中文版 | English
题名

高导热低介电损耗聚合物基复合材料的设计与制备

其他题名
DESIGN AND PREPARATION OF POLYMER BASED COMPOSITES WITH HIGH THERMAL CONDUCTIVITY AND LOW DIELECTRIC LOSS
姓名
姓名拼音
XU Jie
学号
12132682
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
0856 材料与化工
导师
KE WANG
导师单位
系统设计与智能制造学院
论文答辩日期
2023-05-18
论文提交日期
2023-06-29
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

随着微电子集成技术的进步,电子设备中的热管理也变得越来越重要。在电子封装系统中,聚合物基复合材料得到了广泛的应用,如封装基板、印刷电路板、模塑料等。传统聚合物基复合材料的热导率低、热膨胀系数和介电损耗高,不能满足高性能电子设备的要求。因此研制高导热、低介电损耗的聚合物基复合材料十分必要并充满挑战。本工作选择高导热的氮化硼(BN)、流动性好的球形氧化铝(Al2O3)作为填料,以低介电损耗的改性聚苯醚(PPO)作为树脂基体,设计、制备、表征了兼具高导热、低热膨胀和超低介电损耗等性能的聚合物基复合材料。研究了多个对材料性能有影响的因素,并对相关机理进行了探讨。主要内容如下:

本工作以片状氮化硼为导热填料,三烯丙基异氰脲酸酯(TAIC)交联的PPO为树脂基体,制备了单一填料体系的PPO复合材料。研究结果表明,复合材料的热导率在氮化硼含量为40wt%(25.3v%)时达到1.26 W·m-1K-1,接近纯PPO树脂基体的6倍。此时的介电损耗为0.0021,热膨胀系数为65.3 ppm/℃,分别显著低于树脂基体(0.0035和89.6 ppm/℃)。为了解决填料的分散以及聚合物基体的界面相容性问题,本文采用多巴胺和硅烷偶联剂作为填料的表面改性剂,设计了效果较好的改性方案。

为了解决单一填料体系带来的高填充量时粘度高、导热性能提升有限、制备成本高等问题,本工作通过氮化硼和氧化铝混杂的方式制备了混杂填料体系的复合材料。另外,将树脂基体换成了介电损耗更低的不饱和烯烃共聚物(Ricon 100)交联的PPO。研究结果表明,随着混杂填料体积分数增加,球形氧化铝和片状氮化硼相互协作,构建了大量导热通路,更加有效地提高了材料的热导率,降低了热膨胀系数和介电损耗。当BN:Al2O3的体积比为1:4时且总体积分数为50v%时,热导率为1.45 W·m-1K-1,热膨胀系数为48.1 ppm/℃,介电损耗为0.0012。总之,复合材料的高导热、低热膨胀和超低介电损耗性能可以通过不同填料之间的混杂在较低填料总量的情况下同时实现。

其他摘要

With the advancement of microelectronics integration technology, thermal management in electronic equipment is becoming more and more important. In electronic packaging systems, polymer-based composites have been widely used, such as packaging substrates, printed circuit boards, molding compounds, etc. Traditional polymer-based composites have low thermal conductivity, high thermal expansion and high dielectric loss, which cannot meet the requirements of high performance electronic devices. Therefore, it is necessary and challenging to develop polymer-based composites with high thermal conductivity and low dielectric loss. In this work, polymer-based composites with high thermal conductivity, low thermal expansion and ultra-low dielectric loss were designed, prepared and characterized with high thermal conductive flake boron nitride and high fluidity spherical alumina as the fillers, modified polyphenylene oxide (PPO) with low dielectric loss as the resin matrix. The factors that influencing materials properties were studied and the related mechanisms were explored. The main contents are as follows:

A PPO composite system with single type of filler was prepared by using flake boron nitride as the thermally conductive filler and PPO crosslinked with TAIC as the resin matrix. With 40wt% (25.3v%) of BN, the thermal conductivity of the composites achieved at 1.26 W·m-1K-1, which is almost 6 times of that of pure PPO resin. Meanwhile, the dielectric loss and the coefficient of thermal expansion (CTE) decreased to 0.0021 and 65.3 ppm/, respectively, which are much lower than that of pure PPO (0.0035 and 85.6 ppm/). In order to improve the dispersion of fillers and the interfacial compatibility between fillers and the matrix, dopamine and silane coupling agents were applied as modification reagents. A modification scheme with good effect was designed.

