中文版 | English
题名

氮化镓等离子体原子选择刻蚀抛光方法研究

其他题名
FUNDAMENTAL STUDY ON PLASMA-BASED ATOM-SELECTIVE ETCHING OF GAN
姓名
姓名拼音
ZHANG Linfeng
学号
11930917
学位类型
博士
学位专业
080101 一般力学与力学基础
学科门类/专业学位类别
08 工学
导师
邓辉
导师单位
机械与能源工程系
外机构导师单位
南方科技大学
论文答辩日期
2023-05-11
论文提交日期
2023-06-29
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

氮化镓是一种具有优异电学性能的宽禁带半导体材料,在无线通信、固态照明、功率电子等领域拥有广阔的应用前景。为了实现氮化镓基器件的优异性能,需要得到表面光滑且无亚表面损伤的氮化镓晶圆。传统的氮化镓晶圆抛光方法无法同时兼顾表面质量和材料去除速率,因此,实现氮化镓晶圆的高效率无损伤抛光成为目前亟待解决的问题。等离子体原子选择刻蚀技术可以根据表面成键状态不同的原子间化学反应活化能的差异,而对其进行有选择的去除。作为一种非接触式的加工方法,等离子体原子选择刻蚀技术具有很高的材料去除速率,且不会向材料内部引入应力与损伤。本文在深入研究等离子体原子选择刻蚀机理与工艺的基础上,探究了实现原子选择刻蚀的关键因素,以及表面氧化物的抑制与去除策略,以期实现氮化镓晶圆的高效率无损伤抛光。本文的主要研究内容总结如下。
(1) 研究了基于磨粒的加工方法对氮化镓表面及亚表面质量的影响规律,研磨所形成的亚表面损伤层会损害材料的光学性能。通过比较有无亚表面损伤层对后续晶圆抛光过程的影响,证明了亚表面损伤层的存在是制约氮化镓抛光工艺效率的关键因素。
(2) 建立了大气电感耦合等离子体的多物理场仿真模型。研究了等离子体工艺参数对样品表面温度以及近表面样品表面流速分布的影响规律。通过等离子体刻蚀实验验证了仿真模型的可靠性,为大气等离子体加工提供了工艺指导。
(3) 研究了各项工艺参数对等离子体刻蚀氮化镓的影响规律,揭示了等离子体温度与活性粒子浓度是实现等离子体原子选择刻蚀的关键性因素。基于等离子体原子选择刻蚀技术实现了氮化镓的表面抛光,实现了93 μm/min的材料去除速率。氮化镓在抛光后具有良好的亚表面晶体结构,表明等离子体原子选择刻蚀是一种非破坏性的加工方法。
(4) 研究了大气电感耦合等离子体刻蚀GaN的热影响机制,揭示了氮化镓在高温下的分解机制以及材料缺陷在热刻蚀中的演变规律。分析了等离子体原子选择刻蚀中样品边缘塌陷的形成原因,并阐明了等离子体原子选择刻蚀中活性粒子刻蚀与热分解的协同作用机制。
(5) 分析了等离子体刻蚀后表面氧化物的形成原因,并提出了有效的氧化物抑制与去除策略。采用了降低炬管并持续通入冷却气体的方法,成功地抑制了表面氧化物的生长,使得表面氧化层的厚度降低至4 nm,表面粗糙度降低至Sa 0.55 nm。
本文对等离子体原子选择刻蚀抛光氮化镓的机理与关键技术进行了研究,揭示了实现氮化镓的等离子体原子选择刻蚀的关键因素,成功实现了氮化镓晶片的高效率无损伤抛光。本论文的研究结果将丰富和完善氮化镓晶圆抛光的理论基础与技术手段,推动氮化镓在半导体等高新技术领域的工程应用。

 

关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2023-06
参考文献列表

[1] 蔡翠红. 全球芯片半导体产业的竞争态势与中国机遇[J]. 人民论坛, 2022, (14): 92-6.
[2] 陈中妹. 中国在全球芯片产业贸易网络的地位及困境研究[D]. 长春: 吉林大学, 2022.
