[1] 蔡翠红. 全球芯片半导体产业的竞争态势与中国机遇[J]. 人民论坛, 2022, (14): 92-6.
[2] 陈中妹. 中国在全球芯片产业贸易网络的地位及困境研究[D]. 长春: 吉林大学, 2022.
[3] 李月. 美国对华半导体出口管制的经济效应研究[D].常州: 常州大学, 2022.
[4] 张晏纶. 中美战略竞争下两岸半导体产业发展问题研究[D]. 北京: 北京大学, 2021.
[5] 李哲儒, 蒋随. 中美贸易摩擦下中国半导体产业发展策略[J]. 中国外资, 2021, No.493(22): 44-6.
[6] BURK A A, O'LOUGHLIN M J, SIERGIEJ R R, et al. SiC and GaN wide bandgap semiconductor materials and devices[J]. Solid-State Electronics, 1999, 43(8): 1459-64.
[7] SHIVANI, KAUR D, GHOSH A, et al. A strategic review on gallium oxide based power electronics: Recent progress and future prospects[J]. Materials Today Communications, 2022, 33: 104244.
[8] PEREZ G, MARéCHAL A, CHICOT G, et al. Diamond semiconductor performances in power electronics applications[J]. Diamond and Related Materials, 2020, 110: 108154.
[9] PIMPUTKAR S. 11-Gallium nitride[M]//FORNARI R. Single Crystals of Electronic Materials. Cambridge: Woodhead Publishing, 2019: 351-99.
[10] MATALLANA A, IBARRA E, LóPEZ I, et al. Power module electronics in HEV/EV applications: New trends in wide-bandgap semiconductor technologies and design aspects[J]. Renewable and Sustainable Energy Reviews, 2019, 113: 109264.
[11] ROCCAFORTE F, FIORENZA P, GRECO G, et al. Emerging trends in wide band gap semiconductors (SiC and GaN) technology for power devices[J]. Microelectronic Engineering, 2018, 187-188: 66-77.
[12] SAKTHI SURIYA RAJ J S, SIVARAMAN P, PREM P, et al. Wide Band Gap semiconductor material for electric vehicle charger[J]. Materials Today: Proceedings, 2021, 45: 852-6.
[13] 刘战辉. 氢化物气相外延GaN材料性质研究[D]. 南京: 南京大学, 2012.
[14] BHAT I. Physical properties of gallium nitride and related III–V nitrides[M]// BALIGA J. Wide Bandgap Semiconductor Power Devices. Cambridge: Woodhead Publishing, 2019: 43-77.
[15] KANE M H, AREFIN N. Gallium nitride (GaN) on silicon substrates for LEDs[M]. HUANG J, KUO H-C, SHEN S-C. Nitride Semiconductor Light-Emitting Diodes (LEDs) (Second Edition). Cambridge: Woodhead Publishing, 2018: 79-121.
[16] KANG M S, LEE C-H, PARK J B, et al. Gallium nitride nanostructures for light-emitting diode applications[J]. Nano Energy, 2012, 1(3): 391-400.
[17] LIU Z, CHONG W C, WONG K M, et al. GaN-based LED micro-displays for wearable applications[J]. Microelectronic Engineering, 2015, 148: 98-103.
[18] KELCHNER K M, DENBAARS S P, SPECK J S. Chapter 4 - GaN Laser Diodes on Nonpolar and Semipolar Planes[M]//COLEMAN J J, BRYCE A C, JAGADISH C. Semiconductors and Semimetals. Amsterdam: Elsevier, 2012: 149-82.
[19] HOU Y, ZHAO D, LIANG F, et al. Performance improvement of GaN-based blue and ultraviolet double quantum well laser diodes by using stepped-doped lower waveguide[J]. Materials Science in Semiconductor Processing, 2021, 121: 105355.
[20] FENG S, LIU Z, FENG L, et al. High-performance self-powered ultraviolet photodetector based on Ga2O3/GaN heterostructure for optical imaging[J]. Journal of Alloys and Compounds, 2023: 169274.
