[1] HUANG X, IIZUKA T, JIANG P, et al. Role of Interface on the Thermal Conductivity of Highly Filled Dielectric Epoxy/AlN Composites[J]. The Journal of Physical Chemistry C, 2012, 116(25): 13629–13639.
[2] FENG C P, BAI L, BAO R-Y, et al. Superior thermal interface materials for thermal Management[J]. Composites Communications, 2019, 12: 80–85.
[3] YANG X, LIANG C, MA T, et al. A review on thermally conductive polymeric composites: Classification, measurement, model and equations, mechanism and fabrication Methods[J]. Advanced Composites and Hybrid Materials, 2018, 1(2): 207–230.
[4] 倪荣凤. 导热绝缘聚合物基复合材料的制备与性能研究[D/OL]. 南京理工大学, 2019.
[5] HUANG X, JIANG P, TANAKA T. A review of dielectric polymer composites with high thermal conductivity[J]. IEEE Electrical Insulation Magazine, 2011, 27(4): 8–16.
[6] 肖超. 三维导热网络的构筑及其环氧树脂复合材料性能研究[D/OL]. 中国科学技术大学, 2020.
[7] 王艾戎, 龚莹. 散热型挠性线路板[J]. 印制电路信息, 2005(05): 42–45.
[8] 杜伯学, 孔晓晓, 肖萌, 等. 高导热聚合物基复合材料研究进展[J]. 电工技术学报, 2018, 33(14): 3149–3159.
[9] 吴宇明, 虞锦洪, 曹勇, 等. 高导热低填量聚合物基复合材料研究进展[J]. 复合材料学报, 2018, 35(4): 760–766.
[10] BURGER N, LAACHACHI A, FERRIOL M, et al. Review of thermal conductivity in composites: Mechanisms, parameters and Theory[J]. Progress in Polymer Science, 2016, 61: 1–28.
[11] TONG X C. Thermally Conductive Polymer Matrix Composites[M/OL]//TONG X C. Advanced Materials for Thermal Management of Electronic Packaging. New York, NY: Springer New York, 2011: 201–232.
[12] CHEN H, GINZBURG V V, YANG J, et al. Thermal conductivity of Polymer-based composites: Fundamentals and Applications[J]. Progress in Polymer Science, 2016, 59: 41–85.
[13] ZHENG Q, HAO M, MIAO R, et al. Advances in thermal conductivity for energy applications: a review[J]. Progress in Energy, 2021, 3(1): 012002.
[14] BAI X, ZHANG C, ZENG X, et al. Recent progress in thermally conductive polymer/boron nitride composites by constructing three-dimensional Networks[J]. Composites Communications, 2021, 24: 100650.
[15] GU J. High thermal conductivity graphite nanoplatelet/UHMWPE Nanocomposites[J]. RSC Advances, 2015: 6.
[16] 邹德晓. 微纳多级填料的制备与导热绝缘环氧复合材料的研究[D/OL]. 上海交通大学, 2019.
[17] FELSKE J D. Effective thermal conductivity of composite spheres in a continuous medium with contact Resistance[J]. International Journal of Heat and Mass Transfer, 2004, 47(14–16): 3453–3461.
[18] HASSELMAN D P H, JOHNSON L F. Effective Thermal Conductivity of Composites with Interfacial Thermal Barrier Resistance[J]. Journal of Composite Materials, 1987, 21(6): 508–515.
[19] PROGELHOF R C, THRONE J L, RUETSCH R R. Methods for predicting the thermal conductivity of composite systems: A Review[J]. Polymer Engineering and Science, 1976, 16(9): 615–625.
[20] DAVIS H T, VALENCOURT L R, JOHNSON C E. Transport Processes in Composite Media[J]. Journal of the American Ceramic Society, 1975, 58(9–10): 446–452.
[21] AFFDL J C H, KARDOS J L. The Halpin-Tsai equations: A Review[J]. Polymer Engineering and Science, 1976, 16(5): 344–352.
[22] RUSSELL H W. PRINCIPLES OF HEAT FLOW IN POROUS INSULATORS[J]. Journal of the American Ceramic Society, 1935, 18(1–12): 1–5.
[23] AGARI Y, UNO T. Estimation on thermal conductivities of filled polymers[J]. Journal of Applied Polymer Science, 1986, 32(7): 5705–5712.
[24] AHN K, KIM K, KIM M, et al. Fabrication of silicon Carbonitride-covered boron nitride/Nylon 6,6 composite for enhanced thermal conductivity by melt Process[J]. Ceramics International, 2015, 41(2): 2187–2195.
[25] HAMILTON R L, CROSSER O K. Thermal Conductivity of Heterogeneous Two-Component Systems[J]. Industrial & Engineering Chemistry Fundamentals, 1962, 1(3): 187–191.