[3] 李月. 美国对华半导体出口管制的经济效应研究[D].常州: 常州大学, 2022.
[4] 张晏纶. 中美战略竞争下两岸半导体产业发展问题研究[D]. 北京: 北京大学, 2021.
[5] 李哲儒, 蒋随. 中美贸易摩擦下中国半导体产业发展策略[J]. 中国外资, 2021, No.493(22): 44-6.
[6] BURK A A, O'LOUGHLIN M J, SIERGIEJ R R, et al. SiC and GaN wide bandgap semiconductor materials and devices[J]. Solid-State Electronics, 1999, 43(8): 1459-64.
[7] SHIVANI, KAUR D, GHOSH A, et al. A strategic review on gallium oxide based power electronics: Recent progress and future prospects[J]. Materials Today Communications, 2022, 33: 104244.
[8] PEREZ G, MARéCHAL A, CHICOT G, et al. Diamond semiconductor performances in power electronics applications[J]. Diamond and Related Materials, 2020, 110: 108154.
[9] PIMPUTKAR S. 11-Gallium nitride[M]//FORNARI R. Single Crystals of Electronic Materials. Cambridge: Woodhead Publishing, 2019: 351-99.
[10] MATALLANA A, IBARRA E, LóPEZ I, et al. Power module electronics in HEV/EV applications: New trends in wide-bandgap semiconductor technologies and design aspects[J]. Renewable and Sustainable Energy Reviews, 2019, 113: 109264.
[11] ROCCAFORTE F, FIORENZA P, GRECO G, et al. Emerging trends in wide band gap semiconductors (SiC and GaN) technology for power devices[J]. Microelectronic Engineering, 2018, 187-188: 66-77.
[12] SAKTHI SURIYA RAJ J S, SIVARAMAN P, PREM P, et al. Wide Band Gap semiconductor material for electric vehicle charger[J]. Materials Today: Proceedings, 2021, 45: 852-6.
[13] 刘战辉. 氢化物气相外延GaN材料性质研究[D]. 南京: 南京大学, 2012.
[14] BHAT I. Physical properties of gallium nitride and related III–V nitrides[M]// BALIGA J. Wide Bandgap Semiconductor Power Devices. Cambridge: Woodhead Publishing, 2019: 43-77.
[15] KANE M H, AREFIN N. Gallium nitride (GaN) on silicon substrates for LEDs[M]. HUANG J, KUO H-C, SHEN S-C. Nitride Semiconductor Light-Emitting Diodes (LEDs) (Second Edition). Cambridge: Woodhead Publishing, 2018: 79-121.
[16] KANG M S, LEE C-H, PARK J B, et al. Gallium nitride nanostructures for light-emitting diode applications[J]. Nano Energy, 2012, 1(3): 391-400.
[17] LIU Z, CHONG W C, WONG K M, et al. GaN-based LED micro-displays for wearable applications[J]. Microelectronic Engineering, 2015, 148: 98-103.
[18] KELCHNER K M, DENBAARS S P, SPECK J S. Chapter 4 - GaN Laser Diodes on Nonpolar and Semipolar Planes[M]//COLEMAN J J, BRYCE A C, JAGADISH C. Semiconductors and Semimetals. Amsterdam: Elsevier, 2012: 149-82.
[19] HOU Y, ZHAO D, LIANG F, et al. Performance improvement of GaN-based blue and ultraviolet double quantum well laser diodes by using stepped-doped lower waveguide[J]. Materials Science in Semiconductor Processing, 2021, 121: 105355.
[20] FENG S, LIU Z, FENG L, et al. High-performance self-powered ultraviolet photodetector based on Ga2O3/GaN heterostructure for optical imaging[J]. Journal of Alloys and Compounds, 2023: 169274.
[21] WU W, LIU C, HAN L, et al. Wafer-scale high sensitive UV photodetectors based on novel AlGaN/n-GaN/p-GaN heterostructure HEMT[J]. Applied Surface Science, 2023, 618: 156618.
