中文版 | English
题名

有机碱改性的聚丙烯酸系硅基负极粘结剂的合成与应用

其他题名
SYNTHESIS AND APPLICATION OF ORGANIC BASE MODIFIED POLYACRYLIC ACID-BASED SILICON ANODE BINDERS
姓名
姓名拼音
CHEN Xinyu
学号
12032254
学位类型
硕士
学位专业
0703 化学
学科门类/专业学位类别
07 理学
导师
邓永红
导师单位
材料科学与工程系
论文答辩日期
2023-05-19
论文提交日期
2023-06-29
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

硅基材料因其超高的理论比容量(3572 mAh g-1)、对锂电位相对较低, 成本低廉,储量庞大,被认为是最具潜力的下一代商用负极材料。然而, 硅基材料本身在循环过程中所产生的巨大的体积变化,制约了其商业化应 用。本文从电极粘结剂的角度出发,针对硅基材料的膨胀特性以及传统聚 丙烯酸粘结剂柔韧性差的特点重新设计了粘结剂的分子结构,制备了一系 列改性共聚高分子粘结剂,研究了分子结构对粘结剂以及其电极性能的影 响。主要研究内容如下: 本文通过将丙烯酸(AA)与柔性单体丙烯酸二甲氨基乙酯(DMAEA) 在有机弱碱(OB)1-乙基咪唑存在下共聚,制备了一种新型的聚丙烯酸系 粘结剂,并研究了各组分的不同摩尔配比对粘结剂力学性能以及相应硅氧 负 极 的 电 化 学 性 能 的 影 响 。 发 现 当 各 组 分 的 投 料 摩 尔 比 为 OB : AA : DMAEA=2 : 2 : 1时,粘结剂综合性能最佳。其剥离力为3.5 N,弹性模量为 8.2 GPa,柔韧性有较大提升。所制备的粘结剂在抑制电极膨胀方面有明显 效果,120次循环后电极厚度较循环前膨胀了55%,而PAA粘结剂对应电极 膨胀了89%。改性后的粘结剂可以改善电极的循环性能,在0.2 C下循环120 次后仍然可以保持1044 mAh g-1的可逆比容量,容量保持率67%,较改性前 有大幅提升。 为了进一步提升电池电化学性能,本文探究了不同结构OB对粘结剂性 能的影响。通过使用脂肪胺、脂环胺以及芳香胺类OB对前述1-乙基咪唑进 行替换,合成了一系列具有固定投料摩尔比的聚丙烯酸改性粘结剂。发现 在粘结剂的力学性能以及对应电极的电化学性能上,表现出了使用芳香胺 OB改性的粘结剂性能优于使用脂肪胺OB改性的粘结剂,后者的综合性能 又优于含脂环胺OB的粘结剂的规律。同时也优选出以4-二甲氨基吡啶改性 的粘结剂,其综合性能略优于上述使用1-乙基咪唑改性的实验样。

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2023-06
参考文献列表

[1] LI F, ZHANG C Z, WANG F, et al. Challenges and Recent Progress on Silicon-Based Anode Materials for Next-Generation Lithium-Ion Batteries[J]. Small Structures, 2021, 2(6): 2100009.
[2] PARK C M, KIM J H, KIM H, et al. Li-Alloy Based Anode Materials for Li Secondary Batteries[J]. Chemical Society Reviews, 2010, 39(8): 3115-3141.
[3] COSKUN A, PARK C M, KIM J H, et al. The Emerging Era of Supramolecular Polymeric Binders in Silicon Anodes[J]. Chemical Society Reviews, 2018, 47(6): 2145-2164.
[4] XU K. Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries[J]. Chemical Reviews, 2004, 104(10): 4303–4418.
[5] 吴宇平,袁翔云,董超等. 锂离子电池—应用与实践[M]. 北京:化学工业出版社, 2011.
[6] LEE J Z, WYNN T A, SCHROEDER M A, et al. Cryogenic Focused Ion Beam Characterization of Lithium Metal Anodes[J]. ACS Energy Letters, 2019, 4(2): 489-493.
[7] WU H, CUI Y. Designing Nanostructured Si Anodes for High Energy Lithium Ion Batteries[J]. Nano Today, 2012, 7(5): 414-429.
[8] NITTA N, WU F X, YUSHIN G, et al. Li-Ion Battery Materials: Present and Future[J]. Materials Today, 2015, 18(5): 252-264.
