中文版 | English
题名

氮化镓多沟道变容二极管研究

其他题名
MULTI-CHANNEL GAN VARACTORS
姓名
姓名拼音
ZHOU Zhuoya
学号
12032205
学位类型
硕士
学位专业
080903 微电子学与固体电子学
学科门类/专业学位类别
08 工学
导师
马俊
导师单位
电子与电气工程系
论文答辩日期
2023-05-12
论文提交日期
2023-06-29
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

现代无线通信技术使用了许多不同频段的方案和输出功率,需要高频高功率的可调器件来构建可调组件以覆盖更大频段,降低系统的组件数量和成本,其中包括高性能的变容二极管。目前常用的变容二极管多为Si或GaAs变容二极管,然而它们都无法同时满足高频高功率的需求。为了使变容二极管更好地应用在无线通讯领域,本论文提出了多沟道的高性能GaN变容二极管。品质因数(Q值)是变容二极管的关键参数:Q值越高,能效越高。虽然GaN出色的材料特性十分适合高频高功率应用,但GaN变容二极管的Q值较低。降低器件电阻是提升Q值的有效方法,但是器件电阻的降低存在较大挑战。本论文提出了一种新型的多沟道AlGaN/GaN变容二极管来降低电阻,提高Q值。使用Silvaco TCAD分别对于平面电极型多沟道GaN变容二极管的外延结构、肖特基型变容二极管器件、MIS结构变容二极管器件进行仿真,证明多沟道结构可以有效降低器件的电阻,提升变容二极管的Q值。通过微纳加工技术制备出1、2、3沟道的平面电极型多沟道GaN变容二极管器件,并使用N5247A PNA-X 微波网络分析仪测试各个器件的S参数。随着频率增大到2.87 GHz以上,Q值随着沟道数目的增大而增大,当工作频率为3.3 GHz时,多沟道变容二极管的Q值相较于单沟道的器件提升了5倍。这些结果说明了多沟道GaN变容二极管的在射频领域的应用潜力。

关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2023-06
参考文献列表

[1] AMIRPOUR R, SCHWANTUSCHKE D, VAN RAAY F, et al. Large-signal modeling of a scalable high-Q AlGaN/GaN high electron-mobility varactor[J]. IEEE Transactions on Microwave Theory and Techniques, 2019, 67(3): 922-927.
[2] CAPELA, CARLOS J R. Protocol of communications for VORSat satellite[D]. FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO, 2012: 1-91.
[3] 杨光义,王雪迪,金伟正等.变容二极管调频电路实验的创新与改进[J].实验技术与管理,2015,32(07):41-45.
[4] 梁圣杰.变容二极管的工作原理、特性及应用[J].沈阳电力高等专科学校学报,1997(04):7-12.
[5] CORDIER Y, HUGUES M, SEMOND F, et al. Layer quality and 2DEG behavior in AlGaN/GaN HEMTs grown by molecular beam epitaxy[J]. Physica Status Solidi (c), 2005, 2(7): 2195-2198.
[6] MA J, ERINE C, XIANG P, et al. Multi-channel tri-gate normally-on/off AlGaN/GaN MOSHEMTs on Si substrate with high breakdown voltage and low ON-resistance[J]. Applied Physics Letters, 2018, 113(24): 242102.
[7] WANG X, HU G, MA Z, et al. AlGaN/AlN/GaN/SiC HEMT structure with high mobility GaN thin layer as channel grown by MOCVD[J]. Journal of Crystal Growth, 2007 (298), 298: 835-839.
[8] HAMZA K. H, NIRMAL D, ARIVAZHAGAN L. Impact of AlGaN back barrier in AlGaN/GaN HEMT on GaN substrate[C]//2020 5th International Conference on Devices, Circuits and Systems (ICDCS), 2020: 290-293.
[9] TÜLEK R, ILGAZ A, GÖKDEN S, et al. Comparison of the transport properties of high quality AlGaN/AlN/GaN and AlInN/AlN/GaN two-dimensional electron gas heterostructures[J]. Journal of Applied Physics, 2009, 105(1): 013707.
[10] GANGULY S, KONAR A, HU Z, et al. Polarization effects on gate leakage in InAlN/AlN/GaN high-electron-mobility transistors[J]. Applied Physics Letters, 2012, 101(25): 253519.
[11] XIA Y, ZHU Y, LIU C, et al. Effects of the cap layer on the properties of AlN Barrier HEMT grown on 6-inch Si(111) substrate[J]. Materials Research Express, 2020, 7(6): 065902.
[12] SWAIN R, JENA K, GAINI A, et al. Comparative study of AlN/GaN HEMT and MOSHEMT structures by varying oxide thickness[C]//2014 IEEE 9th Nanotechnology Materials and Devices Conference (NMDC), 2014: 128-131.
