[1] 中国物流学会. 何黎明:中国智慧物流新未来[EB/OL]. 2017. http://csl.chinawuliu.com.cn/ html/19888842.html Accessed 2021-10-11.
[2] 章合杰. 智慧物流的基本内涵和实施框架研究[J]. 商场现代化, 2011(23): 44-46.
[3] SÖRENSEN K, GLOVER F. Metaheuristics[J]. Encyclopedia of Operations Research and Management Science, 2013, 62: 960-970.
[4] MLADENOVIć N, HANSEN P. Variable neighborhood search[J/OL]. Computers & Operations Research, 1997, 24(11): 1097-1100. DOI: 10.1016/S0305-0548(97)00031-2.
[5] MOSCATO P, COTTA C. A gentle introduction to memetic algorithms[M/OL]. Boston, MA: Springer US, 2003: 105-144. DOI: 10.1007/0-306-48056-5_5.
[6] DAS S, SUGANTHAN P N. Differential evolution: a survey of the state-of-the-art[J/OL]. IEEE Transactions on Evolutionary Computation, 2011, 15(1): 4-31. DOI: 10.1109/TEVC.2010.20 59031.
[7] KENNEDY J, EBERHART R. Particle swarm optimization[C/OL]//Proceedings of ICNN’95 - International Conference on Neural Networks: volume 4. 1995: 1942-1948 vol.4. DOI: 10.1109/ICNN.1995.488968.
[8] MALLIPEDDI R, SUGANTHAN P, PAN Q, et al. Differential evolution algorithm with ensemble of parameters and mutation strategies[J/OL]. Applied Soft Computing, 2011, 11(2): 1679-1696. DOI: 10.1016/j.asoc.2010.04.024.
[9] LAN W X, YE Z Y, RUAN P, et al. Region-focused memetic algorithms with smart initialisation for real-world large-scale waste collection problems[J/OL]. IEEE Transactions on Evolutionary Computation, 2022, 26(4): 704-718. DOI: 10.1109/TEVC.2021.3123960.
[10] TANG K, MEI Y, YAO X. Memetic algorithm with extended neighborhood search for capacitated arc routing problems[J/OL]. IEEE Transactions on Evolutionary Computation, 2009, 13 (5): 1151-1166. DOI: 10.1109/TEVC.2009.2023449.
[11] TIAN Y, LI X P, MA H P, et al. Deep reinforcement learning based adaptive operator selection for evolutionary multi-objective optimization[J/OL]. IEEE Transactions on Emerging Topics in Computational Intelligence, 2022, Early Access: 1-14. DOI: 10.1109/TETCI.2022.3146882.
[12] DURGUT R, AYDIN M E, ATLI I. Adaptive operator selection with reinforcement learning [J/OL]. Information Sciences, 2021, 581: 773-790. DOI: 10.1016/j.ins.2021.10.025.
[13] DURGUT R, AYDIN M E, RAKIB A. Transfer learning for operator selection: a reinforcement learning approach[J/OL]. Algorithms, 2022, 15(1). DOI: 10.3390/a15010024.
[14] TENG T H, HANDOKO S D, LAU H C. Self-organizing neural wetwork for adaptive operator selection in evolutionary search[C/OL]//FESTA P, SELLMANN M, VANSCHOREN J. Learning and Intelligent Optimization. Cham: Springer International Publishing, 2016: 187-202. DOI: 10.1007/978-3-319-50349-3_13.
[15] HANDOKO S D, NGUYEN D T, YUAN Z, et al. Reinforcement learning for adaptive operator selection in memetic search applied to quadratic assignment problem[C/OL]//GECCO Comp ’14: Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation. New York, NY, USA: Association for Computing Machinery, 2014: 193–194. DOI: 10.1145/2598394.2598451.
[16] GONG W Y, FIALHO Á, CAI Z H, et al. Adaptive strategy selection in differential evolution for numerical optimization: an empirical study[J/OL]. Information Sciences, 2011, 181(24): 5364-5386. DOI: 10.1016/j.ins.2011.07.049.
[17] KREMPSER E, FIALHO Á, BARBOSA H J. Adaptive operator selection at the hyper-level [C/OL]//Parallel Problem Solving from Nature - PPSN XII. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012: 378-387. DOI: 10.1007/978-3-642-32964-7_38.
[18] EPITROPAKIS M G, CARAFFINI F, NERI F, et al. A separability prototype for automatic memes with adaptive operator selection[C/OL]//2014: 70-77. DOI: 10.1109/FOCI.2014.7007 809.
[19] SORIA ALCARAZ J A, OCHOA G, CARPIO M, et al. Evolvability metrics in adaptive operator selection[C/OL]//GECCO ’14: Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation. New York, NY, USA: Association for Computing Machinery, 2014: 1327–1334. DOI: 10.1145/2576768.2598220.
