中文版 | English
题名

各向同性电化学刻蚀轮廓包络抛光方法研究

其他题名
STUDY ON THE ELECTROCHEMICAL POLISHING BASED ON THE ISOTROPIC ETCHING MECHANISM
姓名
姓名拼音
YI Rong
学号
11930903
学位类型
博士
学位专业
080101 一般力学与力学基础
学科门类/专业学位类别
08 工学
导师
邓辉
导师单位
机械与能源工程系
论文答辩日期
2023-05-11
论文提交日期
2023-06-29
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

金属由于具有优异的综合性能被广泛应用于航空航天、生物医疗、化工以及消费品领域。随着现代科技的发展,金属材料的应用领域得到了进一步的发展,同时对于金属零件的表面质量要求也越来越高。针对这一需求,金属材料的表面抛光技术得到了大量的研究,其中电化学抛光作为一种无应力抛光技术,可以提供光滑、耐腐蚀的表面,被广泛应用于金属材料的表面抛光。

电化学抛光技术(Electrochemical polishingECP)发展至今已有近百年历史,在医疗植入物、半导体装置、3D打印件等高科技领域有重要的应用。然而关于电化学抛光的理论研究目前仍然没有统一的认识,特别是一些新的工艺和技术的出现,比如离子液体抛光、脉冲电流抛光和磁电抛光,使得建立统一的电化学抛光理论更加困难。本论文以纯钛作为主要研究对象,对其电化学溶解过程中的各向同性刻蚀模式和各向异性刻蚀模式进行了深入的研究,揭示了金属表面电化学刻蚀模式调控的机理,并以此为基础提出了一种具有普适性的电化学各向同性刻蚀轮廓包络抛光技术(Isotropic etching polishingIEP),实现了不同金属材料的表面抛光。

论文的主要研究内容如下:

(1) 研究了纯钛表面电化学刻蚀的基本过程,提出了一种基于金属表面各向同性刻蚀轮廓包络原理的IEP技术,建立了IEP的表面形貌预测模型。通过对纯钛表面各向同性刻蚀孔的形成机理及工艺进行系统研究,实现了纯钛和TC4双相钛合金的纳米级表面抛光效果。

(2) 揭示了金属表面各向同性刻蚀与各向异性刻蚀两种模式的产生机理。研究了不同实验参数对纯钛表面刻蚀模式的影响,并掌握了金属材料刻蚀模式调控的基本原理与工艺方法。实现了对于其他常见金属材料如304不锈钢,纯镍和6063铝合金刻蚀模式的精确调控以及表面抛光。

(3) 从刻蚀行为演变规律的角度对比研究了钨在不同电解液体系中的各向同性刻蚀轮廓包络抛光与粘液层电化学抛光。测量了钨在不同电解液体系中的极化曲线。对比了钨在各向同性和各向异性模式下刻蚀后的表面形貌。钨在两种电解液体系中的抛光过程均存在各向异性到各向同性的刻蚀模式转变,证明了各向同性刻蚀在传统粘液层抛光理论中也具有关键作用。

(4) 研究了多晶金属材料(如:纯钛、纯钨和不锈钢)和非晶NiP合金在各向同性刻蚀抛光时的极限表面粗糙度。从NiP非晶合金的电化学溶解特性出发,研究了NiP非晶合金IEP的基本原理,掌握了NiP非晶合金的亚纳米级表面加工工艺。在此基础上,验证了IEPNiP合金表面微结构阵列的影响。

本论文对金属材料电化学溶解基本过程进行了深入的理论分析与实验研究,提出了一种具有普适性的电化学各向同性刻蚀轮廓包络抛光方法,实现了多种金属材料亚纳米级表面抛光效果。本论文的研究完善了金属材料电化学抛光理论,为金属材料的高效超精密抛光加工提供了切实可行的理论基础与技术支持。

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2023-07
参考文献列表

[1] LEHMHUS D, BUSSE M, HERRMANN A S, et al. Structural Materials and Processes in Transportation [M]. Singapore: Wiley-VCH, 2013: 2.
[2] POLMEAR I. Light alloys: from traditional alloys to nanocrystals [M]. Oxford: Butterworth-Heinemann, 2006: 1.