[9] PARK C M, KIM J H, KIM H, et al. Li-Alloy Based Anode Materials for Li Secondary Batteries[J]. Chemical Society Reviews, 2010, 39(8): 3115-3141.
[10] KEITARO K, PECHER O, MAGUSIN P C M M, et al. Unraveling the Reaction Mechanisms of SiO Anodes for Li-Ion Batteries by Combining in situ 7Li and ex situ7Li/29Si Solid-State NMR Spectroscopy[J]. Journal of the American Chemical Society, 2019, 141(17): 7014-7027.
[11] TRANCHOT A, ETIEMBLE A, THIVEL P X, et al. In-Situ Acoustic Emission Study of Si-Based Electrodes for Li-Ion Batteries[J]. Journal of Power Sources, 2015, 279:259-266.
[12] HUANG W, WANG H, BOYLE D T, et al. Resolving Nanoscopic and Mesoscopic Heterogeneity of Fluorinated Species in Battery Solid-Electrolyte Interphases by Cryogenic Electron Microscopy[J]. Acs Energy Letters, 2020, 5(4): 1128-1135.
[13] LIN Z Q, GE M Z, CAO C Y, et al. Recent Advances in Silicon-Based Electrodes: From Fundamental Research toward Practical Applications[J]. Advanced Materials,2021, 33(16): 2004577.
[14] CHOI J W, AURBACH D. Promise and Reality of Post-Lithium-Ion Batteries with High Energy Densities[J]. Nature Reviews Materials, 2016, 1: 16013.
[15] LI P, ZHAO G Q, ZHENG X B, et al. Recent Progress on Silicon-Based Anode Materials for Practical Lithium-Ion Battery Applications[J]. Energy Storage Mater,2018, 15: 422-446.
[16] WU F X, MAIER J, YU YAN. Guidelines and Trends for Next-Generation Rechargeable Lithium and Lithium-Ion Batteries[J]. Chemical Society Reviews, 2020, 49(5): 1569-1614.
[17] XU H, QIN L G, CHEN J, et al. Alloy-Based Anode Materials toward Advanced Sodium-Ion Batteries[J]. Advanced Materials, 2017, 29(48): 1700622.
[18] ZHANG Y, ZHOU Q, ZHU J X, et al. Nanostructured Metal Chalcogenides for Energy Storage and Electrocatalysis[J]. Advanced Functional Materials, 2017, 27(35):1702317.
[19] LIU Z H, YU Q, ZHAO Y L, et al. Silicon Oxides: A Promising Family of Anode Materials for Lithium-Ion Batteries[J]. Chemical Society Reviews, 2019, 48(1): 285-309.
[20] MA C L, WANG Z R, ZHAO Y, et al. A Novel Raspberry-Like Yolk-Shell Structured Si/C Micro/Nano-Spheres as High-Performance Anode Materials for Lithium-Ion Batteries[J]. Journal of Alloys and Compounds, 2020, 844: 156201.
[21] QI Y, WANG G, LI S, et al. Recent Progress of Structural Designs of Silicon for Performance-Enhanced Lithium-Ion Batteries[J]. Chemical Engineering Journal, 2020, 397: 125380.
[22] LIU X H, ZHONG L, HUANG S, et al. Size-Dependent Fracture of Silicon Nanoparticles During Lithiation[J]. ACS Nano, 2012, 6(2): 1522-1531.
[23] BRAUN P V, LIU J, LI N, et al. Mechanically and Chemically Robust SandwichStructured C@Si@C Nanotube Array Li-Ion Battery Anodes[J]. ACS Nano, 2015, 9(2):1985-1994.
[24] PICRAUX T, CHO J H. Silicon Nanowire Degradation and Stabilization during Lithium Cycling by SEI Layer Formation[J]. Nano Letters, 2014, 14(6): 3088-3095.
[25] JING S L, JIANG H, HU Y J, et al. Directly Grown Si Nanowire Arrays on Cu Foam with A Coral-Like Surface for Lithium-Ion Batteries[J]. Nanoscale, 2014, 6(23):14441-14445.
[26] SHIN H S. Catalyst-Free Synthesis of Si-SiOx Core-Shell Nanowire Anodes for HighRate and High-Capacity Lithium-Ion Batteries[J]. ACS Applied Materials & Interfaces,2014, 6(9): 6340-6345.