[13] CHUN S C, YUGANG Z, CHEN K J, et al. Q-factor characterization of RF GaN-based metal-semiconductor-metal planar interdigitated varactor[J]. IEEE Electron Device Letters, 2005, 26(7): 432-434.
[14] LIN Y S, WU J Y, H. HSU S S, et al. GaN-Based Schottky Varactors for High-Power RF Applications[C]//Extended Abstracts of the 2008 International Conference on Solid State Devices and Materials, 2008: 506-507.
[15] LU W, WANG L, GU S, et al. InGaN/GaN Schottky diodes with enhanced voltage handling capability for varactor applications[J]. IEEE Electron Device Letters, 2010, 31(10): 1119-1121.
[16] LU W, WANG L, GU S, et al. Critical design considerations for GaN-based microwave Power varactors[C]//2012 IEEE International Conference on Electron Devices and Solid State Circuit (EDSSC), 2012: 1-4.
[17] JIN C Y, WANG J Y, FANG M, et al. A GaN-based metal-semiconductor-metal planar inter-digitated varactor[C]//2012 IEEE 11th International Conference on Solid-State and Integrated Circuit Technology, 2012: 1-3.
[18] OSVALD J, VANKO G, CHOW L, et al. Transition voltage of AlGaN/GaN heterostructure MSM varactor with two-dimensional electron gas[J]. Microelectronics Reliability, 2017 (78): 243-248.
[19] LI Q, AN N, TANG Y, et al. Metal-semiconductor-metal (MSM) varactor based on AlGaN/GaN heterostructure with cutoff frequency of 914.5GHz for terahertz frequency multiplication[C]//2018 IEEE 3rd International Conference on Integrated Circuits and Microsystems (ICICM), 2018: 86-89.
[20] AMIRPOUR R, SCHWANTUSCHKE D, BRUECKNER P, et al. High-Q anti-series AlGaN/GaN high electron-mobility varactor[C]//2019 IEEE MTT-S International Microwave Symposium (IMS), 2019: 599-602.
[21] HWANG J H, LEE G, NOUMAN M T, et al. Self-aligned metal-semiconductor-metal varactors based on the AlGaN/GaN Heterostructure[J]. IEEE Electron Device Letters, 2019, 40(11): 1740-1743.
[22] HWANG J H, LEE K J, HONG S M, et al. Balanced MSM-2DEG varactors based on AlGaN/GaN heterostructure with cutoff frequency of 1.54 THz[J]. IEEE Electron Device Letters, 2017, 38(1): 107-110.
[23] CHUN S C, YUGANG Z, RONGMING C, et al. GaN-based radio-frequency planar inter-digitated metal-insulator-semiconductor varactors[C]// Proceedings. 7th International Conference on Solid-State and Integrated Circuits Technology, 2004: 2257-2260.
[24] CHUN S C, YUGANG Z, CHEN K J, et al. A novel RF high-Q metal-semiconductor-metal planar inter-digitated varactor based on double-channel AlGaN/GaN HEMT structure[C]//2005 IEEE Radio Frequency Integrated Circuits (RFIC) Symposium - Digest of Papers, 2005: 385-388.
[25] LIN Y S, LI T C, WANG Y C, et al. Layout optimization of AlGaN/GaN HEMTs for high-power applications[C]// Extended Abstracts of the 2007 International Conference on Solid State Devices and Materials, 2007.
[26] LIN Y S, WU J Y, H. HSU S S, et al. GaN-based Schottky varactors for high-power RF applications[C]// Extended Abstracts of the 2008 International Conference on Solid State Devices and Materials, 2008.
[27] 姜海波, 赵润. GaAs超突变结变容二极管的设计[C]// 全国第19届计算机技术与应用(CACIS)学术会议论文集(上册).中国电子科技集团公司第十三研究所,2008:665-668.
[28] FERNG Y C, CHANG L B, DAS A, et al. Effective treatment on AlGaN/GaN MSM-2DEG Varactor with (NH4)2S/P2S5 solution[J]. Electrochemical and Solid-State Letters, 2010, 13(10): 350-353.
[29] FERNG Y C, CHANG L B, DAS A, et al. Improvement of surge protection by using an AlGaN/GaN-based metal-semiconductor-metal two-dimensional electron gas varactor[J]. Japanese Journal of Applied Physics, 2012, 51(12R): 124201.
[30] ZHANG B, WANG J Y, LI X P, et al. Effects of depletion region in GaN-based metal-semiconductor-metal planar inter-digitated varactor[C]// 2014 IEEE International Conference on Electron Devices and Solid-State Circuits, 2014.
[31] 缪丽,黄维,蒋均,郭桂美. 基于肖特基变容二极管的0.17 THz 二倍频器研制[J].红外与激光工程.2015(44):947-950.