[3] POLMEAR I J. Recent Developments in Light Alloys [J]. Materials Transactions, JIM, 1996, 37(1): 12-31.
[4] SANDERS J R E. Aluminum and Aluminum Alloys [M]. Hoboken: John Wiley & Sons, Ltd, 2012: 1.
[5] WANHILL R J H. Aerospace applications of aluminum–lithium alloys [M]. Amsterdam: Elsevier, 2014: 503-535.
[6] MOURITZ A P. Titanium alloys for aerospace structures and engines [M]. Oxford: Woodhead Publishing, 2012: 202-223.
[7] PETERS M, LEYENS C. Structure and Properties of Titanium and Titanium Alloys [M]. Darmstadt: Wiley‐VCH 2003: 4.
[8] 许国栋, 王桂生. 钛金属和钛产业的发展 [J]. 稀有金属, 2009, 33(6): 903-912.
[9] NIINOMI M, NARUSHIMA T, NAKAI M. Advances in metallic biomaterials [M]. Berlin: Springer, 2015.
[10] FROES F H. Titanium for medical and dental applications—An introduction [M]. Oxford: Woodhead Publishing, 2018: 3-21.
[11] 德洲会集团. 心血管外科的疾病:心脏瓣膜症[Z/OL]. (2023-03-20). https://www.tokushukai.or.jp/cn/treatment/heart/shinzou_benmaku.php.
[12] 江门市基达不锈钢制品有限公司. 不锈钢蒸锅如何保养?[Z/OL]. (2023-02-17). https://www.jmjida.com/news/517.html.
[13] 宗述. 金属包装材料的再生 [J]. 绿色包装, 2020, 09: 84-86.
[14] 天空. “神的金属”钛合金SHINE_YOUR_LIFE [J]. 中国自行车, 2018, 08: 88-91.
[15] 世界钢铁协会. 为什么职业高尔夫球员青睐钢制球杆?[Z/OL]. (2020-08). https://worldsteel.org/steel-stories/innovation/golf-pros-steel-clubs-maraging-tiger-woods-jimmy-walker.htm.
[16] 炎弹平. 钛金属和陶瓷表壳将成为手表中的“新阶层”[Z/OL]. (2017-02-17). https://www.xbiao.com/aibi/41965.html.
[17] HASHIMOTO F, YAMAGUCHI H, KRAJNIK P, et al. Abrasive fine-finishing technology [J]. CIRP Annals, 2016, 65(2): 597-620.
[18] 王瑞, 侯荣国, 张玉龙, et al. 喷砂工艺参数对不锈钢表面环氧涂层结合力的影响 [J]. 电镀与涂饰, 2022, 41(19): 1410-1414.
[19] DIAMANTI M V, POZZI P, RANDONE F, et al. Robust anodic colouring of titanium: Effect of electrolyte and colour durability [J]. Materials & Design, 2016, 90: 1085-1091.
[20] LI L, QI F, ZHANG Z, et al. Corrosion, mechanical and biological properties of biodegradable WE43 alloy modified by Al ion implantation [J]. Ceramics International, 2023, 49(3): 5327-5334.
[21] AKBARZADEH S, PAINT Y, OLIVIER M-G. A comparative study of different sol-gel coatings for sealing the plasma electrolytic oxidation (PEO) layer on AA2024 alloy [J]. Electrochimica Acta, 2023, 443.
[22] XIAO G, HUANG Y, YIN J. An integrated polishing method for compressor blade surfaces [J]. The International Journal of Advanced Manufacturing Technology, 2016, 88(5-8): 1723-1733.
[23] BAUER J, FROST F, LEHMANN A, et al. Finishing of metal optics by ion beam technologies [J]. Optical Engineering, 2019, 58(9): 092612-092612.
[24] WANG Y, WEI X, LI Z, et al. Experimental Investigation on the Effects of Different Electrolytic Polishing Solutions on Nitinol Cardiovascular Stents [J]. Journal of Materials Engineering and Performance, 2021, 30(6): 4318-4327.
[25] 袁军平, 王昶, 郭文显, et al. 依靠现代技术提升首饰加工产业 [J]. 黄金, 2011, 32(6): 5-8.