[20] FIALHO A, SCHOENAUER M, SEBAG M. Analysis of adaptive operator selection techniques on the royal road and long k-path problems[C/OL]//GECCO ’09: Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation. New York, NY, USA: Association for Computing Machinery, 2009: 779–786. DOI: 10.1145/1569901.1570009.
[21] FIALHO Á, DA COSTA L, SCHOENAUER M, et al. Dynamic multi-armed bandits and extreme value-based rewards for adaptive operator selection in evolutionary algorithms[C/OL]// Learning and Intelligent Optimization. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009: 176-190. DOI: 10.1007/978-3-642-11169-3_13.
[22] FIALHO A, SCHOENAUER M, SEBAG M. Toward comparison-based adaptive operator selection[ C/OL]//GECCO ’10: Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation. New York, NY, USA: Association for Computing Machinery, 2010: 767–774. DOI: 10.1145/1830483.1830619.
[23] FIALHO Á, DA COSTA L, SCHOENAUER M, et al. Extreme value based adaptive operator selection[C/OL]//Parallel Problem Solving from Nature – PPSN X. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008: 175-184. DOI: 10.1007/978-3-540-87700-4_18.
[24] CANDAN C, GOEFFON A, LARDEUX F, et al. A dynamic island model for adaptive operator selection[C/OL]//GECCO ’12: Proceedings of the 14th Annual Conference on Genetic and Evolutionary Computation. New York, NY, USA: Association for Computing Machinery: 1253– 1260. DOI: 10.1145/2330163.2330337.
[25] CONSOLI P, YAO X. Diversity-driven selection of multiple crossover operators for the capacitated arc routing problem[C/OL]//BLUM C, OCHOA G. Evolutionary Computation in Combinatorial Optimisation. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014: 97-108. DOI: 10.1007/978-3-662-44320-0_9.
[26] CONSOLI P A, MEI Y, MINKU L L, et al. Dynamic selection of evolutionary operators based on online learning and fitness landscape analysis[J/OL]. Soft Computing, 2016, 20(10): 3889- 3914. DOI: 10.1007/s00500-016-2126-x.
[27] LU H, WEN ZHANG X, YANG S. A learning-based iterative method for solving vehicle routing problems[C/OL]//International Conference on Learning Representations. 2020. https://openre view.net/forum?id=BJe1334YDH.
[28] FLOOD M M. The traveling-salesman problem[J/OL]. Operations Research, 1956, 4(1): 61-75. DOI: 10.1287/opre.4.1.61.
[29] 管梅谷. 奇偶点图上作业法[J]. 数学学报, 1960, 10(3): 263-266.
[30] DANTZIG G B, RAMSER J H. The truck dispatching problem[J/OL]. Management Science, 1959, 6(1): 80-91. DOI: 10.1287/mnsc.6.1.80.
[31] GOLDEN B L, WONG R T. Capacitated arc routing problems[J/OL]. Networks, 1981, 11(3): 305-315. DOI: 10.1002/net.3230110308.
[32] LAPORTE G, NOBERT Y. A branch and bound algorithm for the capacitated vehicle routing problem[J/OL]. Operations-Research-Spektrum, 1983, 5(2): 77-85. DOI: 10.1007/BF017200 15.
[33] GOLDEN B, ASSAD A, LEVY L, et al. The fleet size and mix vehicle routing problem[J]. Computers & Operations Research, 1984, 11(1): 49-66.
[34] WILSON N H M, COLVIN N J. Computer control of the Rochester dial-a-ride system: number 77[M]. Massachusetts Institute of Technology, Center for Transportation Studies, 1977.
[35] BELTRAMI E J, BODIN L D. Networks and vehicle routing for municipal waste collection [J/OL]. Networks, 1974, 4(1): 65-94. DOI: 10.1002/net.3230040106.
[36] BENJAMIN A M, BEASLEY J E. Metaheuristics with disposal facility positioning for the waste collection VRP with time windows[J/OL]. Optimization Letters, 2013, 7(7): 1433-1449. DOI: 10.1007/s11590-012-0549-6.
[37] AKHTAR M, HANNAN M, BEGUM R, et al. Backtracking search algorithm in CVRP models for efficient solid waste collection and route optimization[J/OL]. Waste Management, 2017, 61: 117-128. DOI: 10.1016/j.wasman.2017.01.022.
[38] KIM B I, KIM S, SAHOO S. Waste collection vehicle routing problem with time windows [J/OL]. Computers & Operations Research, 2006, 33(12): 3624-3642. DOI: 10.1016/j.cor.20 05.02.045.