[21] WU W, LIU C, HAN L, et al. Wafer-scale high sensitive UV photodetectors based on novel AlGaN/n-GaN/p-GaN heterostructure HEMT[J]. Applied Surface Science, 2023, 618: 156618.
[22] VERMA J, VERMA A, PROTASENKO V, et al. Nitride LEDs based on quantum wells and quantum dots[M]//. HUANG J, KUO H-C, SHEN S-C. Nitride Semiconductor Light-Emitting Diodes (LEDs) (Second Edition). Cambridge: Woodhead Publishing, 2018: 377-413.
[23] NIFA I, LEROUX C, TORRES A, et al. Characterization and modeling of 2DEG mobility in AlGaN/AlN/GaN MIS-HEMT[J]. Microelectronic Engineering, 2019, 215.
[24] SYARANAMUAL G J, SASANGKA W A, MADE R I, et al. Role of two-dimensional electron gas (2DEG) in AlGaN/GaN high electron mobility transistor (HEMT) ON-state degradation[J]. Microelectronics Reliability, 2016, 64: 589-93.
[25] NIFA I, LEROUX C, TORRES A, et al. Characterization and modeling of 2DEG mobility in AlGaN/AlN/GaN MIS-HEMT[J]. Microelectronic Engineering, 2019, 215: 110976.
[26] 雷思琦. 氮化镓高电子迁移率晶体管射频微波器件的制备与研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.
[27] ZHANG S, WEI K, MA X H, et al. Millimeter-wave AlGaN/GaN HEMTs breakdown voltage enhancement by an air-bridge recessed source field plate (RSFP)[J]. Solid-State Electronics, 2019, 160.
[28] DAMMANN M, BAEUMLER M, POLYAKOV V, et al. Reliability of 100 nm AlGaN/GaN HEMTs for mm-wave applications[J]. Microelectronics Reliability, 2017, 76-77: 292-7.
[29] HUSNA HAMZA K, NIRMAL D. A review of GaN HEMT broadband power amplifiers[J]. AEU-International Journal of Electronics and Communications, 2020, 116: 153040.
[30] MARUSKA H, TIETJEN J. The preparation and properties of vapor-deposited single-crystalline GaN[J]. Applied Physics Letters, 1969, 15: 327-9.
[31] QIN H, LUAN X, FENG C. Mechanical, thermodynamic and electronic properties of wurtzite and zinc-blende GaN crystals[J]. Materials Letters, 2017, 10(12): 1419.
[32] ZHUANG D, EDGAR J H. Wet etching of GaN, AlN, and SiC: a review[J]. Materials Science and Engineering: R: Reports, 2005, 48(1): 1-46.
[33] YAO Y, SATO K, SUGAWARA Y, et al. Mechanism of molten KOH+NaOH etching of GaN revealed by the slopes of etch pits formed at threading dislocations[J]. Journal of Alloys and Compounds, 2022, 902: 163830.
[34] FREITAS J A, CULBERTSON J C, MAHADIK N A, et al. Homoepitaxial HVPE GaN: A potential substrate for high performance devices[J]. Journal of Crystal Growth, 2018, 500: 104-10.
[35] IWINSKA M, TAKEKAWA N, IVANOV V Y, et al. Crystal growth of HVPE-GaN doped with germanium[J]. Journal of Crystal Growth, 2017, 480: 102-7.
[36] IWINSKA M, SOCHACKI T, AMILUSIK M, et al. Homoepitaxial growth of HVPE-GaN doped with Si[J]. Journal of Crystal Growth, 2016, 456: 91-6.
[37] EHRENTRAUT D, BOCKOWSKI M. 15-High-pressure, high-temperature solution growth and ammonothermal synthesis of gallium nitride crystals[M]// RUDOLPH P. Handbook of Crystal Growth (Second Edition). Amsterdam: Elsevier, 2015: 577-619.
[38] ZAJAC M, KUCHARSKI R, GRABIANSKA K, et al. Basic ammonothermal growth of gallium nitride – State of the art, challenges, perspectives[J]. Progress in Crystal Growth and Characterization of Materials, 2018, 64(3): 63-74.