[26] YUAN F, LIU C, GU H, et al. Effects of mechanical polishing treatments on high cycle fatigue behavior of Ti-6Al-2Sn-4Zr-2Mo alloy [J]. International Journal of Fatigue, 2019, 121: 55-62.
[27] ZENG N, LIU Y, CHENG Y, et al. Study on enhancement and mechanism of K2SO4 in CMP slurries for copper film polishing removal effect [J]. Materials Science in Semiconductor Processing, 2023, 153.
[28] GOMEZ-GALLEGOS A A, MILL F, MOUNT A R. Surface finish control by electrochemical polishing in stainless steel 316 pipes [J]. Journal of Manufacturing Processes, 2016, 23: 83-89.
[29] HUANG Y, XIAO G J, ZHAO H Q, et al. Residual stress of belt polishing for the micro-stiffener surface on the titanium alloys [J]. Proc Cirp, 2018, 71: 11-15.
[30] OZDEMIR Z, OZDEMIR A, BASIM G B. Application of chemical mechanical polishing process on titanium based implants - ScienceDirect [J]. Materials Science & Engineering C Materials for Biological Applications, 2016, 68: 383-396.
[31] TSAI M-Y, YANG W-Z. Combined ultrasonic vibration and chemical mechanical polishing of copper substrates [J]. International Journal of Machine Tools and Manufacture, 2012, 53(1): 69-76.
[32] SHEN M, KANG C, FANG F. Material removal characteristics of various surface features on selective laser melted 316L stainless steel during electropolishing [J]. Journal of Manufacturing Processes, 2022, 79: 639-653.
[33] PROTSENKO V S, BUTYRINA T E, BOBROVA L S, et al. Enhancing corrosion resistance of nickel surface by electropolishing in a deep eutectic solvent [J]. Materials Letters, 2020, 270.
[34] JI L, HUANG K, LI Y, et al. Large-area self-ordered aluminium sub-micrometre dot arrays prepared by electropolishing on polycrystalline aluminium at constant current [J]. Corrosion Science, 2011, 53(9): 2914-2917.
[35] JU B-F, CHEN Y-L, FU M, et al. Systematic study of electropolishing technique for improving the quality and production reproducibility of tungsten STM probe [J]. Sensors and Actuators A: Physical, 2009, 155(1): 136-144.
[36] YANG G, WANG B, TAWFIQ K, et al. Electropolishing of surfaces: theory and applications [J]. Surface Engineering, 2017, 33(2): 149-166.
[37] JACQUET P A. Electrolytic Method for obtaining Bright Copper Surfaces [J]. Nature, 1935, 135(3426): 1076-1076.
[38] TAILOR P B, AGRAWAL A, JOSHI S S. Evolution of electrochemical finishing processes through cross innovations and modeling [J]. International Journal of Machine Tools and Manufacture, 2013, 66: 15-36.
[39] DENG T, LI J, ZHENG Z. Fundamental aspects and recent developments in metal surface polishing with energy beam irradiation [J]. International Journal of Machine Tools and Manufacture, 2020, 148.
[40] BHADURI D, PENCHEV P, BATAL A, et al. Laser polishing of 3D printed mesoscale components [J]. Applied Surface Science, 2017, 405: 29-46.
[41] BARMAN A, DAS M. Nano-finishing of bio-titanium alloy to generate different surface morphologies by changing magnetorheological polishing fluid compositions [J]. Precision Engineering, 2018, 51: 145-152.
[42] ZHOU G, BI Y, MA Y, et al. Large current ion beam polishing and characterization of mechanically finished titanium alloy (Ti6Al4V) surface [J]. Applied Surface Science, 2019, 476: 905-913.
[43] DE GIORGI C, FURLAN V, DEMIR A G, et al. Laser Micro-polishing of Stainless Steel for Antibacterial Surface Applications [J]. Procedia CIRP, 2016, 49: 88-93.
[44] KUMAR M, DAS M. Impact of different magnetorheological fluid compositions on poppet valve profile polishing [J]. Precision Engineering, 2022, 76: 75-87.