[39] GRULER A, FIKAR C, JUAN A A, et al. Supporting multi-depot and stochastic waste collection management in clustered urban areas via simulation–optimization[J/OL]. Journal of Simulation, 2017, 11(1): 11-19. DOI: 10.1057/s41273-016-0002-4.
[40] TAILLARD É D. A heuristic column generation method for the heterogeneous fleet VRP[J/OL]. RAIRO - Operations Research, 1999, 33(1): 1–14. DOI: 10.1051/ro:1999101.
[41] TAN K C, LEE L H, ZHU Q, et al. Heuristic methods for vehicle routing problem with time windows[J/OL]. Artificial Intelligence in Engineering, 2001, 15(3): 281-295. DOI: 10.1016/ S0954-1810(01)00005-X.
[42] LAPORTE G, SEMET F. Classical heuristics for the capacitated VRP[M/OL]//The Vehicle Routing Problem. 109-128. DOI: 10.1137/1.9780898718515.ch5.
[43] MEI Y, LI X D, YAO X. Decomposing large-scale capacitated arc routing problems using a random route grouping method[C/OL]//2013 IEEE Congress on Evolutionary Computation. 2013: 1013-1020. DOI: 10.1109/CEC.2013.6557678.
[44] MEI Y, LI X D, YAO X. Cooperative coevolution with route distance grouping for largescale capacitated arc routing problems[J/OL]. IEEE Transactions on Evolutionary Computation, 2014, 18(3): 435-449. DOI: 10.1109/TEVC.2013.2281503.
[45] TANG K, WANG J, LI X D, et al. A scalable approach to capacitated arc routing problems based on hierarchical decomposition[J/OL]. IEEE Transactions on Cybernetics, 2017, 47(11): 3928-3940. DOI: 10.1109/TCYB.2016.2590558.
[46] BAKER B M, AYECHEW M. A genetic algorithm for the vehicle routing problem[J/OL]. Computers & Operations Research, 2003, 30(5): 787-800. DOI: 10.1016/S0305-0548(02)000 51-5.
[47] BORTFELDT A, YI J. The split delivery vehicle routing problem with three-dimensional loading constraints[J/OL]. European Journal of Operational Research, 2020, 282(2): 545-558. DOI: 10.1016/j.ejor.2019.09.024.
[48] LI X J, YUAN M X, CHEN D, et al. A data-driven three-layer algorithm for split delivery vehicle routing problem with 3D container loading constraint[C/OL]//KDD ’18: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York, NY, USA: Association for Computing Machinery, 2018: 528–536. DOI: 10.1145/ 3219819.3219872.
[49] FUELLERER G, DOERNER K F, HARTL R F, et al. Metaheuristics for vehicle routing problems with three-dimensional loading constraints[J/OL]. European Journal of Operational Research, 2010, 201(3): 751-759. DOI: 10.1016/j.ejor.2009.03.046.
[50] ESCOBAR-FALCÓN L M, ÁLVAREZ-MARTÍNEZ D, GRANADA-ECHEVERRI M, et al. A matheuristic algorithm for the three-dimensional loading capacitated vehicle routing problem (3L-CVRP)[J/OL]. Revista Facultad de Ingeniería Universidad de Antioquia, 2016(78): 09-20. DOI: 10.17533/udea.redin.n78a02.
[51] YI J, BORTFELDT A. The capacitated vehicle routing problem with three-dimensional loading constraints and split delivery-a case study[M/OL]//Operations Research Proceedings 2016. Cham: Springer International Publishing, 2018: 351-356. DOI: 10.1007/978-3-319-55702-1 _47.
[52] CESCHIA S, SCHAERF A, STÜTZLE T. Local search techniques for a routing-packing problem[ J]. Computers & industrial engineering, 2013, 66(4): 1138-1149.
[53] HELSGAUN K. An extension of the Lin-Kernighan-Helsgaun TSP solver for constrained traveling salesman and vehicle routing problems[M]. Roskilde Universitet.
[54] HOOS H H. Automated algorithm configuration and parameter tuning[J/OL]. Autonomous Search, 2012: 37-71. DOI: 10.17533/udea.redin.n78a02.
[55] PAN Z J, KANG L S. An adaptive evolutionary algorithm for numerical optimization[C/OL]// Simulated Evolution and Learning: First Asia-Pacific Conference, SEAL’96 Taejon, Korea, November 9–12, 1996 Seclected Papers 1. Springer, 1997: 27-34. DOI: 10.1007/BFb0028518.
[56] ZHAN Z H, ZHANG J, LI Y, et al. Adaptive particle swarm optimization[J/OL]. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 2009, 39(6): 1362-1381. DOI: 10.1109/TSMCB.2009.2015956.
