[1] STEPHAN S, FREDERIC D, MARKUS-CHRISTIAN A. Novel InP- and GaSb-based light sources for the near to far infrared[J]. Semiconductor Science and Technology, 2016, 31(11): 113005.
[2] POPA D, UDREA F. Towards integrated mid-infrared gas sensors[J]. Sensors, 2019, 19(9): 2076.
[3] 张振. 红外发光材料制备及辐射发光性能研究[D]. 湘潭: 湘潭大学, 2020.
[4] 陈 长 水 , 赵 向 阳 , 徐 磊 , 等 . 中 红 外 光 源 研 究 进 展 [J]. 红 外 技 术 , 2015, 37(08): 625-634.
[5] 韩丽丽. InGaAs/AlGaAs 红外发光二极管的制备及性能研究[D]. 北京: 中国科学院大学(中国科学院物理研究所), 2021.
[6] LOCHBAUM A, FEDORYSHYN Y, DORODNYY A, et al. On-chip narrowband thermal emitter for Mid-IR optical gas sensing[J]. ACS Photonics, 2017, 4(6): 1371-1380.
[7] PUSCH A, DE LUCA A, OH S S, et al. A highly efficient CMOS nanoplasmonic crystal enhanced slow-wave thermal emitter improves infrared gas-sensing devices[J]. Scientific Reports, 2015, 5(1): 17451.
[8] FUJITA H, UENO K, MOROHARA O, et al. AlInSb mid-infrared LEDs of high luminous efficiency for gas sensors[J]. Physica Status Solidi (a), 2018, 215(8): 1700449.
[9] VITIELLO M S, SCALARI G, WILLIAMS B, et al. Quantum cascade lasers: 20 years of challenges[J]. Optics Express, 2015, 23(4): 5167-5182.
[10] RAZEGHI M, LU Q Y, BANDYOPADHYAY N, et al. Quantum cascade lasers: from tool to product[J]. Optics Express, 2015, 23(7): 8462-8475.
[11] LIN H, LUO Z, GU T, et al. Mid-infrared integrated photonics on silicon: a perspective[J]. Nanophotonics, 2018, 7(2): 393-420.
[12] HU T, DONG B, LUO X, et al. Silicon photonic platforms for mid-infrared applications [J]. Photonics Research, 2017, 5(5): 417-430.
[13] LIU D-S, WU J, XU H, et al. Emerging light-emitting materials for photonic integration[J]. Advanced Materials, 2021, 33(4): 2003733.
[14] BRIDGMAN P W. Two new modifications of phosphorus[J]. Journal of the American Chemical Society, 1914, 36(7): 1344-1363.
[15] LIU H, NEAL A T, ZHU Z, et al. Phosphorene: an unexplored 2D semiconductor with a high hole mobility[J]. ACS Nano, 2014, 8(4): 4033-4041.
[16] LI L, YU Y, YE G J, et al. Black phosphorus field-effect transistors[J]. Nature Nanotechnology, 2014, 9(5): 372-377.
[17] HULTGREN R, GINGRICH N S, WARREN B E. The atomic distribution in red and black phosphorus and the crystal structure of black phosphorus[J]. The Journal of Chemical Physics, 1935, 3(6): 351-355.
[18] WU J, MAO N, XIE L, et al. Identifying the crystalline orientation of black phosphorus using angle-resolved polarized Raman spectroscopy[J]. Angewandte Chemie International Edition, 2015, 54(8): 2366-2369.
[19] RIBEIRO H B, PIMENTA M A, DE MATOS C J S, et al. Unusual angular dependence of the Raman response in black phosphorus[J]. ACS Nano, 2015, 9(4): 4270-4276.
[20] QIAO J, KONG X, HU Z-X, et al. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus[J]. Nature Communications, 2014, 5(1): 4475.
[21] HAN C Q, YAO M Y, BAI X X, et al. Electronic structure of black phosphorus studied by angle-resolved photoemission spectroscopy[J]. Physical Review B, 2014, 90(8): 085101.
[22] RODIN A S, CARVALHO A, CASTRO NETO A H. Strain-induced gap modification in black phosphorus[J]. Physical Review Letters, 2014, 112(17): 176801.
[23] LOW T, RODIN A S, CARVALHO A, et al. Tunable optical properties of multilayer black phosphorus thin films[J]. Physical Review B, 2014, 90(7): 075434.
[24] YUAN H, LIU X, AFSHINMANESH F, et al. Polarization-sensitive broadband photodetector using a black phosphorus vertical p–n junction[J]. Nature Nanotechnology, 2015, 10(8): 707-713.