[22] VERMA J, VERMA A, PROTASENKO V, et al. Nitride LEDs based on quantum wells and quantum dots[M]//. HUANG J, KUO H-C, SHEN S-C. Nitride Semiconductor Light-Emitting Diodes (LEDs) (Second Edition). Cambridge: Woodhead Publishing, 2018: 377-413.
[23] NIFA I, LEROUX C, TORRES A, et al. Characterization and modeling of 2DEG mobility in AlGaN/AlN/GaN MIS-HEMT[J]. Microelectronic Engineering, 2019, 215.
[24] SYARANAMUAL G J, SASANGKA W A, MADE R I, et al. Role of two-dimensional electron gas (2DEG) in AlGaN/GaN high electron mobility transistor (HEMT) ON-state degradation[J]. Microelectronics Reliability, 2016, 64: 589-93.
[25] NIFA I, LEROUX C, TORRES A, et al. Characterization and modeling of 2DEG mobility in AlGaN/AlN/GaN MIS-HEMT[J]. Microelectronic Engineering, 2019, 215: 110976.
[26] 雷思琦. 氮化镓高电子迁移率晶体管射频微波器件的制备与研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.
[27] ZHANG S, WEI K, MA X H, et al. Millimeter-wave AlGaN/GaN HEMTs breakdown voltage enhancement by an air-bridge recessed source field plate (RSFP)[J]. Solid-State Electronics, 2019, 160.
[28] DAMMANN M, BAEUMLER M, POLYAKOV V, et al. Reliability of 100 nm AlGaN/GaN HEMTs for mm-wave applications[J]. Microelectronics Reliability, 2017, 76-77: 292-7.
[29] HUSNA HAMZA K, NIRMAL D. A review of GaN HEMT broadband power amplifiers[J]. AEU-International Journal of Electronics and Communications, 2020, 116: 153040.
[30] MARUSKA H, TIETJEN J. The preparation and properties of vapor-deposited single-crystalline GaN[J]. Applied Physics Letters, 1969, 15: 327-9.
[31] QIN H, LUAN X, FENG C. Mechanical, thermodynamic and electronic properties of wurtzite and zinc-blende GaN crystals[J]. Materials Letters, 2017, 10(12): 1419.
[32] ZHUANG D, EDGAR J H. Wet etching of GaN, AlN, and SiC: a review[J]. Materials Science and Engineering: R: Reports, 2005, 48(1): 1-46.
[33] YAO Y, SATO K, SUGAWARA Y, et al. Mechanism of molten KOH+NaOH etching of GaN revealed by the slopes of etch pits formed at threading dislocations[J]. Journal of Alloys and Compounds, 2022, 902: 163830.
[34] FREITAS J A, CULBERTSON J C, MAHADIK N A, et al. Homoepitaxial HVPE GaN: A potential substrate for high performance devices[J]. Journal of Crystal Growth, 2018, 500: 104-10.
[35] IWINSKA M, TAKEKAWA N, IVANOV V Y, et al. Crystal growth of HVPE-GaN doped with germanium[J]. Journal of Crystal Growth, 2017, 480: 102-7.
[36] IWINSKA M, SOCHACKI T, AMILUSIK M, et al. Homoepitaxial growth of HVPE-GaN doped with Si[J]. Journal of Crystal Growth, 2016, 456: 91-6.
[37] EHRENTRAUT D, BOCKOWSKI M. 15-High-pressure, high-temperature solution growth and ammonothermal synthesis of gallium nitride crystals[M]// RUDOLPH P. Handbook of Crystal Growth (Second Edition). Amsterdam: Elsevier, 2015: 577-619.
[38] ZAJAC M, KUCHARSKI R, GRABIANSKA K, et al. Basic ammonothermal growth of gallium nitride – State of the art, challenges, perspectives[J]. Progress in Crystal Growth and Characterization of Materials, 2018, 64(3): 63-74.
[39] WU X, HAO H, LI Z, et al. GaN crystals growth in the Na-Li-Ca flux by liquid phase epitaxy (LPE) technique[J]. Journal of Crystal Growth, 2019, 521: 30-3.