[57] HUGHES E. Evolutionary algorithm with a novel insertion operator for optimising noisy functions[ C/OL]//Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512): volume 1. 2000: 790-797 vol.1. DOI: 10.1109/CEC.2000.870379.
[58] ZHANG H T, SUN J Y, XU Z B. Learning to mutate for differential evolution[C/OL]//2021 IEEE Congress on Evolutionary Computation (CEC). 2021: 1-8. DOI: 10.1109/CEC45853.2 021.9504990.
[59] TAN Z P, LI K S, WANG Y. Differential evolution with adaptive mutation strategy based on fitness landscape analysis[J/OL]. Information Sciences, 2021, 549: 142-163. DOI: 10.1016/j. ins.2020.11.023.
[60] SHARMA M, LÓPEZ-IBÁÑEZ M, KAZAKOV D. Performance assessment of recursive probability matching for adaptive operator selection in differential evolution[C/OL]//Parallel Problem Solving from Nature – PPSN XV. Cham: Springer International Publishing, 2018: 321-333. DOI: 10.1007/978-3-319-99259-4_26.
[61] THIERENS D. Adaptive strategies for operator allocation[J]. Parameter Setting in Evolutionary Algorithms, 2007: 77-90.
[62] THIERENS D. An adaptive pursuit strategy for allocating operator probabilities[C/OL]// GECCO ’05: Proceedings of the 7th Annual Conference on Genetic and Evolutionary Computation. New York, NY, USA: Association for Computing Machinery, 2005: 1539–1546. DOI: 10.1145/1068009.1068251.
[63] DACOSTA L, FIALHO A, SCHOENAUER M, et al. Adaptive operator selection with dynamic multi-armed bandits[C/OL]//GECCO ’08: Proceedings of the 10th Annual Conference on Genetic and Evolutionary Computation. New York, NY, USA: Association for Computing Machinery, 2008: 913–920. DOI: 10.1145/1389095.1389272.
[64] KUK J, GONCALVES R, POZO A. Combining fitness landscape analysis and adaptive operator selection in multi and many-objective optimization[C/OL]//2019 8th Brazilian conference on intelligent systems (BRACIS). 2019: 503-508. DOI: 10.1109/BRACIS.2019.00094.
[65] SALLAM K M, ELSAYED S M, SARKER R A, et al. Landscape-based adaptive operator selection mechanism for differential evolution[J/OL]. Information Sciences, 2017, 418-419: 383-404. DOI: 10.1016/j.ins.2017.08.028.
[66] GOLDBERG D E. Probability matching, the magnitude of reinforcement, and classifier system bidding[J/OL]. Machine Learning, 1990, 5(4): 407-425. DOI: 10.1023/A:1022681708029.
[67] AUER P, CESA-BIANCHI N, FISCHER P. Finite-time analysis of the multiarmed bandit problem[ J/OL]. Machine Learning, 2002, 47(2): 235-256. DOI: 10.1023/A:1013689704352.
[68] LI W, LIANG P, SUN B, et al. Reinforcement learning-based particle swarm optimization with neighborhood differential mutation strategy[J/OL]. Swarm and Evolutionary Computation, 2023, 78: 101274. DOI: 10.1016/j.swevo.2023.101274.
[69] PITZER E, AFFENZELLER M. A comprehensive survey on fitness landscape analysis[M/OL]. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012: 161-191. DOI: 10.1007/978-3-642-232 29-9_8.
[70] MALAN K M, ENGELBRECHT A P. A survey of techniques for characterising fitness landscapes and some possible ways forward[J/OL]. Information Sciences, 2013, 241: 148-163. DOI: 10.1016/j.ins.2013.04.015.
[71] MALAN K M. A survey of advances in landscape analysis for optimisation[J/OL]. Algorithms, 2021, 14(2). DOI: 10.3390/a14020040.
[72] TAYARANI-N. M H, PRUGEL-BENNETT A. On the landscape of combinatorial optimization problems[J/OL]. IEEE Transactions on Evolutionary Computation, 2014, 18(3): 420-434. DOI: 10.1109/TEVC.2013.2281502.
[73] OCHOA G, VEREL S, DAOLIO F, et al. Local optima networks: a new model of combinatorial fitness landscapes[M]//Recent Advances in the Theory and Application of Fitness Landscapes. Springer Berlin Heidelberg, 2014: 233-262.
[74] LI F, GOLDEN B, WASIL E. Very large-scale vehicle routing: new test problems, algorithms, and results[J/OL]. Computers & Operations Research, 2005, 32(5): 1165-1179. DOI: 10.101 6/j.cor.2003.10.002.
[75] LIU S, ZHANG Y, TANG K, et al. How Good Is Neural Combinatorial Optimization?[A]. 2022. arXiv: 2209.10913.
修改评论