[45] LANDOLT D. Fundamental aspects of electropolishing [J]. Electrochimica Acta, 1987, 32(1): 1-11.
[46] JACQUET P A. On the Anodic Behavior of Copper in Aqueous Solutions of Orthophosphoric Acid [J]. Transactions of The Electrochemical Society, 1936, 69(1).
[47] HOAR T P, MOWAT J A S. Mechanism of electropolishing [J]. Nature, 1950, 165: 64-65.
[48] HOAR T P, FARTHING T W. Solid Films on Electropolishing Anodes [J]. Nature, 1952, 169(4295): 324-325.
[49] ELMORE W C. Electrolytic Polishing [J]. Journal of Applied Physics, 1939, 10(10): 724-727.
[50] GRIMM R D, WEST A C, LANDOLT D. AC Impedance Study of Anodically Formed Salt Films on Iron in Chloride Solution [J]. Journal of the Electrochemical Society, 1992, 139(6): 1622-1629.
[51] EDWARDS J. The Mechanism of Electropoiishing of Copper in Phosphoric Acid Solutions [J]. Journal of the Electrochemical Society, 1953, 100(7): 189C.
[52] LIN C, HU C. Electropolishing of 304 stainless steel: Surface roughness control using experimental design strategies and a summarized electropolishing model [J]. Electrochimica Acta, 2008, 53(8): 3356-3363.
[53] ELMORE W C. Electrolytic Polishing. II [J]. Journal of Applied Physics, 1940, 11(12): 797-799.
[54] ABBOTT A P, CAPPER G, SWAIN B G, et al. Electropolishing of stainless steel in an ionic liquid [J]. Transactions of the IMF, 2013, 83(1): 51-53.
[55] MAGAINO S, MATLOSZ M, LANDOLT D. An Impedance Study of Stainless Steel Electropolishing [J]. Journal of the Electrochemical Society, 1993, 140(5): 1365-1373.
[56] WEST A C, GRIMM R D, LANDOLT D, et al. Electrohydrodynamic impedance study of anodically formed salt films on iron in chloride solutions [J]. Journal of electroanalytical chemistry, 1992, 330(1-2): 693-706.
[57] ALANIS I L, SCHIFFRIN D J. The influence of mass transfer on the mechanism of electropolishing of nickel in aqueous sulphuric acid [J]. Electrochimica Acta, 1982, 27(7): 837-845.
[58] CORDEIRO G, MATTOS O R, BARCIA O E, et al. Anodic dissolution of nickel in concentrated sulfuric acidic solutions [J]. Journal of Applied Electrochemistry, 1996, 26(11).
[59] MACDOUGALL B, COHEN M. Anodic Oxide Films on Nickel in Acid Solutions [J]. Journal of The Electrochemical Society, 1976, 123(2): 191-197.
[60] MURALI S, RAMACHANDRA M, MURTHY K S S, et al. Electropolishing of Al-7Si-0.3Mg Cast Alloy by Using Perchloric and Nitric Acid Electrolytes [J]. Materials Characterization, 1997, 38(4-5): 273-286.
[61] MARSLAND L C, BURSTEIN G T. Electroluminescence of aluminium during electropolishing in nitric acid [J]. Electrochemistry Communications, 2000, 2(8): 591-594.
[62] MEHMOOD M, RAUF A, RASHEED M A, et al. Preparation of transparent anodic alumina with ordered nanochannels by through-thickness anodic oxidation of aluminum sheet [J]. Materials Chemistry and Physics, 2007, 104(2-3): 306-311.
[63] JOHNSON A J, SHREIR L L. The anodic behaviour of U, Ti, Zr, Nb and Ta in 3 M AlCl 3 -diethyl ether solution [J]. Corrosion Science, 1965, 5(4): 269,IN263,275-274,IN265,278.
[64] VETTORAZZI, CéSAR. Electrolytic polishing of niobium and titanium [J]. Revmedinterna, 1974, 7(1): 25-28.
[65] JOSHUA P. Electropolishing of titanium [J]. Metallography, 1974.
[66] MATHIEU J B, LANDOLT D. Electropolishing of Titanium in Perchloric Acid-Acetic Acid Solution [J]. Chemischer Informationsdienst, 1978, 9(42).