[40] GOSWAMI L, PANDEY R, GUPTA G. Epitaxial growth of GaN nanostructure by PA-MBE for UV detection application[J]. Applied Surface Science, 2018, 449: 186-92.
[41] HENTSCHEL R, GäRTNER J, WACHOWIAK A, et al. Surface morphology of AlGaN/GaN heterostructures grown on bulk GaN by MBE[J]. Journal of Crystal Growth, 2018, 500: 1-4.
[42] CHENG Y, LIU P, WU J, et al. High uniform growth of 4-inch GaN wafer via flow field optimization by HVPE[J]. Journal of Crystal Growth, 2016, 445: 24-9.
[43] BOCKOWSKI M, IWINSKA M, AMILUSIK M, et al. Doping in bulk HVPE-GaN grown on native seeds – highly conductive and semi-insulating crystals[J]. Journal of Crystal Growth, 2018, 499: 1-7.
[44] YOSHIMOTO M, HATANAKA A, ITOH H, et al. GaN growth on sapphire and 6H-SiC by metalorganic molecular beam epitaxy[J]. Journal of Crystal Growth, 1998, 188(1): 92-7.
[45] TANG J, LIANG T, SHI W, et al. The testing of stress-sensitivity in heteroepitaxy GaN/Si by Raman spectroscopy[J]. Applied Surface Science, 2011, 257(21): 8846-9.
[46] MYNBAEVA M G, KREMLEVA A V, KIRILENKO D A, et al. TEM study of defect structure of GaN epitaxial films grown on GaN/Al2O3 substrates with buried column pattern[J]. Journal of Crystal Growth, 2016, 445: 30-6.
[47] DADGAR A, SCHULZE F, ZETTLER T, et al. In situ measurements of strains and stresses in GaN heteroepitaxy and its impact on growth temperature[J]. Journal of Crystal Growth, 2004, 272(1): 72-5.
[48] PARK B-G, SARAVANA KUMAR R, MOON M-L, et al. Comparison of stress states in GaN films grown on different substrates: Langasite, sapphire and silicon[J]. Journal of Crystal Growth, 2015, 425: 149-53.
[49] LI C, LI Z, PENG D, et al. Growth of thin AlN nucleation layer and its impact on GaN-on-SiC heteroepitaxy[J]. Journal of Alloys and Compounds, 2020, 838: 155557.
[50] PAN L, DONG X, LI Z, et al. Influence of the AlN nucleation layer on the properties of AlGaN/GaN heterostructure on Si (1 1 1) substrates[J]. Applied Surface Science, 2018, 447: 512-7.
[51] YANG Q, LI Z, PENG D, et al. Growth of high quality GaN on (0001) 4H-SiC with an ultrathin AlN nucleation layer[J]. Journal of Crystal Growth, 2023, 607: 127107.
[52] MöLLER H-J. 18 - Wafer Processing[M]//RUDOLPH P. Handbook of Crystal Growth (Second Edition). Amsterdam: Elsevier, 2015: 715-55.
[53] LI S, FANG Z, CHEN H, et al. Defect influence on luminescence efficiency of GaN-based LEDs[J]. Materials Science in Semiconductor Processing, 2006, 9(1-3): 371-4.
[54] REN C X, ROUET-LEDUC B, GRIFFITHS J T, et al. Analysis of defect-related inhomogeneous electroluminescence in InGaN/GaN QW LEDs[J]. Superlattices and Microstructures, 2016, 99: 118-24.
[55] AIDA H, TAKEDA H, KIM S W, et al. Evaluation of subsurface damage in GaN substrate induced by mechanical polishing with diamond abrasives[J]. Applied Surface Science, 2014, 292(4): 531-6.
[56] AIDA H, TAKEDA H, DOI T. Analysis of mechanically induced subsurface damage and its removal by chemical mechanical polishing for gallium nitride substrate[J]. Precision Engineering, 2021, 67: 350-8.
[57] WEYHER J L, MüLLER S, GRZEGORY I, et al. Chemical polishing of bulk and epitaxial GaN[J]. Journal of Crystal Growth, 1997, 182(1): 17-22.