[39] WU X, HAO H, LI Z, et al. GaN crystals growth in the Na-Li-Ca flux by liquid phase epitaxy (LPE) technique[J]. Journal of Crystal Growth, 2019, 521: 30-3.
[40] GOSWAMI L, PANDEY R, GUPTA G. Epitaxial growth of GaN nanostructure by PA-MBE for UV detection application[J]. Applied Surface Science, 2018, 449: 186-92.
[41] HENTSCHEL R, GäRTNER J, WACHOWIAK A, et al. Surface morphology of AlGaN/GaN heterostructures grown on bulk GaN by MBE[J]. Journal of Crystal Growth, 2018, 500: 1-4.
[42] CHENG Y, LIU P, WU J, et al. High uniform growth of 4-inch GaN wafer via flow field optimization by HVPE[J]. Journal of Crystal Growth, 2016, 445: 24-9.
[43] BOCKOWSKI M, IWINSKA M, AMILUSIK M, et al. Doping in bulk HVPE-GaN grown on native seeds – highly conductive and semi-insulating crystals[J]. Journal of Crystal Growth, 2018, 499: 1-7.
[44] YOSHIMOTO M, HATANAKA A, ITOH H, et al. GaN growth on sapphire and 6H-SiC by metalorganic molecular beam epitaxy[J]. Journal of Crystal Growth, 1998, 188(1): 92-7.
[45] TANG J, LIANG T, SHI W, et al. The testing of stress-sensitivity in heteroepitaxy GaN/Si by Raman spectroscopy[J]. Applied Surface Science, 2011, 257(21): 8846-9.
[46] MYNBAEVA M G, KREMLEVA A V, KIRILENKO D A, et al. TEM study of defect structure of GaN epitaxial films grown on GaN/Al2O3 substrates with buried column pattern[J]. Journal of Crystal Growth, 2016, 445: 30-6.
[47] DADGAR A, SCHULZE F, ZETTLER T, et al. In situ measurements of strains and stresses in GaN heteroepitaxy and its impact on growth temperature[J]. Journal of Crystal Growth, 2004, 272(1): 72-5.
[48] PARK B-G, SARAVANA KUMAR R, MOON M-L, et al. Comparison of stress states in GaN films grown on different substrates: Langasite, sapphire and silicon[J]. Journal of Crystal Growth, 2015, 425: 149-53.
[49] LI C, LI Z, PENG D, et al. Growth of thin AlN nucleation layer and its impact on GaN-on-SiC heteroepitaxy[J]. Journal of Alloys and Compounds, 2020, 838: 155557.
[50] PAN L, DONG X, LI Z, et al. Influence of the AlN nucleation layer on the properties of AlGaN/GaN heterostructure on Si (1 1 1) substrates[J]. Applied Surface Science, 2018, 447: 512-7.
[51] YANG Q, LI Z, PENG D, et al. Growth of high quality GaN on (0001) 4H-SiC with an ultrathin AlN nucleation layer[J]. Journal of Crystal Growth, 2023, 607: 127107.
[52] MöLLER H-J. 18 - Wafer Processing[M]//RUDOLPH P. Handbook of Crystal Growth (Second Edition). Amsterdam: Elsevier, 2015: 715-55.
[53] LI S, FANG Z, CHEN H, et al. Defect influence on luminescence efficiency of GaN-based LEDs[J]. Materials Science in Semiconductor Processing, 2006, 9(1-3): 371-4.
[54] REN C X, ROUET-LEDUC B, GRIFFITHS J T, et al. Analysis of defect-related inhomogeneous electroluminescence in InGaN/GaN QW LEDs[J]. Superlattices and Microstructures, 2016, 99: 118-24.
[55] AIDA H, TAKEDA H, KIM S W, et al. Evaluation of subsurface damage in GaN substrate induced by mechanical polishing with diamond abrasives[J]. Applied Surface Science, 2014, 292(4): 531-6.
[56] AIDA H, TAKEDA H, DOI T. Analysis of mechanically induced subsurface damage and its removal by chemical mechanical polishing for gallium nitride substrate[J]. Precision Engineering, 2021, 67: 350-8.