[67] REGGIANI R C, F.MAZZA, E.SIVIERI. Electrochemical polishing of titanium in perchloric-methanolic solutions [J]. Materials Chemistry, 1979, 4(2): 149-158.
[68] ANDRYUSHCHENKO T N, MILLER A E, FISCHER P B. Long wavelength roughness optimization during thin Cu film electropolish [J]. Electrochemical and solid-state letters, 2006, 9(11): C181.
[69] MATLOSZ M, MAGAINO S, LANDOLT D. Impedance Analysis of a Model Mechanism for Acceptor-Limited Electropolishing [J]. Journal of the Electrochemical Society, 1994, 141(2): 410-418.
[70] PIOTROWSKI O, MADORE C, LANDOIT D. The Mechanism of Electropolishing of Titanium in Methanol-Sulfuric Acid Electrolytes [J]. Journal of The Electrochemical Society, 1998, 145(7): 2362-2369.
[71] FUSHIMI K, HABAZAKI H. Anodic dissolution of titanium in NaCl-containing ethylene glycol [J]. Electrochimica Acta, 2008, 53(8): 3371-3376.
[72] KARIM W O. Electropolishing of pure metallic titanium in a deep eutectic solvent [J]. Arabian Journal of Chemistry, 2021, 14(1): 102906.
[73] SCHOBER T, WESTLAKE D G. New Techniques for Electropolishing Nb, Ta, Zr, and Ti for Transmission Electron Microscopy [J]. Metallography, 1981, 14(4): 359-362.
[74] CIOVATI G, TIAN H, CORCORAN S G. Buffered electrochemical polishing of niobium [J]. Journal of Applied Electrochemistry, 2011, 41(6): 721-730.
[75] AYLWARD J, WHITENER E. Dissolution of Zirconium in HCl‐Methanol [J]. Journal of The Electrochemical Society, 1962, 109(2): 87.
[76] PIOTROWSKI O, MADORE C, LANDOLT D. Electropolishing of tantalum in sulfuric acid–methanol electrolytes [J]. Electrochimica acta, 1999, 44(19): 3389-3399.
[77] PIOTROWSKI O, MADORE C, LANDOLT D. Electropolishing of titanium & titanium alloys in perchlorate-free electrolytes [J]. Plating and surface finishing, 1998, 85(5): 115-119.
[78] TAJIMA K, HIRONAKA M, CHEN K K, et al. Electropolishing of CP titanium and its alloys in an alcoholic solution-based electrolyte [J]. Dent Mater J, 2008, 27(2): 258-265.
[79] 黎德育. 磷酸体系中铜的电化学抛光机制与影响因素的研究 [D]. 哈尔滨; 哈尔滨工业大学, 2013.
[80] 张述林, 罗祎, 陈世波. 铜及铜合金电化学抛光 [J]. 电镀与涂饰, 2008, 27(9): 26-28.
[81] KAO P S, HOCHENG H. Optimization of electrochemical polishing of stainless steel by grey relational analysis [J]. Journal of Materials Processing Technology, 2003, 140(1-3): 255-259.
[82] HAN W, FANG F. Eco-friendly NaCl-based electrolyte for electropolishing 316L stainless steel [J]. Journal of Manufacturing Processes, 2020, 58: 1257-1269.
[83] HOU Y, LI R, LIANG J, et al. Electropolishing of Al and Al alloys in AlCl 3 /trimethylamine hydrochloride ionic liquid [J]. Surface and Coatings Technology, 2018, 335: 72-79.
[84] 许晓静, 朱利华, 盛新兰, et al. 电化学抛光和阳极氧化处理后TC4钛合金表面的生物活性 [J]. 期刊论文, 2013, 37(11).
[85] 钱备. 钛电化学抛光及其阳极氧化膜的腐蚀行为研究 [D]. 大连; 大连理工大学, 2011.
[86] MEI Y U, JUNLAN Y I, JIANHUA L, et al. Effect of Electropolishing on Electrochemical Behaviours of Titanium Alloy Ti-10V-2Fe-3Al [J]. 武汉理工大学学报:材料科学英文版, 2011, 26(003): 469-477.
