[1] SHRIMAL P, JADEJA G, PATEL S. A review on novel methodologies for drug nanoparticle preparation: Microfluidic approach[J]. Chemical Engineering Research and Desin, 2020, 153:728-756.
[2] REN K, ZHOU J, WU H. Materials for microfluidic chip fabrication.[J]. Accounts of chemical research, 2013, 46 11: 2396-406.
[3] WHITESIDES G M. The origins and the future of microfluidics[J]. Nature, 2006, 442: 368-373.
[4] THEBERGE A, COURTOIS F, SCHAERLI Y, et al. Microdroplets in Microfluidics: An Evolv ing Platform for Discoveries in Chemistry and Biology[J]. Angewandte Chemie International Edition, 2010, 49(34): 5846–5868.
[5] MARRE S, JENSEN K F. Synthesis of micro and nanostructures in microfluidic systems[J]. Chemical Society Reviews, 2010, 39(3): 1183.
[6] MANZ A, GRABER N, WIDMER H. Miniaturized total chemical analysis systems: A novel concept for chemical sensing[J]. Sensors and Actuators B: Chemical, 1990, 1(1): 244-248.
[7] HAN W, CHEN X, WU Z, et al. Three-dimensional numerical simulation of droplet formation in a microfluidic flow-focusing device[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2019, 41: 1-10.
[8] ZHU P, WANG L. Passive and active droplet generation with microfluidics: a review[J]. Lab on a Chip, 2017, 17(1): 34-75.
[9] CYBULSKI O, GARSTECKI P, GRZYBOWSKI B A. Oscillating droplet trains in microfluidic networks and their suppression in blood flow[J]. Nature Physics, 2019, 15(7): 706-713.
[10] HAN W, CHEN X. New insights into the pressure during the merged droplet formation in the squeezing time[J]. Chemical Engineering Research and Design, 2019, 145: 213-225.
[11] KÖSTER S, ANGILE F E, DUAN H, et al. Drop-based microfluidic devices for encapsulation of single cells[J]. Lab on a Chip, 2008, 8(7): 1110-1115.
[12] THEBERGE A B, COURTOIS F, SCHAERLI Y, et al. Microdroplets in microfluidics: anevolving platform for discoveries in chemistry and biology[J]. Angewandte Chemie Interna tional Edition, 2010, 49(34): 5846-5868.
[13] CHONG Z Z, TAN S H, GAÑÁN-CALVO A M, et al. Active droplet generation in microfluidics[J]. Lab on a Chip, 2016, 16(1): 35-58.
[14] CHRISTOPHER G F, ANNA S L. Microfluidic methods for generating continuous droplet streams[J]. Journal of Physics D: Applied Physics, 2007, 40(19): R319.
[15] ZHAO C X, MIDDELBERG A P. Two-phase microfluidic flows[J]. Chemical Engineering Science, 2011, 66(7): 1394-1411.
[16] SEEMANN R, BRINKMANN M, PFOHL T, et al. Droplet based microfluidics[J]. Reports on progress in physics, 2011, 75(1): 016601.
[17] ZHAO C X. Multiphase flow microfluidics for the production of single or multiple emulsionsfor drug delivery[J]. Advanced drug delivery reviews, 2013, 65(11-12): 1420-1446.
[18] ANNA S L, BONTOUX N, STONE H A. Formation of dispersions using “flow focusing”inmicrochannels[J]. Applied physics letters, 2003, 82(3): 364-366.
[19] LI Y, JAIN M, MA Y, et al. Control of the breakup process of viscous droplets by an externalelectric field inside a microfluidic device.[J]. Soft matter, 2015, 11 19: 3884-99.
[20] XI H D, GUO W, LENIART M, et al. AC electric field induced droplet deformation in a mi crofluidic T-junction.[J]. Lab on a chip, 2016, 16 16: 2982-6.
[21] HATAMI M, RAMIAR A, RANJBAR A A. Numerical assessment of different parametersaffecting droplet production in an Electro-Hydrodynamic Flow Focusing Device[J]. ChemicalEngineering and Processing - Process Intensification, 2018, 131: 190-202.
[22] ZHANG Q, LI H, ZHU C, et al. Micro-magnetofluidics of ferrofluid droplet formation in aT-junction[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 537:572-579.