[58] AIDA H. 8-Chemical and physical mechanisms of CMP of gallium nitride[M]//BABU S. Advances in Chemical Mechanical Planarization (CMP) (Second Edition).Cambridge: Woodhead Publishing, 2022: 195-221.
[59] AIDA H, TAKEDA H, KOYAMA K, et al. Chemical mechanical polishing of gallium nitride with colloidal silica[J]. Journal of The Electrochemical Society, 2011, 158(12): H1206.
[60] WANG J, WANG T, PAN G, et al. Effects of catalyst concentration and ultraviolet intensity on chemical mechanical polishing of GaN[J]. Applied Surface Science, 2016, 378: 130-5.
[61] YU X, ZHANG B, WANG R, et al. Effect of photocatalysts on electrochemical properties and chemical mechanical polishing rate of GaN[J]. Materials Science in Semiconductor Processing, 2021, 121: 105387.
[62] ZHU Y, NIU X, HOU Z, et al. Effect and mechanism of oxidant on alkaline chemical mechanical polishing of gallium nitride thin films[J]. Materials Science in Semiconductor Processing, 2022, 138: 106272.
[63] GONG H, PAN G, ZHOU Y, et al. Investigation on the surface characterization of Ga-faced GaN after chemical-mechanical polishing[J]. Applied Surface Science, 2015, 338: 85-91.
[64] DONG Z, OU L, KANG R, et al. Photoelectrochemical mechanical polishing method for n-type gallium nitride[J]. CIRP Annals, 2019, 68(1): 205-8.
[65] HARA H, SANO Y, MIMURA H, et al. Damage-free planarization of 4H-SiC (0001) by catalyst-referred etching[J]. Materials Science Forum, 2007, 556-557: 749-51.
[66] OKAMOTO T, SANO Y, TACHIBANA K, et al. Dependence of process characteristics on atomic-Step density in catalyst-referred etching of 4H–SiC(0001) Surface[J]. Journal of Nanoscience and Nanotechnology, 2011, 11(4): 2928-30.
[67] MURATA J, SADAKUNI S, OKAMOTO T, et al. Structural and chemical characteristics of atomically smooth GaN surfaces prepared by abrasive-free polishing with Pt catalyst[J]. Journal of Crystal Growth, 2012, 349(1): 83-8.
[68] KIDA H, ISOHASHI A, INADA T, et al. High-efficiency planarization of GaN Wafers by catalyst-referred etching employing photoelectrochemical Oxidation[J]. ICPT, International Conference on Planarization/CMP Technology VDE, 2017: 11-3.
[69] MURATA J, OKAMOTO T, SADAKUNI S, et al. Atomically smooth gallium nitride surfaces prepared by chemical etching with platinum catalyst in water[J]. Journal of The Electrochemical Society, 2012, 159(4): H417-H20.
[70] DENG H, ENDO K, YAMAMURA K. Plasma-assisted polishing of gallium nitride to obtain a pit-free and atomically flat surface[J]. CIRP Annals - Manufacturing Technology, 2015, 64(1): 531-4.
[71] AIDA H, KIM S-W, IKEJIRI K, et al. Precise mechanical polishing of brittle materials with free diamond abrasives dispersed in micro–nano-bubble water[J]. Precision Engineering, 2015, 40: 81-6.
[72] GONG H, PAN G, ZOU C, et al. Investigation on the variation of the step-terrace structure on the surface of polished GaN wafer[J]. Surfaces and Interfaces, 2017, 6: 197-201.
[73] WANG J, WANG T, PAN G, et al. Effect of photocatalytic oxidation technology on GaN CMP[J]. Applied Surface Science, 2016, 361: 18-24.
[74] MURATA J, KUBOTA A, YAGI K, et al. Chemical planarization of GaN using hydroxyl radicals generated on a catalyst plate in H2O2 solution[J]. Journal of Crystal Growth, 2008, 310(7): 1637-41.
[75] TENDERO C, TIXIER C, TRISTANT P, et al. Atmospheric pressure plasmas: A review[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2006, 61(1): 2-30.
