrathin black phosphorus-based field-effect transistors[J]. ACS Nano, 2015, 9(4): 4138-4145.
[53] LIU H, DU Y, DENG Y, et al. Semiconducting black phosphorus: synthesis, transport propertiesand electronic applications[J]. Chemical Society Reviews, 2015, 44(9): 2732-2743.
[54] WU S, CHEN Y, WANG X, et al. Ultra-sensitive polarization-resolved black phosphorus ho mojunction photodetector defined by ferroelectric domains[J]. Nature Communications, 2022,13(1): 3198.
[55] YUAN S, NAVEH D, WATANABE K, et al. A wavelength-scale black phosphorus spectrometer[J]. Nature Photonics, 2021, 15(8): 601-607.
[56] ZHANG X, YAN C, HU X, et al. High performance mid-wave infrared photodetector based ongraphene/black phosphorus heterojunction[J]. Materials Research Express, 2021, 8(3): 035602.
[57] LUO Z, MAASSEN J, DENG Y, et al. Anisotropic in-plane thermal conductivity observed infew-layer black phosphorus[J]. Nature Communications, 2015, 6(1): 8572.
[58] GEIM A K, NOVOSELOV K S. The rise of graphene[J]. Nature Materials, 2007, 6(3): 183-191.
[59] HIGASHITARUMIZU N, UDDIN S Z, WEINBERG D, et al. Anomalous thickness dependenceof photoluminescence quantum yield in black phosphorous[J]. Nature Nanotechnology, 2023:1-7.
[60] BUSCEMA M, GROENENDIJK D J, BLANTER S I, et al. Fast and broadband photoresponseof few-layer black phosphorus field-effect transistors[J]. Nano Letters, 2014, 14(6): 3347-3352.
[61] WU J, KOON G K W, XIANG D, et al. Colossal ultraviolet photoresponsivity of few-layerblack phosphorus[J]. ACS Nano, 2015, 9(8): 8070-8077.
[62] ENGEL M, STEINER M, AVOURIS P. Black phosphorus photodetector for multispectral,high-resolution imaging[J]. Nano Letters, 2014, 14(11): 6414-6417.
[63] YUAN H, LIU X, AFSHINMANESH F, et al. Polarization-sensitive broadband photodetectorusing a black phosphorus vertical p–n junction[J]. Nature Nanotechnology, 2015, 10(8): 707-713.
[64] FANG H, HU W. Photogating in low dimensional photodetectors[J]. Advanced Science, 2017,4(12): 1700323.
[65] FURCHI M M, POLYUSHKIN D K, POSPISCHIL A, et al. Mechanisms of photoconductivityin atomically thin MoS2[J]. Nano Letters, 2014, 14(11): 6165-6170.
[66] NUR R, TSUCHIYA T, TOPRASERTPONG K, et al. High responsivity in MoS2 phototran sistors based on charge trapping HfO2 dielectrics[J]. Communications Materials, 2020, 1(1):103.
[67] MUELLER T, XIA F, AVOURIS P. Graphene photodetectors for high-speed optical commu nications[J]. Nature Photonics, 2010, 4(5): 297-301.
[68] YUAN S, NAVEH D, WATANABE K, et al. A wavelength-scale black phosphorus spectrometer[J]. Nature Photonics, 2021, 15(8): 601-607.
[69] SPLENDIANI A, SUN L, ZHANG Y, et al. Emerging photoluminescence in monolayer MoS2[J]. Nano Letters, 2010, 10(4): 1271-1275.
[70] RAHMAN M, DAVEY K, QIAO S Z. Advent of 2D rhenium disulfide (ReS2): fundamentalsto applications[J]. Advanced Functional Materials, 2017, 27(10): 1606129.
[71] TONGAY S, SAHIN H, KO C, et al. Monolayer behaviour in bulk ReS2 due to electronic andvibrational decoupling[J]. Nature Communications, 2014, 5(1): 1-6.
[72] HAFEEZ M, GAN L, LI H, et al. Large-area bilayer ReS2 film/multilayer ReS2 flakes synthe sized by chemical vapor deposition for high performance photodetectors[J]. Advanced Func tional Materials, 2016, 26(25): 4551-4560.
[73] CHENET D A, ASLAN B, HUANG P Y, et al. In-plane anisotropy in mono-and few-layerReS2 probed by Raman spectroscopy and scanning transmission electron microscopy[J]. NanoLetters, 2015, 15(9): 5667-5672.
[74] LIU E, FU Y, WANG Y, et al. Integrated digital inverters based on two-dimensional anisotropicReS2 field-effect transistors[J]. Nature Communications, 2015, 6(1): 6991.
[75] CAO S, XING Y, HAN J, et al. Ultrahigh-photoresponsive UV photodetector based on a BP/ReS2 heterostructure p–n diode[J]. Nanoscale, 2018, 10(35): 16805-16811.
[76] JIAN Y, SONG X, WANG X, et al. ReS2/Black Arsenic–Phosphorus van der Waals Hetero junction for a High-Performance Photodetector[J]. ACS Applied Electronic Materials, 2022, 4(12): 6013-6019.
[77] LIN Y C, KOMSA H P, YEH C H, et al. Single-layer ReS2: two-dimensional semiconductorwith tunable in-plane anisotropy[J]. ACS Nano, 2015, 9(11): 11249-11257.
[78] MURRAY H, KELTY S, CHIANELLI R, et al. Structure of rhenium disulfide[J]. InorganicChemistry, 1994, 33(19): 4418-4420.