[87] HUANG C A, HSU F-Y, YU C H. Electropolishing behavior of pure titanium in sulfuric acid–ethanol electrolytes with an addition of water [J]. Corrosion Science, 2011, 53(2): 589-596.
[88] CHU Q, WU A, TAN T, et al. Electropolishing behavior of niobium in choline chloride-based deep eutectic solvents [J]. Applied Surface Science, 2021, 550.
[89] 郑欣, 赵鸿磊, 袁宝明. 钽板的电解抛光和化学抛光 [J]. 稀有金属快报, 2001, (7): 13-15.
[90] 蒋建中, 聂西鹏, 吴振福. 锆合金的电化学抛光电解液及其电化学抛光方法, CN102634840A [P/OL]. 2012-. https://d.wanfangdata.com.cn/patent/ChJQYXRlbnROZXdTMjAyMjEyMDcSEENOMjAxMjEwMTMxNzgxLjkaCHd0ajd2bDNq. htm
[91] 程曦. 钛合金磁场辅助摩擦电化学抛光技术研究 [D]. 哈尔滨; 哈尔滨工业大学, 2022.
[92] DI M, LI S, LIANG C. Electropolishing of high-purity aluminium in perchloric acid and ethanol solutions [J]. Corrosion Science, 2009, 51(4): 713-718.
[93] AN L, WANG D, ZHU D. Improvement on surface quality of 316L stainless steel fabricated by laser powder bed fusion via electrochemical polishing in NaNO3 solution [J]. Journal of Manufacturing Processes, 2022, 83: 325-338.
[94] 孙莹, 沙明工. 铝电化学抛光实验研究 [J]. 中国职协 2017 年度优秀科研成果获奖论文集 (一二等奖), 2018.
[95] 洪九德, 范济. 铝及铝合金的无铬酸电解抛光 [J]. 电镀与环保, 1982, 2(02): 4-5.
[96] YU M, YI J, LIU J, et al. Effect of electropolishing on electrochemical behaviours of titanium alloy Ti-10V-2Fe-3Al [J]. Journal of Wuhan University of Technology-Mater Sci Ed, 2011, 26(3): 469-477.
[97] 包胜华, 吴蒙华, 张念卿, et al. 钛合金脉冲电化学光整加工工艺研究 [J]. 电加工与模具, 2003, 000(003): 47-49.
[98] 张咏, 张国华, 李奇玲, et al. 超导铌样片的电化学抛光方法研究 [J]. 中国金属通报, 2018, (11): 194-195.
[99] ZHANG Y. Electropolishing Mechanism of Ti-6Al-4V Alloy Fabricated by Selective Laser Melting [J]. International Journal of Electrochemical Science, 2018: 4792-4807.
[100] FUSHIMI K, KONDO H, KONNO H. Anodic dissolution of titanium in chloride-containing ethylene glycol solution [J]. Electrochimica Acta, 2009, 55(1): 258-264.
[101] XIA C, FENG Z, LIU S, et al. Anisotropic pitting of single-phase β-Zr alloy and isotropic pitting of α + β double-phase Zr alloy [J]. Corrosion Science, 2017, 127: 39-44.
[102] REIZER R. Simulation of 3D Gaussian surface topography [J]. Wear, 2011, 271(3-4): 539-543.
[103] HU Y Z, TONDER K. Hu Y Z, Tonder K. Simulation of 3-D random rough surface by 2-D digital filter and Fourier analysis[J]. International journal of machine tools and manufacture, 1992, 32(1-2): 83-90. [J]. International journal of machine tools and manufacture, 1992, 32(1-2): 83-90.
[104] POUILLEAU J, DEVILLIERS D, GARRIDO F, et al. Structure and composition of passive titanium oxide films [J]. Materials Science and Engineering: B, 1997, 47(3): 235-243.
[105] QIN Z, PANG X, YAN Y, et al. Passive film-induced stress and mechanical properties of α-Ti in methanol solution [J]. Corrosion Science, 2014, 78: 287-292.
[106] WANG L, YU H, WANG K, et al. Local Fine Structural Insight into Mechanism of Electrochemical Passivation of Titanium [J]. ACS Appl Mater Interfaces, 2016, 8(28): 18608-18619.