[26] KUMLUTAS D. Thermal conductivity of particle filled polyethylene composite Materials[J]. Composites Science and Technology, 2003, 63(1): 113–117.
[27] ZHOU W, WANG C, AI T, et al. A novel Fiber-reinforced polyethylene composite with added silicon nitride particles for enhanced thermal Conductivity[J]. Composites Part A: Applied Science and Manufacturing, 2009, 40(6–7): 830–836.
[28] KIM S Y, NOH Y J, YU J. Thermal conductivity of graphene nanoplatelets filled composites fabricated by Solvent-free processing for the excellent filler dispersion and a theoretical approach for the composites containing the geometrized Fillers[J]. Composites Part A: Applied Science and Manufacturing, 2015, 69: 219–225.
[29] HA S M, LEE H L, LEE S-G, et al. Thermal conductivity of graphite filled liquid crystal polymer composites and theoretical Predictions[J]. Composites Science and Technology, 2013, 88: 113–119.
[30] CHEN H, GINZBURG V V, YANG J, et al. Thermal conductivity of Polymer-based composites: Fundamentals and Applications[J]. Progress in Polymer Science, 2016, 59: 41–85.
[31] 徐林炜. AlN粉末的水解行为及抗水解性能研究[D/OL]. 南昌大学, 2010.
[32] CAO L, WANG J, DONG J, et al. Preparation of highly thermally conductive and electrically insulating PI/BNNSs nanocomposites by hot-pressing self-assembled PI/BNNSs Microspheres[J]. Composites Part B: Engineering, 2020, 188: 107882.
[33] REN L. Spray-assisted assembled spherical boron nitride as fillers for polymers with enhanced thermally Conductivity[J]. Chemical Engineering Journal, 2019: 10.
[34] JIANG H, MATETI S, CAI Q, et al. Quasi-isotropic thermal conductivity of polymer films enhanced by binder-free boron nitride Spheres[J]. Composites Science and Technology, 2022, 230: 109769.
[35] CHEN Y, CHEN J, ZHANG Y, et al. Flexible Fiber Membrane Based on Carbon Nanotube and Polyurethane with High Thermal Conductivity[J]. Nanomaterials, 2021, 11(10): 2504.
[36] ZENG X, SUN J, YAO Y, et al. A Combination of Boron Nitride Nanotubes and Cellulose Nanofibers for the Preparation of a Nanocomposite with High Thermal Conductivity[J]. ACS Nano, 2017, 11(5): 5167–5178.
[37] GE M, ZHANG J, ZHAO C, et al. Effect of hexagonal boron nitride on the thermal and dielectric properties of polyphenylene ether resin for High-frequency copper clad Laminates[J]. Materials & Design, 2019, 182: 108028.
[38] WARZOHA R J, FLEISCHER A S. Heat flow at nanoparticle Interfaces[J]. Nano Energy, 2014, 6: 137–158.
[39] XU Y, CHUNG D D L. Increasing the thermal conductivity of boron nitride and aluminum nitride particle Epoxy-matrix composites by particle surface Treatments[J]. Composite Interfaces, 2000, 7(4): 243–256.
[40] HIRANO H, KADOTA J, YAMASHITA T, et al. Treatment Of Inorganic Filler Surface By Silane-Coupling Agent: Investigation Of Treatment Condition And Analysis Of Bonding State Of Reacted Agent[J/OL]. 2012. Zenodo, 2012
[2023–02–07].
[41] TAN F, QIAO X, CHEN J, et al. Effects of coupling agents on the properties of Epoxy-based electrically conductive Adhesives[J]. International Journal of Adhesion and Adhesives, 2006, 26(6): 406–413.
[42] LEE B, DAI G. Influence of interfacial modification on the thermal conductivity of polymer Composites[J]. Journal of Materials Science, 2009, 44(18): 4848–4855.
[43] CHEN H, GINZBURG V V, YANG J, et al. Thermal conductivity of Polymer-based composites: Fundamentals and Applications[J]. Progress in Polymer Science, 2016, 59: 41–85.
[44] FENG C-P, BAI L, BAO R-Y, et al. Electrically insulating POE/BN elastomeric composites with high through-plane thermal conductivity fabricated by two-roll milling and hot Compression[J]. Advanced Composites and Hybrid Materials, 2018, 1(1): 160–167.
[45] 江玲玲. 高导热POM/氧化铝复合材料的制备及性能[D/OL]. 合肥工业大学, 2016.
[46] NEJAD S J, GOLZARY A. Investigation and modeling of the thermal conductivity of PP/clay nanocomposites and PP/MWCNT nanocomposites[J/OL]. e-Polymers, 2010, 10(1).
[47] 刘欣, 杨哲, 魏红林, 等. GE/AlN/CO-PA导热复合材料的制备与性能研究[J]. 塑料科技, 2018, 46(03): 55–61.