[25] TRAN V, SOKLASKI R, LIANG Y, et al. Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus[J]. Physical Review B, 2014, 89(23): 235319.
[26] LONG G, MARYENKO D, SHEN J, et al. Achieving ultrahigh carrier mobility in two-dimensional hole gas of black phosphorus[J]. Nano Letters, 2016, 16(12): 7768-7773.
[27] RUDENKO A N, KATSNELSON M I. Quasiparticle band structure and tight-binding model for single- and bilayer black phosphorus[J]. Physical Review B, 2014, 89(20): 201408.
[28] RUDENKO A N, YUAN S, KATSNELSON M I. Toward a realistic description of multilayer black phosphorus: From GW approximation to large-scale tight-binding simulations[J]. Physical Review B, 2015, 92(8): 085419.
[29] DONG S, ZHANG A, LIU K, et al. Ultralow-frequency collective compression mode and strong interlayer coupling in multilayer black phosphorus[J]. Physical Review Letters, 2016, 116(8): 087401.
[30] WANG V, LIU Y C, KAWAZOE Y, et al. Role of interlayer coupling on the evolution of band edges in few-layer phosphorene[J]. The Journal of Physical Chemistry Letters, 2015, 6(24): 4876-4883.
[31] LI L, KIM J, JIN C, et al. Direct observation of the layer-dependent electronic structure in phosphorene[J]. Nature Nanotechnology, 2017, 12(1): 21-25.
[32] CHEN C, CHEN F, CHEN X, et al. Bright mid-infrared photoluminescence from thin-film black phosphorus[J]. Nano Letters, 2019, 19(3): 1488-1493.
[33] WANG X, JONES A M, SEYLER K L, et al. Highly anisotropic and robust excitons in monolayer black phosphorus[J]. Nature Nanotechnology, 2015, 10(6): 517-521.
[34] SURRENTE A, MITIOGLU A A, GALKOWSKI K, et al. Excitons in atomically thin black phosphorus[J]. Physical Review B, 2016, 93(12): 121405.
[35] LIANG L, WANG J, LIN W, et al. Electronic bandgap and edge reconstruction in phosphorene materials[J]. Nano Letters, 2014, 14(11): 6400-6406.
[36] DAS S, ZHANG W, DEMARTEAU M, et al. Tunable transport gap in phosphorene[J]. Nano Letters, 2014, 14(10): 5733-5739.
[37] CHEN X, WANG L, WU Y, et al. Probing the electronic states and impurity effects in black phosphorus vertical heterostructures[J]. 2D Materials, 2016, 3(1): 015012.
[38] ZHANG G, HUANG S, CHAVES A, et al. Infrared fingerprints of few-layer black phosphorus[J]. Nature Communications, 2017, 8(1): 14071.
[39] ZHANG G, CHAVES A, HUANG S, et al. Determination of layer-dependent exciton binding energies in few-layer black phosphorus[J]. Science Advances, 2018, 4(3): eaap9977.
[40] XU R, ZHANG S, WANG F, et al. Extraordinarily bound quasi-one-dimensional trions in two-dimensional phosphorene atomic semiconductors[J]. ACS Nano, 2016, 10(2): 2046-2053.
[41] CHAVES A, LOW T, AVOURIS P, et al. Anisotropic exciton Stark shift in black phosphorus[J]. Physical Review B, 2015, 91(15): 155311.
[42] ZHANG G, HUANG S, WANG F, et al. Layer-dependent electronic and optical properties of 2D black phosphorus: fundamentals and engineering[J]. Laser & Photonics Reviews, 2021, 15(6): 2000399.
[43] LI P, APPELBAUM I. Electrons and holes in phosphorene[J]. Physical Review B, 2014, 90(11): 115439.
[44] TRAN V, FEI R, YANG L. Quasiparticle energies, excitons, and optical spectra of few-layer black phosphorus[J]. 2D Materials, 2015, 2(4): 044014.
[45] GE S, LI C, ZHANG Z, et al. Dynamical evolution of anisotropic response in black phosphorus under ultrafast photoexcitation[J]. Nano Letters, 2015, 15(7): 4650-4656.
[46] BHASKAR P, ACHTSTEIN A W, VERMEULEN M J W, et al. Radiatively dominated charge carrier recombination in black phosphorus[J]. The Journal of Physical Chemistry C, 2016, 120(25): 13836-13842.
[47] KIM H, UDDIN S Z, LIEN D-H, et al. Actively variable-spectrum optoelectronics with black phosphorus[J]. Nature, 2021, 596(7871): 232-237.