[23] CHAUDHURI J, MANDAL T K, BANDYOPADHYAY D. Steady and Oscillatory Lorentz Force-Induced Transport and Digitization of Two-Phase Microflows[J]. Physical Review Ap plied, 2018.
[24] WU Y, FU T, MA Y, et al. Ferrofluid droplet formation and breakup dynamics in a microfluidic flow-focusing device[J]. Soft Matter, 2013, 9(41): 9792-9798.
[25] NGUYEN N T, TING T H, YAP Y F, et al. Thermally mediated droplet formation in microchan nels[J]. Applied Physics Letters, 2007, 91(8): 084102.
[26] BAROUD C N, DELVILLE J P, GALLAIRE F, et al. Thermocapillary valve for droplet pro duction and sorting[J]. Physical Review E, 2007, 75(4): 046302.
[27] XU J, LI S, TAN J, et al. Preparation of highly monodisperse droplet in a T-junction microfluidic device[J]. AIChE journal, 2006, 52(9): 3005-3010.
[28] GULATI S, VIJAYAKUMAR K, GOOD W W, et al. Microdroplet formation in rounded flow focusing junctions[J]. Microfluidics and Nanofluidics, 2016, 20: 1-9.
[29] UMBANHOWAR P, PRASAD V, WEITZ D A. Monodisperse emulsion generation via drop break off in a coflowing stream[J]. Langmuir, 2000, 16(2): 347-351.
[30] THORSEN T, ROBERTS R W, ARNOLD F H, et al. Dynamic pattern formation in a vesicle generating microfluidic device[J]. Phys Rev Lett, 2001, 86(18): 4163-6.
[31] NISISAKO T, TORII T, HIGUCHI T. Droplet formation in a microchannel network[J]. Lab Chip, 2002, 2(1): 24-6.
[32] CRAMER C, FISCHER P, WINDHAB E J. Drop formation in a co-flowing ambient fluid[J]. Chemical Engineering Science, 2004, 59(15): 3045-3058.
[33] GARSTECKI P, FUERSTMAN M J, STONE H A, et al. Formation of droplets and bubbles ina microfluidic T-junction-scaling and mechanism of break-up[J]. Lab Chip, 2006, 6(3): 437-46.
[34] XU J H, LI S W, TAN J, et al. Correlations of droplet formation in T-junction microfluidic devices: from squeezing to dripping[J]. Microfluidics and Nanofluidics, 2008, 5(6): 711-717.
[35] ZENG W, LI S, WANG Z. Closed-loop feedback control of droplet formation in a T-junctionmicrodroplet generator[J]. Sensors and Actuators A: Physical, 2015, 233: 542-547.
[36] LI X, LI D, LIU X, et al. Ultra-monodisperse droplet formation using PMMA microchannelsintegrated with low-pulsation electrolysis micropumps[J]. Sensors and Actuators B: Chemical, 2016, 229: 466-475.
[37] SAQIB M, SAHINOGLU O B, ERDEM E Y. Alternating Droplet Formation by using Tapered Channel Geometry[J]. Sci Rep, 2018, 8(1): 1606.
[38] BAI L, FU Y, ZHAO S, et al. Droplet formation in a microfluidic T-junction involving highly viscous fluid systems[J]. Chemical Engineering Science, 2016, 145: 141-148.
[39] ANNA S L, BONTOUX N, STONE H A. Formation of dispersions using “flow focusing”in microchannels[J]. Applied Physics Letters, 2003, 82(3): 364-366.
[40] TAKEUCHI S, GARSTECKI P, WEIBEL D B, et al. An Axisymmetric Flow-Focusing Mi crofluidic Device[J]. Advanced Materials, 2005, 17(8): 1067-1072.
[41] YOBAS L, MARTENS S, ONG W L, et al. High-performance flow-focusing geometry for spontaneous generation of monodispersed droplets[J/OL]. Lab Chip, 2006, 6(8): 1073-9. DOI: 10.1039/b602240e.
[42] ROMERO P A, ABATE A R. Flow focusing geometry generates droplets through a plug and squeeze mechanism[J]. Lab Chip, 2012, 12(24): 5130-2.
[43] DERZSI L, KASPRZYK M E, PLOG J P, et al. Flow focusing with viscoelastic liquids[J].Physics of Fluids, 2013, 25: 092001.