[32] LI Q, AN N, TANG Y, et al. Metal-semiconductor-metal (MSM) varactor based on AlGaN/GaN heterostructure with cutoff frequency of 914.5GHz for terahertz frequency multiplication[C]// 2018 IEEE 3rd International Conference on Integrated Circuits and Microsystems (ICICM), 2018.
[33] 代鲲鹏,张凯,林罡. GaN太赫兹肖特基变容二极管倍频效率的研究[J].电子元件与材料.2018(37):9-16.
[34] SHIH C F, CHANG L B, JENG M J, et al. GaN 2DEG Varactor-based impulse suppression module for protection against malicious electromagnetic interference[J]. Journal of Electronic Materials, 2020, 49(11): 6798-6805.
[35] MARSO M, FOX A, HEIDELBERGER G, et al. Comparison of AlGaN/GaN MSM varactor diodes based on HFET and MOSHFET layer structures[J]. 2006 International Conference on Advanced Semiconductor Devices and Microsystems, 2006: 945-947.
[36] REKLAITIS A. Terahertz-frequency InN/GaN heterostructure-barrier varactor diodes[J]. Journal of Physics: Condensed Matter, 2008, 20(38): 384202.
[37] REKLAITIS A. Efficient heterostructure doped-barrier varactor diodes[J]. Journal of Applied Physics, 2009, 105(2): 024502.
[38] CHONG J, DIMITRIS P, LAURENCE C. A novel GaN-based high frequency varactor diode[C]// The 5th European Microwave Integrated Circuits Conference, Paris, France, 2010: 118-121.
[39] LU W, WANG L, GU S, et al. InGaN/GaN Schottky diodes with enhanced voltage handling capability for varactor applications[J]. IEEE Electron Device Letters, 2010, 31(10): 1119-1121.
[40] JAHAN F, YANG Y H, GAEVSKI M, et al. 2- to 20-GHz switch using III-Nitride capacitively coupled contact varactors[J]. IEEE Electron Device Letters, 2013, 34(2): 208-210.
[41] DEEN D A, OSINSKY A, MILLER R. Bimodal wireless sensing with dual-channel wide bandgap heterostructure varactors[J]. Applied Physics Letters, 2014, 104(9): 093506.
[42] GEUM D M, SHIN S H, HONG S M, et al. Metal-semiconductor-metal varactors based on InAlN/GaN heterostructure with cutoff frequency of 308 GHz[J]. IEEE Electron Device Letters, 2015, 36(4): 306-308.
[43] HAMDOUN A, ROY L, HIMDI M, et al. Characterisation and analytical modelling of GaN HEMT-based varactor diodes[J]. Electronics Letters, 2015, 51(23): 1930-1932.
[44] AMIRPOUR R, SCHWANTUSCHKE D, BRUECKNER P, et al. AlGaN/GaN High Electron-mobility varactors on silicon substrate[C]// 2019 12th German Microwave Conference (GeMiC), 2019: 244-247.
[45] SONG J, HAN S W, CHU R. High-Q GaN varactors for mm-wave applications: a physics-based simulation study[J]. IEEE Transactions on Electron Devices, 2019, 66(10): 4134-4139.
[46] CHEN P C, ASBECK P M, DAYEH S A. Freestanding High-Power GaN Multi-Fin Camel Diode Varactors for Wideband Telecom Tunable Filters[J]. IEEE Transactions on Electron Devices, 2023, 70(3): 963-970.
[47] 康玄武,郑英奎,王鑫华,黄森,魏珂,吴昊,孙跃,赵志波,刘新宇.AlGaN/GaN异质结肖特基二极管研究进展[J].电源学报.2019 (03):44-52.
[48] TIGGELMAN M P, REIMANN K, VAN RIJS F, et al. On the Trade-Off Between Quality Factor and Tuning Ratio in Tunable High-Frequency Capacitors[J]. IEEE Transactions on Electron Devices, 2009, 56(9): 2128-2136.
[49] Atlas User’s Manual: Device Simulation Software[M]. Patrick Henry Drive: SILVACO International, 2004.
[50] MIGLIO L, SASSELLA A. Encyclopedia of Condensed Matter Physics[M]. Elsevier, 2005: 157-166.
[51] YAN R, KHALSA G, VISHWANATH S, et al. GaN/NbN epitaxial semiconductor/superconductor heterostructures[J]. Nature, 2018, 555(7695): 183-189.
[52] YU Y, WANG T, CHEN X, et al. Demonstration of epitaxial growth of strain-relaxed GaN films on graphene/SiC substrates for long wavelength light-emitting diodes[J]. Light: Science & Applications, 2021, 10(1): 117-117.