[48] JUNG D, BANK S, LEE M L, et al. Next-generation mid-infrared sources[J]. Journal of Optics, 2017, 19(12): 123001.
[49] WANG F, ZHANG G, HUANG S, et al. Electronic structures of air-exposed few-layer black phosphorus by optical spectroscopy[J]. Physical Review B, 2019, 99(7): 075427.
[50] FAVRON A, GAUFRèS E, FOSSARD F, et al. Photooxidation and quantum confinement effects in exfoliated black phosphorus[J]. Nature Materials, 2015, 14(8): 826-832.
[51] YANG J, XU R, PEI J, et al. Optical tuning of exciton and trion emissions in monolayer phosphorene[J]. Light: Science & Applications, 2015, 4(7): e312-e312.
[52] TIAN R, FEI R, HU S, et al. Observation of excitonic series in monolayer and few-layer black phosphorus[J]. Physical Review B, 2020, 101(23): 235407.
[53] PAREEK V, MADéO J, DANI K M. Ultrafast control of the dimensionality of exciton-exciton annihilation in atomically thin black phosphorus[J]. Physical Review Letters, 2020, 124(5): 057403.
[54] EHLEN N, SENKOVSKIY B V, FEDOROV A V, et al. Evolution of electronic structure of few-layer phosphorene from angle-resolved photoemission spectroscopy of black phosphorous[J]. Physical Review B, 2016, 94(24): 245410.
[55] VILLEGAS C E P, ROCHA A R, MARINI A. Anomalous temperature dependence of the band gap in black phosphorus[J]. Nano Letters, 2016, 16(8): 5095-5101.
[56] CARDONA M, MEYER T A, THEWALT M L W. Temperature dependence of the energy gap of semiconductors in the low-temperature limit[J]. Physical Review Letters, 2004, 92(19): 196403.
[57] O’DONNELL K P, CHEN X. Temperature dependence of semiconductor band gaps[J]. Applied Physics Letters, 1991, 58(25): 2924-2926.
[58] HUANG S, WANG F, ZHANG G, et al. From anomalous to normal: temperature dependence of the band gap in two-dimensional black phosphorus[J]. Physical Review Letters, 2020, 125(15): 156802.
[59] WEI Q, PENG X. Superior mechanical flexibility of phosphorene and few-layer black phosphorus[J]. Applied Physics Letters, 2014, 104(25): 251915.
[60] ÇAKıR D, SAHIN H, PEETERS F M. Tuning of the electronic and optical properties of single-layer black phosphorus by strain[J]. Physical Review B, 2014, 90(20): 205421.
[61] GUAN J, SONG W, YANG L, et al. Strain-controlled fundamental gap and structure of bulk black phosphorus[J]. Physical Review B, 2016, 94(4): 045414.
[62] QUEREDA J, SAN-JOSE P, PARENTE V, et al. Strong modulation of optical properties in black phosphorus through strain-engineered rippling[J]. Nano Letters, 2016, 16(5): 2931-2937.
[63] ZHANG Z, LI L, HORNG J, et al. Strain-modulated bandgap and piezo-resistive effect in black phosphorus field-effect transistors[J]. Nano Letters, 2017, 17(10): 6097-6103.
[64] CONLEY H J, WANG B, ZIEGLER J I, et al. Bandgap engineering of strained monolayer and bilayer MoS2[J]. Nano Letters, 2013, 13(8): 3626-3630.
[65] ZHU C R, WANG G, LIU B L, et al. Strain tuning of optical emission energy and polarization in monolayer and bilayer MoS2[J]. Physical Review B, 2013, 88(12): 121301.
[66] HUANG S, ZHANG G, FAN F, et al. Strain-tunable van der Waals interactions in few-layer black phosphorus[J]. Nature Communications, 2019, 10(1): 2447.
[67] HENRY L, SVITLYK V, MEZOUAR M, et al. Anisotropic thermal expansion of black phosphorus from nanoscale dynamics of phosphorene layers[J]. Nanoscale, 2020, 12(7): 4491-4497.
[68] KHOO K H, MAZZONI M S C, LOUIE S G. Tuning the electronic properties of boron nitride nanotubes with transverse electric fields: a giant dc Stark effect[J]. Physical Review B, 2004, 69(20): 201401.
[69] RAMASUBRAMANIAM A, NAVEH D, TOWE E. Tunable band gaps in bilayer transition-metal dichalcogenides[J]. Physical Review B, 2011, 84(20): 205325.
[70] ZHENG F, LIU Z, WU J, et al. Scaling law of the giant Stark effect in boron nitride nanoribbons and nanotubes[J]. Physical Review B, 2008, 78(8): 085423.