To solve the problems of high viscosity caused by high filler loading, limited improvement of thermal conductivity and high cost of single filler system , hybrid systems were prepared by using both boron nitride and alumina as the fillers. In addition, the resin matrix was replaced an unsaturated olefin copolymer (Ricon 100) crosslinked PPO with lower dielectric loss. Along with the increase of filler volume fraction, spherical alumina and flake boron nitride synergistically built plenty of thermal conducting paths, which more effectively enhanced thermal conductivity while further lowered down CTE and dielectric loss of the material. When the volume ratio of BN/Alumina is 1:4 and total filler content is 50v%, the thermal conductivity reached 1.45 W·m-1K-1, while the CTE and dielectric loss were low as 48.1 ppm/and 0.0012, respectively. In summary, high thermal conductivity, very-low thermal expansion and ultra-low dielectric loss of composites can be simultaneously achieved at relatively low overall filler content through optimization of hybrid filler systems.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2023-06
参考文献列表

[1] HUANG X, IIZUKA T, JIANG P, et al. Role of Interface on the Thermal Conductivity of Highly Filled Dielectric Epoxy/AlN Composites[J]. The Journal of Physical Chemistry C, 2012, 116(25): 13629–13639.
[2] FENG C P, BAI L, BAO R-Y, et al. Superior thermal interface materials for thermal Management[J]. Composites Communications, 2019, 12: 80–85.
[3] YANG X, LIANG C, MA T, et al. A review on thermally conductive polymeric composites: Classification, measurement, model and equations, mechanism and fabrication Methods[J]. Advanced Composites and Hybrid Materials, 2018, 1(2): 207–230.
[4] 倪荣凤. 导热绝缘聚合物基复合材料的制备与性能研究[D/OL]. 南京理工大学, 2019.
[5] HUANG X, JIANG P, TANAKA T. A review of dielectric polymer composites with high thermal conductivity[J]. IEEE Electrical Insulation Magazine, 2011, 27(4): 8–16.
[6] 肖超. 三维导热网络的构筑及其环氧树脂复合材料性能研究[D/OL]. 中国科学技术大学, 2020.
[7] 王艾戎, 龚莹. 散热型挠性线路板[J]. 印制电路信息, 2005(05): 42–45.
[8] 杜伯学, 孔晓晓, 肖萌, 等. 高导热聚合物基复合材料研究进展[J]. 电工技术学报, 2018, 33(14): 3149–3159.
[9] 吴宇明, 虞锦洪, 曹勇, 等. 高导热低填量聚合物基复合材料研究进展[J]. 复合材料学报, 2018, 35(4): 760–766.
[10] BURGER N, LAACHACHI A, FERRIOL M, et al. Review of thermal conductivity in composites: Mechanisms, parameters and Theory[J]. Progress in Polymer Science, 2016, 61: 1–28.
[11] TONG X C. Thermally Conductive Polymer Matrix Composites[M/OL]//TONG X C. Advanced Materials for Thermal Management of Electronic Packaging. New York, NY: Springer New York, 2011: 201–232.
[12] CHEN H, GINZBURG V V, YANG J, et al. Thermal conductivity of Polymer-based composites: Fundamentals and Applications[J]. Progress in Polymer Science, 2016, 59: 41–85.
[13] ZHENG Q, HAO M, MIAO R, et al. Advances in thermal conductivity for energy applications: a review[J]. Progress in Energy, 2021, 3(1): 012002.
[14] BAI X, ZHANG C, ZENG X, et al. Recent progress in thermally conductive polymer/boron nitride composites by constructing three-dimensional Networks[J]. Composites Communications, 2021, 24: 100650.
[15] GU J. High thermal conductivity graphite nanoplatelet/UHMWPE Nanocomposites[J]. RSC Advances, 2015: 6.
[16] 邹德晓. 微纳多级填料的制备与导热绝缘环氧复合材料的研究[D/OL]. 上海交通大学, 2019.