[57] WEYHER J L, MüLLER S, GRZEGORY I, et al. Chemical polishing of bulk and epitaxial GaN[J]. Journal of Crystal Growth, 1997, 182(1): 17-22.
[58] AIDA H. 8-Chemical and physical mechanisms of CMP of gallium nitride[M]//BABU S. Advances in Chemical Mechanical Planarization (CMP) (Second Edition).Cambridge: Woodhead Publishing, 2022: 195-221.
[59] AIDA H, TAKEDA H, KOYAMA K, et al. Chemical mechanical polishing of gallium nitride with colloidal silica[J]. Journal of The Electrochemical Society, 2011, 158(12): H1206.
[60] WANG J, WANG T, PAN G, et al. Effects of catalyst concentration and ultraviolet intensity on chemical mechanical polishing of GaN[J]. Applied Surface Science, 2016, 378: 130-5.
[61] YU X, ZHANG B, WANG R, et al. Effect of photocatalysts on electrochemical properties and chemical mechanical polishing rate of GaN[J]. Materials Science in Semiconductor Processing, 2021, 121: 105387.
[62] ZHU Y, NIU X, HOU Z, et al. Effect and mechanism of oxidant on alkaline chemical mechanical polishing of gallium nitride thin films[J]. Materials Science in Semiconductor Processing, 2022, 138: 106272.
[63] GONG H, PAN G, ZHOU Y, et al. Investigation on the surface characterization of Ga-faced GaN after chemical-mechanical polishing[J]. Applied Surface Science, 2015, 338: 85-91.
[64] DONG Z, OU L, KANG R, et al. Photoelectrochemical mechanical polishing method for n-type gallium nitride[J]. CIRP Annals, 2019, 68(1): 205-8.
[65] HARA H, SANO Y, MIMURA H, et al. Damage-free planarization of 4H-SiC (0001) by catalyst-referred etching[J]. Materials Science Forum, 2007, 556-557: 749-51.
[66] OKAMOTO T, SANO Y, TACHIBANA K, et al. Dependence of process characteristics on atomic-Step density in catalyst-referred etching of 4H–SiC(0001) Surface[J]. Journal of Nanoscience and Nanotechnology, 2011, 11(4): 2928-30.
[67] MURATA J, SADAKUNI S, OKAMOTO T, et al. Structural and chemical characteristics of atomically smooth GaN surfaces prepared by abrasive-free polishing with Pt catalyst[J]. Journal of Crystal Growth, 2012, 349(1): 83-8.
[68] KIDA H, ISOHASHI A, INADA T, et al. High-efficiency planarization of GaN Wafers by catalyst-referred etching employing photoelectrochemical Oxidation[J]. ICPT, International Conference on Planarization/CMP Technology VDE, 2017: 11-3.
[69] MURATA J, OKAMOTO T, SADAKUNI S, et al. Atomically smooth gallium nitride surfaces prepared by chemical etching with platinum catalyst in water[J]. Journal of The Electrochemical Society, 2012, 159(4): H417-H20.
[70] DENG H, ENDO K, YAMAMURA K. Plasma-assisted polishing of gallium nitride to obtain a pit-free and atomically flat surface[J]. CIRP Annals - Manufacturing Technology, 2015, 64(1): 531-4.
[71] AIDA H, KIM S-W, IKEJIRI K, et al. Precise mechanical polishing of brittle materials with free diamond abrasives dispersed in micro–nano-bubble water[J]. Precision Engineering, 2015, 40: 81-6.
[72] GONG H, PAN G, ZOU C, et al. Investigation on the variation of the step-terrace structure on the surface of polished GaN wafer[J]. Surfaces and Interfaces, 2017, 6: 197-201.
[73] WANG J, WANG T, PAN G, et al. Effect of photocatalytic oxidation technology on GaN CMP[J]. Applied Surface Science, 2016, 361: 18-24.