[107] MA H, CHEN X-Q, LI R, et al. First-principles modeling of anisotropic anodic dissolution of metals and alloys in corrosive environments [J]. Acta Materialia, 2017, 130: 137-146.
[108] YANAGISHITA T, IMAIZUMI M, KONDO T, et al. Formation of porous Al particles by anisotropic anodic etching [J]. Electrochemistry Communications, 2017, 78: 26-28.
[109] WANG J, WANG S-Q. Surface energy and work function of fcc and bcc crystals: Density functional study [J]. Surface Science, 2014, 630: 216-224.
[110] BARD A, FAULKNER L. Electrochemical Methods: Fundamentals and Applications [M]. New York: John Wiley & Sons, Inc., 2002: 1364-1365.
[111] MATLOSZ M. Modeling of impedance mechanisms in electropolishing [J]. Electrochimica Acta, 1995, 40(4): 393-401.
[112] LANDOLT D, CHAUVY P F, ZINGER O. Electrochemical micromachining, polishing and surface structuring of metals: Fundamental aspects and new developments [J]. Electrochimica Acta, 2003, 48(20): 3185-3201.
[113] YANG G, WANG B, TAWFIQ K, et al. Electropolishing of surfaces: theory and applications [J]. Surface Engineering, 2016, 33(2): 149-166.
[114] ALVES V A, REIS R Q, SANTOS I C B, et al. In situ impedance spectroscopy study of the electrochemical corrosion of Ti and Ti–6Al–4V in simulated body fluid at 25°C and 37°C [J]. Corrosion Science, 2009, 51(10): 2473-2482.
[115] DYER C K, ALWITT R S. Surface Changes during A.C. Etching of Aluminum [J]. Journal of The Electrochemical Society, 1981, 128(2): 300-305.
[116] ROLF S, VIOLA K, PHILIPPE A, et al. Electrochemical Micromachining [J]. Science, 2000, 289(5476): 98-101.
[117] 申璐, 邓启煌. 电子行业用高纯钨制备技术 [J]. 中国科技信息, 2019, 14: 53-54.
[118] IONOV A M, CHEKMAZOV S V, USOV V, et al. Deformation and fracture of crystalline tungsten and fabrication of composite STM probes [J]. Ultramicroscopy, 2020, 218: 113083.
[119] PHILIPPS V. Tungsten as material for plasma-facing components in fusion devices [J]. Journal of Nuclear Materials, 2011, 415(1): S2-S9.
[120] WANG F, ZHANG X, DENG H. A comprehensive study on electrochemical polishing of tungsten [J]. Applied Surface Science, 2019, 475: 587-597.
[121] TOMASHOV N D, CHERNOVA G P. The Phenomenon of Passivity in Metals [M]. Boston: Springer, 1967: 9-53.
[122] MADORE C, LANDOLT D. Electrochemical micromachining of controlled topographies on titanium for biological applications [J]. Journal of Micromechanics and Microengineering, 1997, 7(4): 270.
[123] QIN S, DENG H. Electrochemical Etching of Tungsten for Fabrication of Sub-10-nm Tips with a Long Taper and a Large Shank [J]. Nanomanufacturing and Metrology, 2019, 2(4): 235-240.
[124] PALUMBO G, AUST K. Structure-dependence of intergranular corrosion in high purity nickel [J]. Acta Metallurgica et Materialia, 1990, 38(11): 2343-2352.
[125] 税毅. Ni-P 镀层研究现状及发展趋势 [J]. 表面技术, 2002, 31(1): 1-4.
[126] 崔建波, 赵仁洁. 高性能反射铝镜的 3D 打印设计与制造 [J]. 集成电路应用, 2021.
[127] GEBHARDT A, KINAST J, ROHLOFF R-R, et al. Athermal metal optics made of nickel plated AlSi40[C]//International Conference on Space Optics. SPIE, 2017: 451-459
[128] BAI Y, ZHANG Z, XUE D, et al. Ultra-precision fabrication of a nickel-phosphorus layer on aluminum substrate by SPDT and MRF [J]. Applied Optics, 2018, 57(34): F62-F67.