[76] GABBAR H A, DARDA S A, DAMIDEH V, et al. Comparative study of atmospheric pressure DC, RF, and microwave thermal plasma torches for waste to energy applications[J]. Sustainable Energy Technologies and Assessments, 2021, 47: 101447.
[77] JIANG X-Z, LIU Y-X, LU W-Q, et al. Influence of dual-frequency source powers on ion density and electron temperature in capacitively-coupled argon plasma[J]. Vacuum, 2012, 86(7): 881-4.
[78] BI Z-H, LIU Y-X, JIANG W, et al. A brief review of dual-frequency capacitively coupled discharges[J]. Current Applied Physics, 2011, 11(5, Supplement): S2-S8.
[79] YIN G, GAO S, LIU Z, et al. The discharge characteristics of low-pressure capacitively coupled argon plasma with Langmuir probe[J]. Physics Letters A, 2022, 426: 127910.
[80] TAYLOR H E. Chapter 3 - Inductively coupled plasmas[M]//TAYLOR H E. Inductively Coupled Plasma-Mass Spectrometry. San Diego; Academic Press. 2001: 15-27.
[81] MAKONNEN Y, BEAUCHEMIN D. Chapter 1 - The inductively coupled plasma as a source for optical emission spectrometry and mass spectrometry[M]//BEAUCHEMIN D. Sample Introduction Systems in ICP-MS and ICP-OES. Amsterdam: Elsevier, 2020: 1-55.
[82] MORI Y, YAMAMURA K, YAMAUCHI K, et al. Plasma CVM (Chemical Vaporization Machining): -A chemical machining method with equal performances to conventional mechanical methods from the sense of removal rates and spatial resolutions-[M]//IKAWA N, SHIMADA S, MORIWAKI T, et al. International Progress in Precision Engineering. London: Newnes, 1993: 78-87.
[83] NAKAHAMA Y, KANETSUKI N, FUNAKI T, et al. Etching characteristics of GaN by plasma chemical vaporization machining[J]. Surface and Interface Analysis, 2008, 40(12): 1566-70.
[84] YAMAMURA K, SHIMADA S, MORI Y. Damage-free improvement of thickness uniformity of quartz crystal wafer by plasma chemical vaporization machining[J]. CIRP Annals, 2008, 57(1): 567-70.
[85] FANARA C, SHORE P, NICHOLLS J R, et al. A new reactive atom plasma technology (RAPT) for precision machining: the etching of ULE® surfaces[J]. Advanced Engineering Materials, 2006, 8(10): 933-9.
[86] FISKE P S, VERMA Y, CHANG A, et al. Reactive atom plasma processing for lightweight SiC mirrors; proceedings of the frontiers in optics[C].2006,10. Rochester, New York: Optica Publishing Group, 2006.
[87] CASTELLI M, JOURDAIN R, MORANTZ P, et al. Rapid optical surface figuring using reactive atom plasma[J]. Precision Engineering, 2012, 36(3): 467-76.
[88] JOURDAIN R, CASTELLI M, SHORE P, et al. Reactive atom plasma (RAP) figuring machine for meter class optical surfaces[J]. Production Engineering, 2013, 7(6): 665-73.
[89] SUBRAHMANYAN P, GARDOPEE G, VERMA Y, et al. Fabrication of lightweight SiC aspheres using reactive atom plasma (RAP (TM))processing [J]. Proceedings of SPIE, 2007, 6666.
[90] 金会良. 大气等离子体抛光对超光滑表面的影响研究[D]. 哈尔滨: 哈尔滨工业大学, 2009.
[91] 王东方. 大气等离子体加工熔石英材料过程的若干影响因素研究[D]. 哈尔滨: 哈尔滨工业大学, 2011.
[92] 苏星. 大气等离子体射流炬设计及性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2016.
[93] 金会良. 大气等离子体去除熔石英损伤层过程中表面形成机理研究[D]. 哈尔滨:哈尔滨工业大学, 2014.
[94] 金江. 硅基材料的电感耦合等离子体射流加工技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2013.
[95] 辛强. 大气感应耦合等离子体射流特性与加工表面演变机理研究[D]. 哈尔滨: 哈尔滨工业大学, 2017.