[44] VAN LOO S, STOUKATCH S, KRAFT M, et al. Droplet formation by squeezing in a microflu idic cross-junction[J]. Microfluidics and Nanofluidics, 2016, 20(10).
[45] UTADA A S, LORENCEAU E, LINK D R, et al. Monodisperse Double Emulsions Generated from a Microcapillary Device[J]. Science, 2005, 308: 537 - 541.
[46] SHAO T, FENG X, JIN Y, et al. Controlled production of double emulsions in dual-coaxial cap illaries device for millimeter-scale hollow polymer spheres[J]. Chemical Engineering Science, 2013, 104: 55-63.
[47] GORDILLO J M, SEVILLA A, CAMPO-CORTéS F. Global stability of stretched jets: con ditions for the generation of monodisperse micro-emulsions using coflows[J]. Journal of Fluid Mechanics, 2013, 738: 335-357.
[48] TEMAM R. Navier-Stokes equations: theory and numerical analysis: volume 343[M]. Ameri can Mathematical Soc., 2001.
[49] XIA B, SUN D W. Applications of computational fluid dynamics (CFD) in the food industry: a review[J]. Computers and electronics in agriculture, 2002, 34(1-3): 5-24.
[50] GLATZEL T, LITTERST C, CUPELLI C, et al. Computational fluid dynamics (CFD) software tools for microfluidic applications–A case study[J]. Computers & Fluids, 2008, 37(3): 218-235.
[51] WILKES J O, BIRMINGHAM S G. Fluid Mechanics for Chemical Engineers with Microflu idics and CFD.[M]. Pearson Education, 2006.
[52] HAN C D. Multiphase flow in polymer processing[M]. Springer, 1980.
[53] 刘波, 罗小平, 王二利. 粗糙度对微通道内两相流摩擦压降的影响[J]. 中南大学学报: 自然科学版, 2015, 46(11): 4334-4340.
[54] HIRT C W, NICHOLS B D. Volume of fluid (VOF) method for the dynamics of free boundaries[J]. Journal of computational physics, 1981, 39(1): 201-225.
[55] OSHER S, FEDKIW R, PIECHOR K. Level set methods and dynamic implicit surfaces[J]. Appl. Mech. Rev., 2004, 57(3): B15-B15.
[56] HARRIES N, BURNS J, BARROW D A, et al. A numerical model for segmented flow in a microreactor[J]. International journal of heat and mass transfer, 2003, 46(17): 3313-3322.
[57] KASHID M N, AGAR D W, TUREK S. CFD modelling of mass transfer with and without chemical reaction in the liquid–liquid slug flow microreactor[J]. Chemical Engineering Science, 2007, 62(18-20): 5102-5109.
[58] SONTTI S G, ATTA A. CFD analysis of microfluidic droplet formation in non–Newtonian liquid[J]. Chemical Engineering Journal, 2017, 330: 245-261.
[59] DENG C, WANG H, HUANG W, et al. Numerical and experimental study of oil-in-water (O/W) droplet formation in a co-flowing capillary device[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 533: 1-8.
[60] UNVERDI S O, TRYGGVASON G. A front-tracking method for viscous, incompressible, multi-fluid flows[J]. Journal of computational physics, 1992, 100(1): 25-37.
[61] HAN W, CHEN X. Effect of geometry configuration on the merged droplet formation in a double T-junction[J]. Microgravity Science and Technology, 2019, 31(6): 855-864.
[62] MALEKZADEH S, ROOHI E. Investigation of Different Droplet Formation Regimes in a T junction Microchannel Using the VOF Technique in OpenFOAM[J]. Microgravity Science and Technology, 2015, 27(3): 231-243.
[63] SOH G Y, YEOH G H, TIMCHENKO V. Numerical investigation on the velocity fields during droplet formation in a microfluidic T-junction[J]. Chemical Engineering Science, 2016, 139: 99-108.
[64] CASTRO-HERNáNDEZ E, KOK M P, VERSLUIS M, et al. Study of the geometry in a 3D flow-focusing device[J]. Microfluidics and Nanofluidics, 2016, 20(2).
[65] NOORANIDOOST M, IZBASSAROV D, MURADOGLU M. Droplet formation in a flow focusing configuration: Effects of viscoelasticity[J]. Physics of Fluids, 2016, 28(12).
