[1] DONOHO D L. Compressed Sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
[2] NATARAJAN B K. Sparse Approximate Solutions to Linear Systems[J]. SIAM Journal on Computing, 1995: 227-234.
[3] CANDES E J, TAO T. Decoding by Linear Programming[J]. IEEE Transactions on Information Theory, 2005, 51(12): 4203-4215.
[4] CANDES E, RECHT B. Exact Matrix Completion via Convex Optimization[J/OL]. Foundations of Computational Mathematics, 2012, 55(6): 111–119. DOI: 10.1145/2184319.2184343.
[5] DONOHO D, ELAD M. Optimally Sparse Representation in General (Nonorthogonal) Dictionaries via L1 Minimization[J]. Proceedings of the National Academy of Sciences, 2003, 100: 2197-2202.
[6] GRIBONVAL R, NIELSEN M. Sparse Representations in Unions of Bases[J]. IEEE Transactions on Information Theory, 2003, 49(12): 3320-3325.
[7] TIBSHIRANI R. Regression Shrinkage and Selection via the Lasso[J]. Journal of the Royal Statistical Society: Series B (Methodological), 1996, 58(1): 267-288.
[8] RAHIMI Y, WANG C, DONG H, et al. A Scale-Invariant Approach for Sparse Signal Recovery[J]. SIAM Journal on Scientific Computing, 2019, 41(6): A3649-A3672.
[9] MA T H, LOU Y, HUANG T Z. Truncated l1−2 Models for Sparse Recovery and Rank Minimization[J/OL]. SIAM Journal on Imaging Sciences, 2017, 10(3): 1346-1380. DOI:10.1137/16M1098929.
[10] CHEN G, GULLY S M, EDEN D. Validation of a New General Self-Effcacy Scale[J/OL]. Organizational Research Methods, 2001, 4(1): 62-83. DOI: 10.1177/109442810141004.
[11] LV J, FAN Y. A Unified Approach to Model Selection and Sparse Recovery Using Regularized Least Squares[J]. The Annals of Statistics, 2009: 3498-3528.
[12] ZIBULEVSKY M, ELAD M. L1-L2 Optimization in Signal and Image Processing[J]. IEEE Signal Processing Magazine, 2010, 27(3): 76-88.
[13] LOU Y, YAN M. Fast L1-L2 Minimization via a Proximal Operator[J]. Journal of Scientific Computing, 2018, 74(2): 767-785.
[14] BUI K, LOU Y, PARK F, et al. Efficient Image Segmentation Framework with Difference of Anisotropic and Isotropic Total Variation for Blur and Poisson Noise Removal[A]. 2023.
[15] YIN P, ESSER E, XIN J. Ratio and Difference of L1 and L2 Norms and Sparse Representation with Coherent Dictionaries[J]. Communications in Information and Systems, 2014, 14: 87-109.
[16] BI N, TANG W S. A necessary and sufficient condition for sparse vector recovery via ℓ1 − ℓ2 minimization[J/OL]. Applied and Computational Harmonic Analysis, 2022, 56: 337-350. https://www.sciencedirect.com/science/article/pii/S1063520321000865. DOI: https://doi.org/10.1016/j.acha.2021.09.003.
[17] HE Z, HE H, LIU X, et al. An Improved Sufficient Condition for Sparse Signal Recovery With Minimization of L1-L2[J/OL]. IEEE Signal Processing Letters, 2022, 29: 907-911. DOI:10.1109/LSP.2022.3158839.
[18] XIE H, HUANG J. SCAD-Penalized Regression in High-Dimensional Partially Linear Models[J]. The Annals of Statistics, 2009, 37(2): 673-696.
[19] WANG Y, YIN W. Sparse Signal Reconstruction via Iterative Support Detection[J]. SIAM Journal on Imaging Sciences, 2010, 3(3): 462-491.
[20] ZHANG C H. Nearly Unbiased Variable Selection under Minimax Concave Penalty[J]. The Annals of Statistics, 2010, 38(2): 894 - 942.
[21] CHARTRAND R. Exact Reconstruction of Sparse Signals via Nonconvex Minimization[J]. IEEE Signal Processing Letters, 2007, 10(14): 707-710.
[22] GUO W, LOU Y, QIN J, et al. A novel regularization based on the error function for sparse recovery[J]. Journal of Scientific Computing, 2021, 87(1): 31.
[23] HU M, LOU Y, WANG B, et al. Accelerated Sparse Recovery via Gradient Descent with Nonlinear Conjugate Gradient Momentum[J]. Journal of Scientific Computing, 2023, 95(1): 33.
[24] HU Y, ZHANG D, YE J, et al. Fast and Accurate Matrix Completion via Truncated Nuclear Norm Regularization[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 35(9): 2117-2130.
[25] WANG Y, YIN W. Sparse Signal Reconstruction via Iterative Support Detection[J]. SIAM Journal on Imaging Sciences, 2010, 3(3): 462-491.
[26] MA T H, LOU Y, HUANG T Z. Truncated L1 − L2 Models for Sparse Recovery and Rank Minimization[J]. SIAM Journal on Imaging Sciences, 2017, 10(3): 1346-1380.
[27] HUANG X L, SHI L, YAN M. Nonconvex Sorted L1 Minimization for Sparse Approximation[J]. Journal of the Operations Research Society of China, 2015, 3(2): 207-229.