[96] 苏星. 连续位相板大气等离子体加工与气囊抛光组合工艺研究[D]. 哈尔滨: 哈尔滨工业大学, 2020.
[97] JIN H, XIN Q, LI N, et al. The morphology and chemistry evolution of fused silica surface after Ar/CF4 atmospheric pressure plasma processing[J]. Applied Surface Science, 2013, 286: 405-11.
[98] 熊浩斌. 熔石英表面大气等离子体去损伤加工关键技术研究[D].长沙: 国防科学技术大学, 2015.
[99] 陈恒. 熔石英元件电感耦合等离子体加工关键工艺研究[D]. 长沙: 国防科学技术大学, 2016.
[100] 史宝鲁. SiC反射镜电弧增强等离子体加工关键技术研究[D]. 长沙: 国防科学技术大学, 2016.
[101] 戴作财. 电感耦合大气等离子体高效加工熔石英的关键技术研究[D]. 长沙: 国防科技大学, 2019.
[102] FANG Z, ZHANG Y, LI R, et al. An efficient approach for atomic-scale polishing of single-crystal silicon via plasma-based atom-selective etching[J]. International Journal of Machine Tools and Manufacture, 2020, 159: 103649.
[103] KAWAKAMI R, NIIBE M, NAKANO Y, et al. Effects of ultraviolet wavelength and intensity on AlGaN thin film surfaces irradiated simultaneously with CF4 plasma and ultraviolet[J]. Vacuum, 2019, 159: 45-50.
[104] KAWAKAMI R, NIIBE M, NAKANO Y, et al. Comparison between AlGaN surfaces etched by carbon tetrafluoride and argon plasmas: Effect of the fluorine impurities incorporated in the surface[J]. Vacuum, 2015, 119: 264-9.
[105] KIM H-S, YEOM G-Y, LEE J-W, et al. A study of GaN etch mechanisms using inductively coupled Cl2/Ar plasmas[J]. Thin Solid Films, 1999, 341(1): 180-3.
[106] HONG H F, CHAO C K, CHYI J I, et al. Reactive ion etching of GaN/InGaN using BCl3 plasma[J]. Materials Chemistry and Physics, 2003, 77(2): 411-5.
[107] RAWAL D S, ARORA H, AGARWAL V R, et al. GaN etch rate and surface roughness evolution in Cl2/Ar based inductively coupled plasma etching[J]. Thin Solid Films, 2012, 520(24): 7212-8.
[108] GARCíA-GUTIéRREZ R, RAMOS-CARRAZCO A, BERMAN-MENDOZA D, et al. Photoluminescence enhancement from GaN by beryllium doping[J]. Optical Materials, 2016, 60: 398-403.
[109] CAO D, LIU R, XIAO H, et al. Photoluminescence properties of etched GaN-based LEDs via UV-assisted electrochemical etching[J]. Materials Letters, 2017, 209: 555-7.
[110] GAO Q, LIU R, XIAO H, et al. Anodic etching of GaN based film with a strong phase-separated InGaN/GaN layer: Mechanism and properties[J]. Applied Surface Science, 2016, 387: 406-11.
[111] MOHANTY S, KHAN K, AHMADI E. N-polar GaN: Epitaxy, properties, and device applications[J]. Progress in Quantum Electronics, 2023, 87: 100450.
[112] LIN M E, SVERDLOV B N, MORKOç H. Thermal stability of GaN investigated by low-temperature photoluminescence spectroscopy[J]. Applied Physics Letters, 1993, 63(26): 3625-7.
[113] BOUAZIZI H, BOUZIDI M, CHAABEN N, et al. Observation of the early stages of GaN thermal decomposition at 1200 °C under N2[J]. Materials Science and Engineering: B, 2018, 227: 16-21.
[114] L’VOV B V. Kinetics and mechanism of thermal decomposition of GaN[J]. Thermochimica Acta, 2000, 360(1): 85-91.