[27] STOKES K, BOONEN W, GEANEY H, et al. Tunable Core–Shell Nanowire Active Material for High Capacity Li-Ion Battery Anodes Comprised of PECVD Deposited aSi on Directly Grown Ge Nanowires[J]. ACS Applied Materials & Interfaces, 2019, 11(21): 19372-19380.
[28] YANG P, WU Y, YAN H, et al. Inorganic Semiconductor Nanowires: Rational Growth, Assembly, and Novel Properties[J]. Chemistry, 2002, 8(6): 1260-1268.
[29] MONTEIL Y, SOUEIDAN M, FERRO G, et al. Characterization of a 3C-SiC Single Domain Grown on 6H-SiC(0001) by a Vapor−Liquid−Solid Mechanism[J]. Crystal Growth & Design, 2006, 6(11): 2598-2602.
[30] ZHAO T T, ZHU D L, LI W R, et al. Novel Design and Synthesis of Carbon-Coated Porous Silicon Particles as High-Performance Lithium-Ion Battery Anodes[J]. Journal of Power Sources, 2019, 439, 227027.
[31] CHEN J J, LU X Y, SUN J, et al. Si@C Nanosponges Application for Lithium Ions Batteries Synthesized by Templated Magnesiothermic Route[J]. Materials Letters,2015, 152: 256-259.
[32] O. KELES, B.POLAT. The Effect of Copper Coating on Nanocolumnar Silicon Anodes for Lithium Ion Batteries[J]. Thin Solid Films, 2015, 589: 543-550.
[33] SHI J W, GAO H Y, HU G X, et al. Core-Shell Structured Si@C Nanocomposite for High-Performance Li-Ion Batteries with A Highly Viscous Gel as Precursor[J]. Journal of Power Sources, 2019, 438: 227001.
[34] NG S H, WANG J Z, WEXLER D, et al. Highly Reversible Lithium Storage in Spheroidal Carbon-Coated Silicon Nanocomposites as Anodes for Lithium-Ion Batteries[J]. Angewandte Chemie-International Edition, 2006, 45(41): 6896-6899.
[35] CUI Y, LIU N, WU H, et al. A Yolk-Shell Design for Stabilized and Scalable Li-Ion Battery Alloy Anodes[J]. Nano Letters, 2012, 12(6): 3315-3321.
[36] YAN Y T, XU Z X, LIU C C, et al. Rational Design of the Robust Janus Shell on Silicon Anodes for High-Performance Lithium-Ion Batteries[J]. ACS Applied Materials & Interfaces, 2019, 11(19): 17375-17383.
[37] WU J L, LIU J H, WANG Z, et al. A New Design for Si Wears Double Jackets Used as A High-Performance Lithium-Ion Battery Anode[J]. Chemical Engineering Journal,2019, 370: 565-572.
[38] IDREES M, BATOOL S, ZHUANG Q, et al. Achieving Carbon-Rich SiliconContaining Ceramic Anode for Advanced Lithium Ion Battery[J]. Ceramics International, 2019, 45(8): 10572-10580.
[39] LI X L, YAN P F, XIAO X C, et al. Design of Porous Si/C–Graphite Electrodes with Long Cycle Stability and Controlled Swelling[J]. Energy & Environmental Science,2017, 10(6): 1427-1434.
[40] GE M Z, TANG Y X, MALYI O I, et al. Mechanically Reinforced Localized Structure Design to Stabilize Solid–Electrolyte Interface of the Composited Electrode of Si Nanoparticles and TiO2 Nanotubes[J]. Small, 2020, 16(30): 2002094.
[41] AN W L, GAO B, MEI S X, et al. Scalable Synthesis of Ant-Nest-Like Bulk Porous Silicon for High-Performance Lithium-Ion Battery Anodes[J]. Nature Communications, 2019, 10: 1447.
[42] LIU X X, TAN Y C, WANG W Y, et al. Conformal Prelithiation Nanoshell on LiCoO2Enabling High-Energy Lithium-Ion Batteries [J]. Nano Letters, 2020, 20(6): 4558-4565.
[43] LI F F, WANG G W, ZHENG D, et al. Controlled Prelithiation of SnO2/C Nanocomposite Anodes for Building Full Lithium-Ion Batteries[J]. ACS Applied Materials & Interfaces, 2020, 12(17): 19423-19430.
[44] ZHU Y C, HU W, ZHOU J B, et al. Prelithiated Surface Oxide Layer Enabled HighPerformance Si Anode for Lithium Storage[J]. ACS Applied Materials & Interfaces,2019, 11(20): 18305-18312.