[53] HU X L, ZHANG J Y, SHANG J Z, et al. The exciton-longitudinal-optical-phonon coupling in InGaN/GaN single quantum wells with various cap layer thicknesses[J]. Chinese Physics B, 2010,19 (11): 117801.
[54] KANERIYA R K, KrARMAKAR C, RASTOGI G, et al. Influence of AlN spacer and GaN cap layer in GaN heterostructure for RF HEMT applications[J]. Microelectronic Engineering, 2022 (255): 111724.
[55] NIRAJ S, YUEN W, YIMING L, et al. Effect of AlN Spacer Layer on AlGaN/GaN HEMTs[C]// 16th International Workshop on Computational Electronics, 2013: 256-257.
[56] SHEN L, HEIKMAN S, MORAN B, et al. AlGaN/AlN/GaN high-power microwave HEMT[J]. IEEE Electron Device Letters, 2001, 22(10): 457-459.
[57] AHN S, ZHU W D, DONG C et al. Study of the effects of GaN buffer layer quality on the DC characteristics of AlGaN/GaN high electron mobility transistors[J]. ECS Transactions, 2015, 69(14): 103-108.
[58] AMBACHER O, SMART J, SHEALY J R, et al. Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures[J]. Journal of Applied Physics, 1999, 85(6): 3222.
[59] HE X, ZHAO D, JIANG D. Formation of two-dimensional electron gas at AlGaN/GaN heterostructure and the derivation of its sheet density expression[J]. Chinese Physics B, 2015, 24(6): 067301.
[60] BERA B. Silicon Wafer Cleaning: A Fundamental and Critical Step in Semiconductor Fabrication Process[J]. International Journal of Applied Nanotechnology, 2019, 5(1): 8-13.
[61] ZHAO L, SHANG H, WANG D, et al. Surface cleaning process for plasma-etched SiC wafer[J]. Applied Physics A: Materials Science & Processing, 2020, 126(8): 288-292.
[62] ALEXANDRU M, BANU V, VELLVEHI M, et al. Comparison between mesa isolation and p+ implantation isolation for 4H-SiC MESFET transistors[C]// 2011 International Semiconductor Conference, 2011, 317-320.
[63] HE B, YANG Y, YUEN M F, et al. Vertical nanostructure arrays by plasma etching for applications in biology, energy, and electronics[J]. Nano Today, 2013, 8(3): 265-289.
[64] TSENG Y H, TSUI B Y. Trenched 4H-SiC with tapered sidewall formed by Cl2/O2 reactive ion etching[J]. Journal of Vacuum Science & Technology, 2016: 061305.
[65] WANG J J, LAMBERS E S, PEARSON S J, et al. ICP etching of SiC[J]. Solid State Electronics, 1998, 42(12): 2283-2288.
[66] LIU R, WU H, ZHANG H, et al. A dry etching method for 4H-SiC via using photoresist mask[J]. Journal of Crystal Growth, 2020, 531(C): 125351-125351.
[67] KASHYAP A, SINGH N K, SONI M, et al. Deposition of thin films by chemical solution-assisted techniques[J]. Chemical Solution Synthesis for Materials Design and Thin Film Device Applications, 2021: 79-117.
[68] MICHAEL Q, JULIAN Serda.半导体制造技术[M].北京:电子工业出版社,2015:333-334.
[69] ZHUANG D, EDGAR J H. Wet etching of GaN, AlN, and SiC: a review[J]. Materials Science and Engineering: R: Reports, 2005, 48(1): 1-46.
[70] ZAOUK R, PARK B, MADOU M. Introduction to microfabrication techniques[J]. Methods in molecular biology (Clifton, N.J.), 2006, 321: 5-15.
[71] GODEN J, MILLER H, NAWROCKI D, et al. Optimization of bi-layer lift-off resist process[C]// CS MANTECH Conference, 2009.
[72] CHOI Y H, LIM J, KYU H, et al. High voltage AlGaN/GaN schottky barrier diode employing the inductively coupled plasma-chemical vapor deposition SiO₂ passivation[J]. ICPE(ISPE), 2007: 71-73.
[73] REMASHAN K, HUANG W P, CHYI J I. Simulation and fabrication of high voltage AlGaN/GaN based Schottky diodes with field plate edge termination[J]. Microelectronic Engineering, 2007, 84(12): 2907-2915.

所在学位评定分委会
电子科学与技术
国内图书分类号
TN312+.1
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/544576
专题工学院_电子与电气工程系
推荐引用方式
GB/T 7714
周卓雅. 氮化镓多沟道变容二极管研究[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032205-周卓雅-电子与电气工程(4998KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[周卓雅]的文章
百度学术
百度学术中相似的文章
[周卓雅]的文章
必应学术
必应学术中相似的文章
[周卓雅]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。