[115] FERNáNDEZ-GARRIDO S, KOBLMüLLER G, CALLEJA E, et al. In situ GaN decomposition analysis by quadrupole mass spectrometry and reflection high-energy electron diffraction[J]. Journal of Applied Physics, 2008, 104(3): 033541.
[116] BCHETNIA A, KEMIS I, TOURé A, et al. GaN thermal decomposition in N2 AP-MOCVD environment[J]. Semiconductor Science and Technology, 2008, 23(12): 125025.
[117] FATHALLAH W, BOUFADEN T, EL JANI B. Analysis of GaN decomposition in an atmospheric MOVPE vertical reactor[J]. Physica Status Solidi c, 2007, 4(1): 145-9.
[118] REBEY A, BOUFADEN T, EL JANI B. In situ optical monitoring of the decomposition of GaN thin films[J]. Journal of Crystal Growth, 1999, 203(1): 12-7.
[119] SONG K-R, OH D-S, LEE S-N. Optical and crystal improvements of semipolar (11-22) GaN/m-sapphire by in-situ thermal etching process[J]. Current Applied Physics, 2013, 13(8): 1643-6.
[120] KOBLMüLLER G, CHU R, WU F, et al. Dislocation reduction in AlGaN/GaN heterostructures on 4H-SiC by molecular beam epitaxy in the thermal decomposition regime[J]. Applied Physics Express, 2008, 1(6): 061103.
[121] COULON P M, FENG P, DAMILANO B, et al. Influence of the reactor environment on the selective area thermal etching of GaN nanohole arrays[J]. Scientific Reports, 2020, 10(1): 5642.
[122] CUI D, YIN Y, SUN H, et al. Regulation of cellular redox homeostasis in Arabidopsis thaliana seedling by atmospheric pressure cold plasma-generated reactive oxygen/nitrogen species[J]. Ecotoxicology and Environmental Safety, 2022, 240: 113703.
[123] MASRUROH, SATRIYO WIBOWO G, RIZKY WIJAYA M, et al. Effect of pressure chamber variations on temperature (Te) and electron density (Ne) on nitrogen plasma diagnostics using optical emission spectroscopy[J]. Materials Today: Proceedings, 2021, 44: 3331-5.
[124] BáRDOS L, BARáNKOVá H. Plasma processes at atmospheric and low pressures[J]. Vacuum, 2008, 83(3): 522-7.
[125] HUANG R, LIU T, ZHAO Y, et al. Angular dependent XPS study of surface band bending on Ga-polar n-GaN[J]. Applied Surface Science, 2018, 440: 637-42.
[126] KEMPISTY P, STRAK P, SAKOWSKI K, et al. Chemical inactivity of GaN(0001) surface-The role of oxygen adsorption-Ab initio picture[J]. Materials Science in Semiconductor Processing, 2019, 91: 252-9.
[127] JANICKI Ł, KORBUTOWICZ R, RUDZIŃSKI M, et al. Thermal oxidation of
[0001] GaN in water vapor compared with dry and wet oxidation: Oxide properties and impact on GaN[J]. Applied Surface Science, 2022, 598: 153872.
[128] CHEN P, ZHANG R, XU X F, et al. Oxidation of gallium nitride epilayers in dry oxygen[J]. MRS Internet journal of nitride semiconductor research, 2000.
[129] JAIN S K, GOEL P, VARSHNEY U, et al. Impact of thermal oxidation on the electrical transport and chemical & electronic structure of the GaN film grown on Si and sapphire substrates[J]. Applied Surface Science Advances, 2021, 5: 100106.
[130] JIN Z, LIU Y, XIA N, et al. Wet etching in β-Ga2O3 bulk single crystals[J]. Crystal Engineering Communications, 2022, 24(6): 1127-44.

所在学位评定分委会
力学
国内图书分类号
TH161
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/544594
专题工学院_机械与能源工程系
推荐引用方式
GB/T 7714
张临风. 氮化镓等离子体原子选择刻蚀抛光方法研究[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930917-张临风-机械与能源工程(15629KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[张临风]的文章
百度学术
百度学术中相似的文章
[张临风]的文章
必应学术
必应学术中相似的文章
[张临风]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。