[74] MURATA J, KUBOTA A, YAGI K, et al. Chemical planarization of GaN using hydroxyl radicals generated on a catalyst plate in H2O2 solution[J]. Journal of Crystal Growth, 2008, 310(7): 1637-41.
[75] TENDERO C, TIXIER C, TRISTANT P, et al. Atmospheric pressure plasmas: A review[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2006, 61(1): 2-30.
[76] GABBAR H A, DARDA S A, DAMIDEH V, et al. Comparative study of atmospheric pressure DC, RF, and microwave thermal plasma torches for waste to energy applications[J]. Sustainable Energy Technologies and Assessments, 2021, 47: 101447.
[77] JIANG X-Z, LIU Y-X, LU W-Q, et al. Influence of dual-frequency source powers on ion density and electron temperature in capacitively-coupled argon plasma[J]. Vacuum, 2012, 86(7): 881-4.
[78] BI Z-H, LIU Y-X, JIANG W, et al. A brief review of dual-frequency capacitively coupled discharges[J]. Current Applied Physics, 2011, 11(5, Supplement): S2-S8.
[79] YIN G, GAO S, LIU Z, et al. The discharge characteristics of low-pressure capacitively coupled argon plasma with Langmuir probe[J]. Physics Letters A, 2022, 426: 127910.
[80] TAYLOR H E. Chapter 3 - Inductively coupled plasmas[M]//TAYLOR H E. Inductively Coupled Plasma-Mass Spectrometry. San Diego; Academic Press. 2001: 15-27.
[81] MAKONNEN Y, BEAUCHEMIN D. Chapter 1 - The inductively coupled plasma as a source for optical emission spectrometry and mass spectrometry[M]//BEAUCHEMIN D. Sample Introduction Systems in ICP-MS and ICP-OES. Amsterdam: Elsevier, 2020: 1-55.
[82] MORI Y, YAMAMURA K, YAMAUCHI K, et al. Plasma CVM (Chemical Vaporization Machining): -A chemical machining method with equal performances to conventional mechanical methods from the sense of removal rates and spatial resolutions-[M]//IKAWA N, SHIMADA S, MORIWAKI T, et al. International Progress in Precision Engineering. London: Newnes, 1993: 78-87.
[83] NAKAHAMA Y, KANETSUKI N, FUNAKI T, et al. Etching characteristics of GaN by plasma chemical vaporization machining[J]. Surface and Interface Analysis, 2008, 40(12): 1566-70.
[84] YAMAMURA K, SHIMADA S, MORI Y. Damage-free improvement of thickness uniformity of quartz crystal wafer by plasma chemical vaporization machining[J]. CIRP Annals, 2008, 57(1): 567-70.
[85] FANARA C, SHORE P, NICHOLLS J R, et al. A new reactive atom plasma technology (RAPT) for precision machining: the etching of ULE® surfaces[J]. Advanced Engineering Materials, 2006, 8(10): 933-9.
[86] FISKE P S, VERMA Y, CHANG A, et al. Reactive atom plasma processing for lightweight SiC mirrors; proceedings of the frontiers in optics[C].2006,10. Rochester, New York: Optica Publishing Group, 2006.
[87] CASTELLI M, JOURDAIN R, MORANTZ P, et al. Rapid optical surface figuring using reactive atom plasma[J]. Precision Engineering, 2012, 36(3): 467-76.
[88] JOURDAIN R, CASTELLI M, SHORE P, et al. Reactive atom plasma (RAP) figuring machine for meter class optical surfaces[J]. Production Engineering, 2013, 7(6): 665-73.
[89] SUBRAHMANYAN P, GARDOPEE G, VERMA Y, et al. Fabrication of lightweight SiC aspheres using reactive atom plasma (RAP (TM))processing [J]. Proceedings of SPIE, 2007, 6666.
[90] 金会良. 大气等离子体抛光对超光滑表面的影响研究[D]. 哈尔滨: 哈尔滨工业大学, 2009.
[91] 王东方. 大气等离子体加工熔石英材料过程的若干影响因素研究[D]. 哈尔滨: 哈尔滨工业大学, 2011.