[45] XU H, CHEN X L, ZHANG C, et al. Sn-Alloy Foil Electrode with Mechanical Prelithiation: Full-Cell Performance up to 200 Cycles [J]. Advanced Energy Materials,2019, 9(42): 1902150.
[46] CUI Y, ZHAO J, SUN J, et al. A General Prelithiation Approach for Group IV Elements and Corresponding Oxides[J]. Energy Storage Mater, 2018, 10: 275-281.
[47] WAN Y X, WANG L J, CHEN Y J, et al. A High-Performance Tin Dioxide@Carbon Anode with A Super High Initial Coulombic Efficiency via A Primary Cell Prelithiation Process[J]. Journal of Alloys and Compounds, 2018, 740: 830-835.
[48] SU D W, ZHOU D, WANG C Y, et al. Toward High Performance Lithium–Sulfur Batteries Based on Li2S Cathodes and Beyond: Status, Challenges, and Perspectives[J]. Advanced Functional Materials, 2018, 28(38): 1800154.
[49] AI Q, FANG Q Y, LIANG J, et al. Lithium-Conducting Covalent-Organic-Frameworks as Artificial Solid-Electrolyte-Interphase on Silicon Anode for High Performance Lithium Ion Batteries[J]. Nano Energy, 2020, 72: 104657.
[50] ZHAO Y M, YUE F S, LI S C, et al. Advances of Polymer Binders for Silicon-Based Anodes in High Energy Density Lithium-Ion Batteries[J]. InfoMat, 2021, 3(5): 460-501.
[51] LIU G, CHEN H, LING M, et al. Exploring Chemical, Mechanical, and Electrical Functionalities of Binders for Advanced Energy-Storage Devices[J]. ChemicalReviews, 2018, 118(18): 8936-8982.
[52] VENABLES J. Adhesion and Durability of Metal-Polymer Bonds[J]. Journal of Materials Science, 1984, 19: 2431-2453.
[53] BURKSTRAND J. Metal-Polymer Interfaces: Adhesion and X-Ray Photoemission Studies[J]. Journal of Applied Physics, 1981, 52: 4795-4800.
[54] WANG Y X, XU Y F, MENG Q S, et al. Chemically Bonded Sn Nanoparticles Using the Crosslinked Epoxy Binder for High Energy-Density Li Ion Battery[J]. Advanced Materials Interfaces, 2016, 3 (23): 1600662.
[55] ZOU F, MANTHIRAM A. A Review of the Design of Advanced Binders for HighPerformance Batteries[J]. Advanced Energy Materials, 2020, 10(45): 2002508.
[56] ZHAO X Y, NIKETIC S, YIM C H, et al. Revealing the Role of Poly(vinylidene fluoride) Binder in Si/Graphite Composite Anode for Li-Ion Batteries[J]. ACS Omega,2018, 3(9): 11684-11690.
[57] MUNAO D, ERVEN J W M, VALVO M, et al. Role of the Binder on the Failure Mechanism of Si Nano-Composite Electrodes for Li-Ion Batteries[J]. Journal of Power Sources, 2011, 196: 6695-6702.
[58] KWON T, CHOI J W, COSKUN A. Prospect for Supramolecular Chemistry in HighEnergy-Density Rechargeable Batteries[J]. Joule, 2019, 3(3): 662–682.
[59] WANG H L, WU B Z, WU X K, et al. Key Factors for Binders to Enhance the Electrochemical Performance of Silicon Anodes through Molecular Design[J]. Small,2022, 18(1): 2101680.
[60] ZHANG L, HU B, SHKROB I, et al. The Existence of Optimal Molecular Weight for Poly(Acrylic Acid) Binders in Silicon/Graphite Composite Anode for Lithium-Ion Batteries[J]. Journal of Power Sources. 2018, 378: 671-676.
[61] KASINATHAN R, MARINARO M, AXMANN P, et al. Influence of the Molecular Weight of Poly-Acrylic Acid Binder on Performance of Si-Alloy/Graphite Composite Anodes for Lithium-Ion Batteries[J]. Energy Technology, 2018, 6(11): 2256-2263.
[62] MIRANDA A, LI X Y, HAREGEWOIN A M, et al. A Comprehensive Study of Hydrolyzed Polyacrylamide as a Binder for Silicon Anodes[J]. ACS Applied Materials & Interfaces, 2019, 11(47): 44090-44100.