[17] FELSKE J D. Effective thermal conductivity of composite spheres in a continuous medium with contact Resistance[J]. International Journal of Heat and Mass Transfer, 2004, 47(14–16): 3453–3461.
[18] HASSELMAN D P H, JOHNSON L F. Effective Thermal Conductivity of Composites with Interfacial Thermal Barrier Resistance[J]. Journal of Composite Materials, 1987, 21(6): 508–515.
[19] PROGELHOF R C, THRONE J L, RUETSCH R R. Methods for predicting the thermal conductivity of composite systems: A Review[J]. Polymer Engineering and Science, 1976, 16(9): 615–625.
[20] DAVIS H T, VALENCOURT L R, JOHNSON C E. Transport Processes in Composite Media[J]. Journal of the American Ceramic Society, 1975, 58(9–10): 446–452.
[21] AFFDL J C H, KARDOS J L. The Halpin-Tsai equations: A Review[J]. Polymer Engineering and Science, 1976, 16(5): 344–352.
[22] RUSSELL H W. PRINCIPLES OF HEAT FLOW IN POROUS INSULATORS[J]. Journal of the American Ceramic Society, 1935, 18(1–12): 1–5.
[23] AGARI Y, UNO T. Estimation on thermal conductivities of filled polymers[J]. Journal of Applied Polymer Science, 1986, 32(7): 5705–5712.
[24] AHN K, KIM K, KIM M, et al. Fabrication of silicon Carbonitride-covered boron nitride/Nylon 6,6 composite for enhanced thermal conductivity by melt Process[J]. Ceramics International, 2015, 41(2): 2187–2195.
[25] HAMILTON R L, CROSSER O K. Thermal Conductivity of Heterogeneous Two-Component Systems[J]. Industrial & Engineering Chemistry Fundamentals, 1962, 1(3): 187–191.
[26] KUMLUTAS D. Thermal conductivity of particle filled polyethylene composite Materials[J]. Composites Science and Technology, 2003, 63(1): 113–117.
[27] ZHOU W, WANG C, AI T, et al. A novel Fiber-reinforced polyethylene composite with added silicon nitride particles for enhanced thermal Conductivity[J]. Composites Part A: Applied Science and Manufacturing, 2009, 40(6–7): 830–836.
[28] KIM S Y, NOH Y J, YU J. Thermal conductivity of graphene nanoplatelets filled composites fabricated by Solvent-free processing for the excellent filler dispersion and a theoretical approach for the composites containing the geometrized Fillers[J]. Composites Part A: Applied Science and Manufacturing, 2015, 69: 219–225.
[29] HA S M, LEE H L, LEE S-G, et al. Thermal conductivity of graphite filled liquid crystal polymer composites and theoretical Predictions[J]. Composites Science and Technology, 2013, 88: 113–119.
[30] CHEN H, GINZBURG V V, YANG J, et al. Thermal conductivity of Polymer-based composites: Fundamentals and Applications[J]. Progress in Polymer Science, 2016, 59: 41–85.
[31] 徐林炜. AlN粉末的水解行为及抗水解性能研究[D/OL]. 南昌大学, 2010.
[32] CAO L, WANG J, DONG J, et al. Preparation of highly thermally conductive and electrically insulating PI/BNNSs nanocomposites by hot-pressing self-assembled PI/BNNSs Microspheres[J]. Composites Part B: Engineering, 2020, 188: 107882.
[33] REN L. Spray-assisted assembled spherical boron nitride as fillers for polymers with enhanced thermally Conductivity[J]. Chemical Engineering Journal, 2019: 10.
[34] JIANG H, MATETI S, CAI Q, et al. Quasi-isotropic thermal conductivity of polymer films enhanced by binder-free boron nitride Spheres[J]. Composites Science and Technology, 2022, 230: 109769.