[48] ZHANG W, LU C, GE M, et al. Surface modified and Gradation-mixed Al2O3 as an effective filler for the polyphenylene oxide (PPO) insulative layer in copper clad Laminates[J]. Journal of Materials Science: Materials in Electronics, 2020, 31(23): 21602–21616.
[49] GE M, LI Q, ZHANG J, et al. Enhancing thermal conductivity of the insulating layer of High-frequency copper clad laminates via incorporating surface modified spherical hBN Fillers[J]. Journal of Materials Science: Materials in Electronics, 2020, 31(5): 4214–4223.
[50] 虞锦洪. 高导热聚合物基复合材料的制备与性能研究[D/OL]. 上海交通大学, 2012.
[51] OHASHI M, KAWAKAMI S, YOKOGAWA Y, et al. Spherical Aluminum Nitride Fillers for Heat-Conducting Plastic Packages[J]. Journal of the American Ceramic Society, 2005, 88(9): 2615–2618.
[52] 田勇. 覆铜板用聚苯醚/环氧树脂体系研究[D/OL]. 华南理工大学, 2006.
[53] YANG N, XU C, HOU J, et al. Preparation and properties of thermally conductive polyimide/boron nitride Composites[J]. RSC Advances, 2016, 6(22): 18279–18287.
[54] GU J, ZHANG Q, DANG J, et al. Thermal conductivity epoxy resin composites filled with boron nitride: THERMAL CONDUCTIVITY EPOXY RESIN COMPOSITES[J]. Polymers for Advanced Technologies, 2012, 23(6): 1025–1028.
[55] 周芳, 蓝桂美, 胡居花, 等. 环氧模塑料玻璃化温度(T_g)的测定方法及其影响因素[J]. 电子工业专用设备, 2009, 38(7): 1-6+35.
[56] IYER S, DETWILER A, PATEL S, et al. Control of coefficient of thermal expansion in elastomers using boron Nitride[J]. Journal of Applied Polymer Science, 2006, 102(6): 5153–5161.
[57] 苏尧天. 氧化石墨烯改性聚合物基柔性高介电材料的制备及其在传感领域的应用[D/OL]. 北京化工大学, 2022.
[58] ARAKI H, KIUCHI Y, SHIMADA A, et al. Low Df Polyimide with Photosensitivity for High Frequency Applications[J]. Journal of Photopolymer Science and Technology, 2020, 33(2): 165–170.
[59] ZIMMERMANN-PTACEK J, MUGGLI M, WILDHACK S, et al. Thermal, dielectric, and mechanical properties of h-BN-filled PTFE Composites[J]. Journal of Applied Polymer Science, 2018, 135(44): 46859.
[60] LIU Z, LI J, LIU X. Novel Functionalized BN Nanosheets/Epoxy Composites with Advanced Thermal Conductivity and Mechanical Properties[J]. ACS Applied Materials & Interfaces, 2020, 12(5): 6503–6515.
[61] YANG D, NI Y, KONG X, et al. Mussel-inspired modification of boron nitride for natural rubber composites with high thermal conductivity and low dielectric Constant[J]. Composites Science and Technology, 2019, 177: 18–25.
[62] LI R, YANG X, LI J, et al. Review on polymer composites with high thermal conductivity and low dielectric properties for electronic Packaging[J]. Materials Today Physics, 2022, 22: 100594.
[63] JI C, WANG Y, YE Z, et al. Ice-Templated MXene/Ag–Epoxy Nanocomposites as High-Performance Thermal Management Materials[J]. ACS Applied Materials & Interfaces, 2020, 12(21): 24298–24307.
[64] CHEN J, HUANG X, ZHU Y, et al. Cellulose Nanofiber Supported 3D Interconnected BN Nanosheets for Epoxy Nanocomposites with Ultrahigh Thermal Management Capability[J]. Advanced Functional Materials, 2017, 27(5): 1604754.
[65] JIAO J, CUI Y, XIA Y. Improved thermal conductivity of epoxy composites prepared with a mixed filler of multiwalled carbon nanotubes and aluminum nitride Particles[J]. High Performance Polymers, 2017, 29(4): 484–492.
[66] YILDIZ G, AKKOYUN M. Thermal and electrical properties of aluminum nitride/boron nitride filled polyamide 6 hybrid polymer Composites[J]. Journal of Applied Polymer Science, 2021, 138(22): 50516.
[67] DUAN G, CAO Y, QUAN J, et al. Bioinspired construction of BN@polydopamine@Al2O3 fillers for preparation of a polyimide dielectric composite with enhanced thermal conductivity and breakdown Strength[J]. Journal of Materials Science, 2020, 55(19): 8170–8184.
[68] GU J, GUO Y, YANG X, et al. Synergistic improvement of thermal conductivities of polyphenylene sulfide composites filled with boron nitride hybrid Fillers[J]. Composites Part A: Applied Science and Manufacturing, 2017, 95: 267–273.
修改评论