[129] LI Y, TAKINO H, FROST F. Characteristics of diamond turned NiP smoothed with ion beam planarization technique [J]. Journal of the European Optical Society-Rapid Publications, 2017, 13: 1-5.
[130] 崔国峰. 化学镀镍磷合金过程中磷的析出及其对镀层性能的影响 [D]; 哈尔滨: 哈尔滨工业大学, 2006.
[131] AHMADKHANIHA D, ERIKSSON F, ZANELLA C. Optimizing heat treatment for electroplated NiP and NiP/SiC coatings [J]. Coatings, 2020, 10(12): 1179.
[132] CUI C, DU H, LIU H, et al. Corrosion behavior of the electroless Ni-P coating on the pore walls of the lotus-type porous copper [J]. Corrosion Science, 2020, 162: 108202.
[133] AZUMI K, YUGIRI T, KURIHARA T, et al. Direct plating of electroless Ni-P layers on sputter-deposited Al-Ni alloy films [J]. Journal of The Electrochemical Society, 2003, 150(7): C461.
[134] TSAI T-K, CHAO C-G. The growth morphology and crystallinity of electroless NiP deposition on silicon [J]. Applied surface science, 2004, 233(1-4): 180-190.
[135] VLAIC C, KURNIAWAN M, PEIPMANN R, et al. Improved wear resistance of alternating amorphous and crystalline layers in electrodeposited NiP multilayers [J]. Surface and Coatings Technology, 2020, 386: 125470.
[136] WANG W, ZHANG W, WANG Y, et al. Ductile electroless Ni–P coating onto flexible printed circuit board [J]. Applied Surface Science, 2016, 367: 528-532.
[137] KUROWSKI A, SCHULTZE J, STAIKOV G. Initial stages of Ni–P electrodeposition: growth morphology and composition of deposits [J]. Electrochemistry communications, 2002, 4(7): 565-569.
[138] ROEDER M, DREXLER M, ROTHERMEL T, et al. Injection compression molded microlens arrays for hyperspectral imaging [J]. Micromachines, 2018, 9(7): 355.
[139] MILAN N, SORGATO M, PARENTI P, et al. Effects of micromilled NiP mold surface topography on the optical characteristics of injection molded prismatic retroreflectors [J]. Precision Engineering, 2020, 61: 126-135.
[140] YAN J, OOWADA T, ZHOU T, et al. Precision machining of microstructures on electroless-plated NiP surface for molding glass components [J]. Journal of Materials Processing Technology, 2009, 209(10): 4802-4808.
[141] ZHOU T, YAN J, MASUDA J, et al. Investigation on shape transferability in ultraprecision glass molding press for microgrooves [J]. Precision Engineering, 2011, 35(2): 214-220.
[142] YU Q, ZHOU T, HE Y, et al. Annealed high-phosphorus electroless Ni–P coatings for producing molds for precision glass molding [J]. Materials Chemistry and Physics, 2021, 262: 124297.
[143] GUO J, JONG H J H, KANG R, et al. Novel localized vibration-assisted magnetic abrasive polishing method using loose abrasives for V-groove and Fresnel optics finishing [J]. Optics express, 2018, 26(9): 11608-11619.
[144] SIERRA C, VAZQUEZ A J. High solar energy concentration with a Fresnel lens [J]. Journal of materials science, 2005, 40: 1339-1343.
[145] 田昊. 高碳钢复杂结构件电化学抛光技术研究 [D]. 西安; 西安工业大学, 2020.
[146] ZHOU T, LIU X, LIANG Z, et al. Recent advancements in optical microstructure fabrication through glass molding process [J]. Frontiers of Mechanical Engineering, 2017, 12: 46-65.

所在学位评定分委会
力学
国内图书分类号
TG175
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/544573
专题工学院_机械与能源工程系
推荐引用方式
GB/T 7714
易蓉. 各向同性电化学刻蚀轮廓包络抛光方法研究[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930903-易蓉-机械与能源工程系(11913KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[易蓉]的文章
百度学术
百度学术中相似的文章
[易蓉]的文章
必应学术
必应学术中相似的文章
[易蓉]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。