[35] CHEN Y, CHEN J, ZHANG Y, et al. Flexible Fiber Membrane Based on Carbon Nanotube and Polyurethane with High Thermal Conductivity[J]. Nanomaterials, 2021, 11(10): 2504.
[36] ZENG X, SUN J, YAO Y, et al. A Combination of Boron Nitride Nanotubes and Cellulose Nanofibers for the Preparation of a Nanocomposite with High Thermal Conductivity[J]. ACS Nano, 2017, 11(5): 5167–5178.
[37] GE M, ZHANG J, ZHAO C, et al. Effect of hexagonal boron nitride on the thermal and dielectric properties of polyphenylene ether resin for High-frequency copper clad Laminates[J]. Materials & Design, 2019, 182: 108028.
[38] WARZOHA R J, FLEISCHER A S. Heat flow at nanoparticle Interfaces[J]. Nano Energy, 2014, 6: 137–158.
[39] XU Y, CHUNG D D L. Increasing the thermal conductivity of boron nitride and aluminum nitride particle Epoxy-matrix composites by particle surface Treatments[J]. Composite Interfaces, 2000, 7(4): 243–256.
[40] HIRANO H, KADOTA J, YAMASHITA T, et al. Treatment Of Inorganic Filler Surface By Silane-Coupling Agent: Investigation Of Treatment Condition And Analysis Of Bonding State Of Reacted Agent[J/OL]. 2012. Zenodo, 2012
[2023–02–07].
[41] TAN F, QIAO X, CHEN J, et al. Effects of coupling agents on the properties of Epoxy-based electrically conductive Adhesives[J]. International Journal of Adhesion and Adhesives, 2006, 26(6): 406–413.
[42] LEE B, DAI G. Influence of interfacial modification on the thermal conductivity of polymer Composites[J]. Journal of Materials Science, 2009, 44(18): 4848–4855.
[43] CHEN H, GINZBURG V V, YANG J, et al. Thermal conductivity of Polymer-based composites: Fundamentals and Applications[J]. Progress in Polymer Science, 2016, 59: 41–85.
[44] FENG C-P, BAI L, BAO R-Y, et al. Electrically insulating POE/BN elastomeric composites with high through-plane thermal conductivity fabricated by two-roll milling and hot Compression[J]. Advanced Composites and Hybrid Materials, 2018, 1(1): 160–167.
[45] 江玲玲. 高导热POM/氧化铝复合材料的制备及性能[D/OL]. 合肥工业大学, 2016.
[46] NEJAD S J, GOLZARY A. Investigation and modeling of the thermal conductivity of PP/clay nanocomposites and PP/MWCNT nanocomposites[J/OL]. e-Polymers, 2010, 10(1).
[47] 刘欣, 杨哲, 魏红林, 等. GE/AlN/CO-PA导热复合材料的制备与性能研究[J]. 塑料科技, 2018, 46(03): 55–61.
[48] ZHANG W, LU C, GE M, et al. Surface modified and Gradation-mixed Al2O3 as an effective filler for the polyphenylene oxide (PPO) insulative layer in copper clad Laminates[J]. Journal of Materials Science: Materials in Electronics, 2020, 31(23): 21602–21616.
[49] GE M, LI Q, ZHANG J, et al. Enhancing thermal conductivity of the insulating layer of High-frequency copper clad laminates via incorporating surface modified spherical hBN Fillers[J]. Journal of Materials Science: Materials in Electronics, 2020, 31(5): 4214–4223.
[50] 虞锦洪. 高导热聚合物基复合材料的制备与性能研究[D/OL]. 上海交通大学, 2012.
[51] OHASHI M, KAWAKAMI S, YOKOGAWA Y, et al. Spherical Aluminum Nitride Fillers for Heat-Conducting Plastic Packages[J]. Journal of the American Ceramic Society, 2005, 88(9): 2615–2618.
[52] 田勇. 覆铜板用聚苯醚/环氧树脂体系研究[D/OL]. 华南理工大学, 2006.
[53] YANG N, XU C, HOU J, et al. Preparation and properties of thermally conductive polyimide/boron nitride Composites[J]. RSC Advances, 2016, 6(22): 18279–18287.