[63] WU C C, LI C C. Distribution Uniformity of Water-Based Binders in Si Anodes and the Distribution Effects on Cell Performance[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(17): 6868-6876.
[64] WU H, YU G H, PAN L J, et al. Stable Li-Ion Battery Anodes by In-situ Polymerization of Conducting Hydrogel to Conformally Coat Silicon Nanoparticles[J]. Nature Communications, 2013, 4: 1943.
[65] LIU G, XUN S D, VUKMIROVIC N, et al. Polymers with Tailored Electronic Structure for High Capacity Lithium Battery Electrodes[J]. Advanced Materials, 2011,23(40): 4679-4683.
[66] PARK S J, ZHAO H, AI G, et al. Side-Chain Conducting and Phase-Separated Polymeric Binders for High-Performance Silicon Anodes in Lithium-Ion Batteries[J]. Journal of the American Chemical Society, 2015, 137(7): 2565-2571.
[67] YUSHIN G, KOVALENKO I, ZDYRKO B, et al. A Major Constituent of Brown Algae for Use in High-Capacity Li-Ion Batteries[J]. Science, 2011, 334(6052): 75-79.
[68] RYOU M H, KIM J, LEE I, et al. Mussel-Inspired Adhesive Binders for HighPerformance Silicon Nanoparticle Anodes in Lithium-Ion Batteries[J]. Advanced Materials, 2013, 25(11): 1571-1576.
[69] CHOI S H, CHOI J W, KWON T, et al. Highly Elastic Binders Integrating Polyrotaxanes for Silicon Microparticle Anodes in Lithium Ion Batteries[J]. Science, 2017, 21, 357(6348): 279-283.
[70] SONG Z B, CHEN S M, ZHAO Y, et al. Constructing a Resilient Hierarchical Conductive Network to Promote Cycling Stability of SiOx Anode via Binder Design[J]. Small, 2021, 17(42): 2102256.
[71] ZHANG L, HU B, JIANG S S, et al. Understanding of Pre-Lithiation of Poly(acrylic acid) Binder: Striking the Balances Between the Cycling Performance and Slurry Stability for Silicon-Graphite Composite Electrodes in Li-Ion Batteries[J]. Journal of Power Sources, 2019, 416: 125-131.
[72] ZHANG L, ZHANG X S, JIANG S S, et al. Restorable Neutralization of Poly(acrylic acid) Binders toward Balanced Processing Properties and Cycling Performance for Silicon Anodes in Lithium-Ion Batteries[J]. ACS Applied Materials & Interfaces, 2020, 12(52): 57932-57940.
[73] ZHANG S G, LI M N, ZHANG J, et al. A Water-Soluble, Adhesive and 3D CrossLinked Polyelectrolyte Binder for High-Performance Lithium–Sulfur Batteries[J].Journal of Materials Chemistry A, 2021, 9(4): 2375-2384.
[74] Qin S G, Cao Y P, Zhang J Y, et al. Ionic liquid/Poly(ionic liquid)-Based Electrolytesfor Lithium Batteries[J]. Industrial Chemistry& Materials, 2023, 1(1): 39-59.
[75] CUI Y, Silicon anodes[J]. Nature Energy, 2021, 6: 995–996.
[76] 李泽南. 2-甲氧基丙烯酸乙酯-丙烯酸共聚物的合成及其在锂离子电池中的应用[D]. 深圳:南方科技大学. 2022.
[77] SUN S G, LI J T, WU Z Y, et al. Water Soluble Binder, an Electrochemical Performance Booster for Electrode Materials with High Energy Density[J]. Advanced Energy Materials, 2017, 7(24): 1701185.
[78] YAO D H, DENG Y H, WANG C Y, et al. Interpretation of the Electrode Binder Standard for Lithium Ion Battrery[J]. Energy Storage Science and Technology, 2019, 8(2): 419-427.

所在学位评定分委会
化学
国内图书分类号
541.316
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/544599
专题工学院_材料科学与工程系
推荐引用方式
GB/T 7714
陈新宇. 有机碱改性的聚丙烯酸系硅基负极粘结剂的合成与应用[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032254-陈新宇-材料科学与工程(5014KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[陈新宇]的文章
百度学术
百度学术中相似的文章
[陈新宇]的文章
必应学术
必应学术中相似的文章
[陈新宇]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。