[79] KELTY S P, RUPPERT A F, CHIANELLI R R, et al. Scanning probe microscopy study oflayered dichalcogenide ReS2[J]. Journal of the American Chemical Society, 1994, 116(17):7857-7863.
[80] PAN J, WANG R, XU X, et al. Transition metal doping activated basal-plane catalytic activityof two-dimensional 1T’-ReS 2 for hydrogen evolution reaction: a first-principles calculationstudy[J]. Nanoscale, 2019, 11(21): 10402-10409.
[81] KADANTSEV E S, HAWRYLAK P. Electronic structure of a single MoS2 monolayer[J]. SolidState Communications, 2012, 152(10): 909-913.
[82] SPLENDIANI A, SUN L, ZHANG Y, et al. Emerging photoluminescence in monolayer MoS2[J]. Nano Letters, 2010, 10(4): 1271-1275.
[83] TONNDORF P, SCHMIDT R, BÖTTGER P, et al. Photoluminescence emission and Ramanresponse of monolayer MoS 2, MoSe 2, and WSe 2[J]. Optics Express, 2013, 21(4): 4908-4916.
[84] DESAI S B, SEOL G, KANG J S, et al. Strain-induced indirect to direct bandgap transition inmultilayer WSe2[J]. Nano Letters, 2014, 14(8): 4592-4597.
[85] YAN T, QIAO X, LIU X, et al. Photoluminescence properties and exciton dynamics in mono layer WSe2[J]. Applied Physics Letters, 2014, 105(10): 101901.
[86] ASLAN B, CHENET D A, VAN DER ZANDE A M, et al. Linearly polarized excitons insingle-and few-layer ReS2 crystals[J]. ACS Photonics, 2015, 3(1): 96-101.
[87] ZHANG E, JIN Y, YUAN X, et al. ReS2-based field-effect transistors and photodetectors[J].Advanced Functional Materials, 2015, 25(26): 4076-4082.
[88] SPRINKLE M, SIEGEL D, HU Y, et al. First direct observation of a nearly ideal graphene bandstructure[J]. Physical Review Letters, 2009, 103(22): 226803.
[89] YU W J, LIU Y, ZHOU H, et al. Highly efficient gate-tunable photocurrent generation in verticalheterostructures of layered materials[J]. Nature Nanotechnology, 2013, 8(12): 952-958.
[90] WANG H, WANG Y, LI X, et al. Self-powered photodetectors based on stackedWSe2/graphene/SnS2 pgn heterostructures[J]. Journal of Alloys and Compounds, 2022, 920:165974.
[91] LI A, CHEN Q, WANG P, et al. Ultrahigh-sensitive broadband photodetectors based on di electric shielded MoTe2/Graphene/SnS2 p–g–n junctions[J]. Advanced Materials, 2019, 31(6):1805656.
[92] CASTELLANOS-GOMEZ A, BUSCEMA M, MOLENAAR R, et al. Deterministic transferof two-dimensional materials by all-dry viscoelastic stamping[J]. 2D Materials, 2014, 1(1):011002.
[93] ZHANG K, FENG Y, WANG F, et al. Two dimensional hexagonal boron nitride (2D-hBN):synthesis, properties and applications[J]. Journal of Materials Chemistry C, 2017, 5(46): 11992-12022.
[94] YUAN S, SHEN C, DENG B, et al. Air-stable room-temperature mid-infrared photodetectorsbased on hBN/black arsenic phosphorus/hBN heterostructures[J]. Nano Letters, 2018, 18(5):3172-3179.
[95] JO I, PETTES M T, KIM J, et al. Thermal conductivity and phonon transport in suspendedfew-layer hexagonal boron nitride[J]. Nano Letters, 2013, 13(2): 550-554.
[96] ZUNGER A, KATZIR A, HALPERIN A. Optical properties of hexagonal boron nitride[J].Physical Review B, 1976, 13(12): 5560.
[97] COENEN K, GALLUCCI F, MEZARI B, et al. An in-situ IR study on the adsorption of CO2and H2O on hydrotalcites[J]. Journal of CO2 Utilization, 2018, 24: 228-239.
[98] MACKOWIAK V, PEUPELMANN J, MA Y, et al. NEP–noise equivalent power[J]. Thorlabs,Inc, 2015, 56.
[99] WANG F, ZHANG T, XIE R, et al. How to characterize figures of merit of two-dimensionalphotodetectors[J]. Nature Communications, 2023, 14(1): 2224.
[100] FANG Y, ARMIN A, MEREDITH P, et al. Accurate characterization of next-generation thin film photodetectors[J]. Nature Photonics, 2019, 13(1): 1-4.
[101] WU Y, XIN Z, ZHANG Z, et al. All-transfer Electrode Interface Engineering Towards Harsh Environment-Resistant MoS2 Field-Effect Transistors[J]. Advanced Materials, 2023, 35(4):2210735.
[102] LIU G, TIAN Z, YANG Z, et al. Graphene-assisted metal transfer printing for wafer-scaleintegration of metal electrodes and two-dimensional materials[J]. Nature Electronics, 2022, 5(5): 275-280.

所在学位评定分委会
电子科学与技术
国内图书分类号
TN362
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/544569
专题工学院_电子与电气工程系
推荐引用方式
GB/T 7714
王晗. 二维半导体黑磷物性及光电探测器研究[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032219-王晗-电子与电气工程系(3898KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[王晗]的文章
百度学术
百度学术中相似的文章
[王晗]的文章
必应学术
必应学术中相似的文章
[王晗]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。