[54] GU J, ZHANG Q, DANG J, et al. Thermal conductivity epoxy resin composites filled with boron nitride: THERMAL CONDUCTIVITY EPOXY RESIN COMPOSITES[J]. Polymers for Advanced Technologies, 2012, 23(6): 1025–1028.
[55] 周芳, 蓝桂美, 胡居花, 等. 环氧模塑料玻璃化温度(T_g)的测定方法及其影响因素[J]. 电子工业专用设备, 2009, 38(7): 1-6+35.
[56] IYER S, DETWILER A, PATEL S, et al. Control of coefficient of thermal expansion in elastomers using boron Nitride[J]. Journal of Applied Polymer Science, 2006, 102(6): 5153–5161.
[57] 苏尧天. 氧化石墨烯改性聚合物基柔性高介电材料的制备及其在传感领域的应用[D/OL]. 北京化工大学, 2022.
[58] ARAKI H, KIUCHI Y, SHIMADA A, et al. Low Df Polyimide with Photosensitivity for High Frequency Applications[J]. Journal of Photopolymer Science and Technology, 2020, 33(2): 165–170.
[59] ZIMMERMANN-PTACEK J, MUGGLI M, WILDHACK S, et al. Thermal, dielectric, and mechanical properties of h-BN-filled PTFE Composites[J]. Journal of Applied Polymer Science, 2018, 135(44): 46859.
[60] LIU Z, LI J, LIU X. Novel Functionalized BN Nanosheets/Epoxy Composites with Advanced Thermal Conductivity and Mechanical Properties[J]. ACS Applied Materials & Interfaces, 2020, 12(5): 6503–6515.
[61] YANG D, NI Y, KONG X, et al. Mussel-inspired modification of boron nitride for natural rubber composites with high thermal conductivity and low dielectric Constant[J]. Composites Science and Technology, 2019, 177: 18–25.
[62] LI R, YANG X, LI J, et al. Review on polymer composites with high thermal conductivity and low dielectric properties for electronic Packaging[J]. Materials Today Physics, 2022, 22: 100594.
[63] JI C, WANG Y, YE Z, et al. Ice-Templated MXene/Ag–Epoxy Nanocomposites as High-Performance Thermal Management Materials[J]. ACS Applied Materials & Interfaces, 2020, 12(21): 24298–24307.
[64] CHEN J, HUANG X, ZHU Y, et al. Cellulose Nanofiber Supported 3D Interconnected BN Nanosheets for Epoxy Nanocomposites with Ultrahigh Thermal Management Capability[J]. Advanced Functional Materials, 2017, 27(5): 1604754.
[65] JIAO J, CUI Y, XIA Y. Improved thermal conductivity of epoxy composites prepared with a mixed filler of multiwalled carbon nanotubes and aluminum nitride Particles[J]. High Performance Polymers, 2017, 29(4): 484–492.
[66] YILDIZ G, AKKOYUN M. Thermal and electrical properties of aluminum nitride/boron nitride filled polyamide 6 hybrid polymer Composites[J]. Journal of Applied Polymer Science, 2021, 138(22): 50516.
[67] DUAN G, CAO Y, QUAN J, et al. Bioinspired construction of BN@polydopamine@Al2O3 fillers for preparation of a polyimide dielectric composite with enhanced thermal conductivity and breakdown Strength[J]. Journal of Materials Science, 2020, 55(19): 8170–8184.
[68] GU J, GUO Y, YANG X, et al. Synergistic improvement of thermal conductivities of polyphenylene sulfide composites filled with boron nitride hybrid Fillers[J]. Composites Part A: Applied Science and Manufacturing, 2017, 95: 267–273.

所在学位评定分委会
材料与化工
国内图书分类号
TB333
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/544593
专题工学院_系统设计与智能制造学院
推荐引用方式
GB/T 7714
徐杰. 高导热低介电损耗聚合物基复合材料的设计与制备[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132682-徐杰-系统设计与智能制(4280KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[徐杰]的文章
百度学术
百度学术中相似的文章
[徐杰]的文章
必应学术
必应学术中相似的文章
[徐杰]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。