[28] WANG C, YAN M, RAHIMI Y, et al. Accelerated Schemes for the L1/L2 Minimization[J]. IEEE Transactions on Signal Processing, 2020, 68: 2660-2669.
[29] WANG C, TAO M, NAGY J G, et al. Limited-angle CT reconstruction via the L1/L2 minimization[J]. SIAM Journal on Imaging Sciences, 2021, 14(2): 749-777.
[30] WANG C, TAO M, CHUAH C N, et al. Minimizing L1 over L2 Norms on the Gradient[J]. Inverse Problems, 2022, 38(6): 065011.
[31] PELEG T, GRIBONVAL R, DAVIES M E. Compressed Sensing and Best Approximation from Unions of Subspaces: Beyond Dictionaries[C]//21st European Signal Processing Conference(EUSIPCO 2013). 2013: 1-5.
[32] PRANGPRAKHON M, FEESANTIA T, NIMANA N. An Adaptive Projection GradientMethod for Solving Nonlinear Fractional Programming[J/OL]. Fractal and Fractional, 2022,6(10). https://www.mdpi.com/2504-3110/6/10/566. DOI: 10.3390/fractalfract6100566.
[33] LI Q, SHEN L, ZHANG N, et al. A proximal algorithm with backtracked extrapolation for a class of structured fractional programming[J]. Applied and Computational Harmonic Analysis,2022, 56: 98-122
[34] PRANGPRAKHON M, FEESANTIA T, NIMANA N. An Adaptive Projection GradientMethod for Solving Nonlinear Fractional Programming[J]. Fractal and Fractional, 2022, 6(10):566.
[35] BOŢ R I, DAO M N, LI G. Extrapolated proximal subgradient algorithms for nonconvex and nonsmooth fractional programs[J]. Mathematics of Operations Research, 2022, 47(3): 2415-2443.
[36] WRIGHT S J. Coordinate Descent Algorithms[J/OL]. Mathematical Programming, 2015, 151(1): 3–34. DOI: 10.1007/s10107-015-0892-3.
[37] BOYD S, PARIKH N, CHU E, et al. Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers[J]. Foundations and Trends in Machine Learning, 2011, 3(1): 1-122.
[38] HIRIART-URRUTY J B, Lemaréchal C. Convex Analysis and Minimization Algorithms[M]. Springer Verlag, Heidelberg, 1996.
[39] ZHANG G, HEUSDENS R. Distributed Optimization Using the Primal-Dual Method of Multipliers[J]. IEEE Transactions on Signal and Information Processing over Networks, 2017, 4(1):173-187.
[40] GOLDSTEIN T, OSHER S. The Split Bregman Method for L1-Regularized Problems[J/OL]. SIAM Journal on Imaging Sciences, 2009, 2(2): 323-343. DOI: 10.1137/080725891.
[41] BECK A, TEBOULLE M. A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems[J]. SIAM Journal on Imaging Sciences, 2009, 2(1): 183-202.
[42] MA S, GOLDFARB D, CHEN L. Fixed Point and Bregman Iterative Methods for Matrix Rank Minimization[J]. Mathematical Programming, 2011, 128(1): 321-353.
[43] FANNJIANG A, LIAO W. Coherence Pattern–Guided Compressive Sensing with Unresolved Grids[J]. SIAM Journal on Imaging Sciences, 2012, 5(1): 179-202.
[44] LOU Y, YIN P, HE Q, et al. Computing Sparse Representation in a Highly Coherent Dictionary Based on Difference of L1 and L2[J]. Journal of Scientific Computing, 2015, 64(1): 178-196.
[45] YIN P, LOU Y, HE Q, et al. Minimization of L1−2 for compressed sensing[J]. SIAM Journal on Scientific Computing, 2015, 37(1): A536-A563.
[46] ZENG L, YU P, PONG T K. Analysis and Algorithms for Some Compressed Sensing Models Based on L1/L2 Minimization[J]. SIAM Journal on Optimization, 2021, 31(2): 1576-1603.
[47] TAO M. Minimization of L1 Over L2 for Sparse Signal Recovery with Convergence Guarantee[J]. SIAM Journal on Scientific Computing, 2022, 44(2): A770-A797.
[48] VAVASIS S A. Derivation of Compressive Sensing Theorems from the Spherical Section Property[J]. University of Waterloo, CO, 2009, 769.
[49] ZHANG Y. Theory of Compressive Sensing via L1-Minimization: A Non-RIP Analysis and Extensions[J]. Journal of the Operations Research Society of China, 2013, 1(1): 79-105.
[50] ZHANG S, XIN J. Minimization of Transformed L1 Penalty: Theory, Difference of Convex Function Algorithm, and Robust Application in Compressed Sensing[J]. Mathematical Programming, 2018, 169: 307-336.
[51] FANNJIANG A, LIAO W. Coherence Pattern–Guided Compressive Sensing with Unresolved Grids[J/OL]. SIAM Journal on Imaging Sciences, 2012, 5(1): 179-202. https://doi.org/10.1137/110838509.
[52] OPTIMIZATION G. Gurobi Optimizer Reference Manual[J]. URL: http://www. gurobi. com, 2015.
修改评论