[92] 苏星. 大气等离子体射流炬设计及性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2016.
[93] 金会良. 大气等离子体去除熔石英损伤层过程中表面形成机理研究[D]. 哈尔滨:哈尔滨工业大学, 2014.
[94] 金江. 硅基材料的电感耦合等离子体射流加工技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2013.
[95] 辛强. 大气感应耦合等离子体射流特性与加工表面演变机理研究[D]. 哈尔滨: 哈尔滨工业大学, 2017.
[96] 苏星. 连续位相板大气等离子体加工与气囊抛光组合工艺研究[D]. 哈尔滨: 哈尔滨工业大学, 2020.
[97] JIN H, XIN Q, LI N, et al. The morphology and chemistry evolution of fused silica surface after Ar/CF4 atmospheric pressure plasma processing[J]. Applied Surface Science, 2013, 286: 405-11.
[98] 熊浩斌. 熔石英表面大气等离子体去损伤加工关键技术研究[D].长沙: 国防科学技术大学, 2015.
[99] 陈恒. 熔石英元件电感耦合等离子体加工关键工艺研究[D]. 长沙: 国防科学技术大学, 2016.
[100] 史宝鲁. SiC反射镜电弧增强等离子体加工关键技术研究[D]. 长沙: 国防科学技术大学, 2016.
[101] 戴作财. 电感耦合大气等离子体高效加工熔石英的关键技术研究[D]. 长沙: 国防科技大学, 2019.
[102] FANG Z, ZHANG Y, LI R, et al. An efficient approach for atomic-scale polishing of single-crystal silicon via plasma-based atom-selective etching[J]. International Journal of Machine Tools and Manufacture, 2020, 159: 103649.
[103] KAWAKAMI R, NIIBE M, NAKANO Y, et al. Effects of ultraviolet wavelength and intensity on AlGaN thin film surfaces irradiated simultaneously with CF4 plasma and ultraviolet[J]. Vacuum, 2019, 159: 45-50.
[104] KAWAKAMI R, NIIBE M, NAKANO Y, et al. Comparison between AlGaN surfaces etched by carbon tetrafluoride and argon plasmas: Effect of the fluorine impurities incorporated in the surface[J]. Vacuum, 2015, 119: 264-9.
[105] KIM H-S, YEOM G-Y, LEE J-W, et al. A study of GaN etch mechanisms using inductively coupled Cl2/Ar plasmas[J]. Thin Solid Films, 1999, 341(1): 180-3.
[106] HONG H F, CHAO C K, CHYI J I, et al. Reactive ion etching of GaN/InGaN using BCl3 plasma[J]. Materials Chemistry and Physics, 2003, 77(2): 411-5.
[107] RAWAL D S, ARORA H, AGARWAL V R, et al. GaN etch rate and surface roughness evolution in Cl2/Ar based inductively coupled plasma etching[J]. Thin Solid Films, 2012, 520(24): 7212-8.
[108] GARCíA-GUTIéRREZ R, RAMOS-CARRAZCO A, BERMAN-MENDOZA D, et al. Photoluminescence enhancement from GaN by beryllium doping[J]. Optical Materials, 2016, 60: 398-403.
[109] CAO D, LIU R, XIAO H, et al. Photoluminescence properties of etched GaN-based LEDs via UV-assisted electrochemical etching[J]. Materials Letters, 2017, 209: 555-7.
[110] GAO Q, LIU R, XIAO H, et al. Anodic etching of GaN based film with a strong phase-separated InGaN/GaN layer: Mechanism and properties[J]. Applied Surface Science, 2016, 387: 406-11.
[111] MOHANTY S, KHAN K, AHMADI E. N-polar GaN: Epitaxy, properties, and device applications[J]. Progress in Quantum Electronics, 2023, 87: 100450.
[112] LIN M E, SVERDLOV B N, MORKOç H. Thermal stability of GaN investigated by low-temperature photoluminescence spectroscopy[J]. Applied Physics Letters, 1993, 63(26): 3625-7.