[71] KIM J, BAIK S S, RYU S H, et al. Observation of tunable band gap and anisotropic Dirac semimetal state in black phosphorus[J]. Science, 2015, 349(6249): 723-726.
[72] LI D, XU J-R, BA K, et al. Tunable bandgap in few-layer black phosphorus by electrical field[J]. 2D Materials, 2017, 4(3): 031009.
[73] DENG B, TRAN V, XIE Y, et al. Efficient electrical control of thin-film black phosphorus bandgap[J]. Nature Communications, 2017, 8(1): 14474.
[74] CHEN X, LU X, DENG B, et al. Widely tunable black phosphorus mid-infrared photodetector[J]. Nature Communications, 2017, 8(1): 1672.
[75] CHEN C, LU X, DENG B, et al. Widely tunable mid-infrared light emission in thin-film black phosphorus[J]. Science Advances, 2020, 6(7): eaay6134.
[76] ZILETTI A, CARVALHO A, CAMPBELL D K, et al. Oxygen defects in phosphorene[J]. Physical Review Letters, 2015, 114(4): 046801.
[77] TONGAY S, SUH J, ATACA C, et al. Defects activated photoluminescence in two-dimensional semiconductors: interplay between bound, charged and free excitons[J]. Scientific Reports, 2013, 3(1): 2657.
[78] ISLAND J O, STEELE G A, ZANT H S J V D, et al. Environmental instability of few-layer black phosphorus[J]. 2D Materials, 2015, 2(1): 011002.
[79] CHEN X, WU Y, WU Z, et al. High-quality sandwiched black phosphorus heterostructure and its quantum oscillations[J]. Nature Communications, 2015, 6(1): 7315.
[80] WOOD J D, WELLS S A, JARIWALA D, et al. Effective passivation of exfoliated black phosphorus transistors against ambient degradation[J]. Nano Letters, 2014, 14(12): 6964-6970.
[81] PEI J, GAI X, YANG J, et al. Producing air-stable monolayers of phosphorene and their defect engineering[J]. Nature Communications, 2016, 7(1): 10450.
[82] SHARMA A, WEN B, LIU B, et al. Defect engineering in few-layer phosphorene[J]. Small, 2018, 14(16): 1704556.
[83] XU R, YANG J, MYINT Y W, et al. Exciton brightening in monolayer phosphorene via dimensionality modification[J]. Advanced Materials, 2016, 28(18): 3493-3498.
[84] MIYAUCHI Y, IWAMURA M, MOURI S, et al. Brightening of excitons in carbon nanotubes on dimensionality modification[J]. Nature Photonics, 2013, 7(9): 715-719.
[85] AHMED T, KURIAKOSE S, ABBAS S, et al. Multifunctional optoelectronics via harnessing defects in layered black phosphorus[J]. Advanced Functional Materials, 2019, 29(39): 1901991.
[86] LIU B, KöPF M, ABBAS A N, et al. Black arsenic–phosphorus: layered anisotropic infrared semiconductors with highly tunable compositions and properties[J]. Advanced Materials, 2015, 27(30): 4423-4429.
[87] AMANI M, REGAN E, BULLOCK J, et al. Mid-wave infrared photoconductors based on black phosphorus-arsenic alloys[J]. ACS Nano, 2017, 11(11): 11724-11731.
[88] LONG M, GAO A, WANG P, et al. Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus[J]. Science Advances, 2017, 3(6): e1700589.
[89] YUAN S, SHEN C, DENG B, et al. Air-stable room-temperature mid-infrared photodetectors based on hBN/black arsenic phosphorus/hBN heterostructures[J]. Nano Letters, 2018, 18(5): 3172-3179.
[90] TAN W C, HUANG L, NG R J, et al. A black phosphorus carbide infrared phototransistor[J]. Advanced Materials, 2018, 30(6): 1705039.
[91] TAN W C, CAI Y, NG R J, et al. Few-layer black phosphorus carbide field-effect transistor via carbon doping[J]. Advanced Materials, 2017, 29(24): 1700503.
[92] GUO Q, POSPISCHIL A, BHUIYAN M, et al. Black phosphorus mid-infrared photodetectors with high gain[J]. Nano Letters, 2016, 16(7): 4648-4655.
[93] KUFER D, KONSTANTATOS G. Highly sensitive, encapsulated MoS2 photodetector with gate controllable gain and speed[J]. Nano Letters, 2015, 15(11): 7307-7313.
[94] SOCI C, ZHANG A, XIANG B, et al. ZnO nanowire UV photodetectors with high internal gain[J]. Nano Letters, 2007, 7(4): 1003-1009.