[66] SUSSMAN M, SMEREKA P, OSHER S. A level set approach for computing solutions to incompressible two-phase flow[J]. Journal of Computational physics, 1994, 114(1): 146-159.
[67] ANDERSON D M, MCFADDEN G B, WHEELER A A. Diffuse-interface methods in fluid mechanics[J]. Annual review of fluid mechanics, 1998, 30(1): 139-165.
[68] CAHN J W, HILLIARD J E. Free energy of a nonuniform system. I. Interfacial free energy[J]. The Journal of chemical physics, 1958, 28(2): 258-267.
[69] MOHAMAD A. Lattice boltzmann method: volume 70[M]. Springer, 2011.
[70] HIGUERA F J, JIMÉNEZ J. Boltzmann approach to lattice gas simulations[J]. Europhysics letters, 1989, 9(7): 663.
[71] MCNAMARA G R, ZANETTI G. Use of the Boltzmann equation to simulate lattice-gas au tomata[J]. Physical review letters, 1988, 61(20): 2332.
[72] ZHANG J. Lattice Boltzmann method for microfluidics: models and applications[J]. Microflu idics and Nanofluidics, 2011, 10: 1-28.
[73] BHATNAGAR P L, GROSS E P, KROOK M. A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems[J]. Physical review, 1954, 94(3): 511.
[74] D’HUMIÈRES D. Multiple–relaxation–time lattice Boltzmann models in three dimensions[J]. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 2002, 360(1792): 437-451.
[75] FLEKKØY E. Lattice Bhatnagar-Gross-Krook models for miscible fluids[J]. Physical ReviewE, 1993, 47(6): 4247.
[76] GUNSTENSEN A K, ROTHMAN D H, ZALESKI S, et al. Lattice Boltzmann model of im miscible fluids[J]. Physical Review A, 1991, 43(8): 4320.
[77] SHAN X, CHEN H. Lattice Boltzmann model for simulating flows with multiple phases and components[J]. Physical review E, 1993, 47(3): 1815.
[78] SWIFT M R, OSBORN W, YEOMANS J. Lattice Boltzmann simulation of nonideal fluids[J]. Physical review letters, 1995, 75(5): 830.
[79] VAN DER GRAAF S, NISISAKO T, SCHROËN C, et al. Lattice Boltzmann simulations of droplet formation in a T-shaped microchannel.[J]. Langmuir : the ACS journal of surfaces and colloids, 2006, 22 9: 4144-52.
[80] 王文坦, 刘喆, 金涌, 等. 微通道中液滴内部速度场的 LBM 模拟[J]. 中国科技论文在线, 2010, 5(12): 911-918.
[81] DE MENECH M, GARSTECKI P, JOUSSE F, et al. Transition from squeezing to dripping in a microfluidic T-shaped junction[J]. Journal of Fluid Mechanics, 2008, 595: 141-1
[82] WANG W, LIU Z, JIN Y, et al. LBM simulation of droplet formation in micro-channels[J]. Chemical Engineering Journal, 2011, 173(3): 828-836.
[83] SHI Y, TANG G H, XIA H H. Lattice Boltzmann simulation of droplet formation in T-junction and flow focusing devices[J]. Computers & Fluids, 2014, 90: 155-163.
[84] HUANG H, SUKOP M, LU X. Multiphase lattice Boltzmann methods: Theory and application[M]. John Wiley & Sons, 2015.
[85] QIAN Y H, D’HUMIÈRES D, LALLEMAND P. Lattice BGK models for Navier-Stokes equa tion[J]. Europhysics letters, 1992, 17(6): 479.
[86] 何雅玲, 王勇, 李庆, 等. 格子 Boltzmann 方法的理论及应用[M]. 科学出版社, 2009.
[87] ZOU Q, HE X. On pressure and velocity boundary conditions for the lattice Boltzmann BGK model[J]. Physics of fluids, 1997, 9(6): 1591-1598.
[88] 郭照立, 郑楚光. 格子 Boltzmann 方法的原理及应用[M]. 科学出版社, 2009.
[89] ZHENG H, SHU C, CHEW Y T. A lattice Boltzmann model for multiphase flows with large density ratio[J]. Journal of computational physics, 2006, 218(1): 353-371.
[90] TAYLOR G I. The viscosity of a fluid containing small drops of another fluid[J]. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 1932, 138(834): 41-48.
修改评论