[113] BOUAZIZI H, BOUZIDI M, CHAABEN N, et al. Observation of the early stages of GaN thermal decomposition at 1200 °C under N2[J]. Materials Science and Engineering: B, 2018, 227: 16-21.
[114] L’VOV B V. Kinetics and mechanism of thermal decomposition of GaN[J]. Thermochimica Acta, 2000, 360(1): 85-91.
[115] FERNáNDEZ-GARRIDO S, KOBLMüLLER G, CALLEJA E, et al. In situ GaN decomposition analysis by quadrupole mass spectrometry and reflection high-energy electron diffraction[J]. Journal of Applied Physics, 2008, 104(3): 033541.
[116] BCHETNIA A, KEMIS I, TOURé A, et al. GaN thermal decomposition in N2 AP-MOCVD environment[J]. Semiconductor Science and Technology, 2008, 23(12): 125025.
[117] FATHALLAH W, BOUFADEN T, EL JANI B. Analysis of GaN decomposition in an atmospheric MOVPE vertical reactor[J]. Physica Status Solidi c, 2007, 4(1): 145-9.
[118] REBEY A, BOUFADEN T, EL JANI B. In situ optical monitoring of the decomposition of GaN thin films[J]. Journal of Crystal Growth, 1999, 203(1): 12-7.
[119] SONG K-R, OH D-S, LEE S-N. Optical and crystal improvements of semipolar (11-22) GaN/m-sapphire by in-situ thermal etching process[J]. Current Applied Physics, 2013, 13(8): 1643-6.
[120] KOBLMüLLER G, CHU R, WU F, et al. Dislocation reduction in AlGaN/GaN heterostructures on 4H-SiC by molecular beam epitaxy in the thermal decomposition regime[J]. Applied Physics Express, 2008, 1(6): 061103.
[121] COULON P M, FENG P, DAMILANO B, et al. Influence of the reactor environment on the selective area thermal etching of GaN nanohole arrays[J]. Scientific Reports, 2020, 10(1): 5642.
[122] CUI D, YIN Y, SUN H, et al. Regulation of cellular redox homeostasis in Arabidopsis thaliana seedling by atmospheric pressure cold plasma-generated reactive oxygen/nitrogen species[J]. Ecotoxicology and Environmental Safety, 2022, 240: 113703.
[123] MASRUROH, SATRIYO WIBOWO G, RIZKY WIJAYA M, et al. Effect of pressure chamber variations on temperature (Te) and electron density (Ne) on nitrogen plasma diagnostics using optical emission spectroscopy[J]. Materials Today: Proceedings, 2021, 44: 3331-5.
[124] BáRDOS L, BARáNKOVá H. Plasma processes at atmospheric and low pressures[J]. Vacuum, 2008, 83(3): 522-7.
[125] HUANG R, LIU T, ZHAO Y, et al. Angular dependent XPS study of surface band bending on Ga-polar n-GaN[J]. Applied Surface Science, 2018, 440: 637-42.
[126] KEMPISTY P, STRAK P, SAKOWSKI K, et al. Chemical inactivity of GaN(0001) surface-The role of oxygen adsorption-Ab initio picture[J]. Materials Science in Semiconductor Processing, 2019, 91: 252-9.
[127] JANICKI Ł, KORBUTOWICZ R, RUDZIŃSKI M, et al. Thermal oxidation of
[0001] GaN in water vapor compared with dry and wet oxidation: Oxide properties and impact on GaN[J]. Applied Surface Science, 2022, 598: 153872.
[128] CHEN P, ZHANG R, XU X F, et al. Oxidation of gallium nitride epilayers in dry oxygen[J]. MRS Internet journal of nitride semiconductor research, 2000.
[129] JAIN S K, GOEL P, VARSHNEY U, et al. Impact of thermal oxidation on the electrical transport and chemical & electronic structure of the GaN film grown on Si and sapphire substrates[J]. Applied Surface Science Advances, 2021, 5: 100106.
[130] JIN Z, LIU Y, XIA N, et al. Wet etching in β-Ga2O3 bulk single crystals[J]. Crystal Engineering Communications, 2022, 24(6): 1127-44.
修改评论