[95] BULLOCK J, AMANI M, CHO J, et al. Polarization-resolved black phosphorus/molybdenum disulfide mid-wave infrared photodiodes with high detectivity at room temperature[J]. Nature Photonics, 2018, 12(10): 601-607.
[96] YOUNGBLOOD N, CHEN C, KOESTER S J, et al. Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current[J]. Nature Photonics, 2015, 9(4): 247-252.
[97] DECKOFF-JONES S, LIN H, KITA D, et al. Chalcogenide glass waveguide-integrated black phosphorus mid-infrared photodetectors[J]. Journal of Optics, 2018, 20(4): 044004.
[98] YIN Y, CAO R, GUO J, et al. High-speed and high-responsivity hybrid silicon/black-phosphorus waveguide photodetectors at 2 µm[J]. Laser & Photonics Reviews, 2019, 13(6): 1900032.
[99] HUANG L, TAN W C, WANG L, et al. Infrared black phosphorus phototransistor with tunable responsivity and low noise equivalent power[J]. ACS Applied Materials & Interfaces, 2017, 9(41): 36130-36136.
[100]HUANG L, DONG B, GUO X, et al. Waveguide-integrated black phosphorus photodetector for mid-infrared applications[J]. ACS Nano, 2019, 13(1): 913-921.
[101]LIEN M R, WANG N, WU J, et al. Resonant grating-enhanced black phosphorus mid-wave infrared photodetector[J]. Nano Letters, 2022, 22(21): 8704-8710.
[102]CHEN C, YOUNGBLOOD N, PENG R, et al. Three-dimensional integration of black phosphorus photodetector with silicon photonics and nanoplasmonics[J]. Nano Letters, 2017, 17(2): 985-991.
[103]VENUTHURUMILLI P K, YE P D, XU X. Plasmonic resonance enhanced polarization-sensitive photodetection by black phosphorus in near infrared[J]. ACS Nano, 2018, 12(5): 4861-4867.
[104]YAN W, SHRESHA V R, JEANGROS Q, et al. Spectrally selective mid-wave infrared detection using Fabry-Pérot cavity enhanced black phosphorus 2D photodiodes[J]. ACS Nano, 2020, 14(10): 13645-13651.
[105]TIAN R, GU L, JI Y, et al. Black phosphorus photodetector enhanced by a planar photonic crystal cavity[J]. ACS Photonics, 2021, 8(10): 3104-3110.
[106]YUAN S, NAVEH D, WATANABE K, et al. A wavelength-scale black phosphorus spectrometer[J]. Nature Photonics, 2021, 15(8): 601-607.
[107]JIAO H, WANG X, CHEN Y, et al. HgCdTe/black phosphorus van der Waals heterojunction for high-performance polarization-sensitive midwave infrared photodetector[J]. Science Advances, 2022, 8(19): eabn1811.
[108]GAO A, LAI J, WANG Y, et al. Observation of ballistic avalanche phenomena in nanoscale vertical InSe/BP heterostructures[J]. Nature Nanotechnology, 2019, 14(3): 217-222.
[109]CHANG T-Y, CHEN P-L, YAN J-H, et al. Ultra-broadband, high speed, and high-quantum-efficiency photodetectors based on black phosphorus[J]. ACS Applied Materials & Interfaces, 2020, 12(1): 1201-1209.
[110]HUANG Y, NING J, CHEN H, et al. Mid-infrared black phosphorus surface-emitting laser with an open microcavity[J]. ACS Photonics, 2019, 6(7): 1581-1586.
[111]ZHANG Y, WANG S, CHEN S, et al. Wavelength-tunable mid-infrared lasing from black phosphorus nanosheets[J]. Advanced Materials, 2020, 32(17): 1808319.
[112]WANG J, ROUSSEAU A, YANG M, et al. Mid-infrared polarized emission from black phosphorus light-emitting diodes[J]. Nano Letters, 2020, 20(5): 3651-3655.
[113]CHANG T-Y, CHEN Y, LUO D-I, et al. Black phosphorus mid-infrared light-emitting diodes integrated with silicon photonic waveguides[J]. Nano Letters, 2020, 20(9): 6824-6830.
[114]GUPTA N, KIM H, AZAR N S, et al. Bright mid-wave infrared resonant-cavity light-emitting diodes based on black phosphorus[J]. Nano Letters, 2022, 22(3): 1294-1301.
[115]LI S, TIAN M, GAO Q, et al. Nanometre-thin indium tin oxide for advanced high-performance electronics[J]. Nature Materials, 2019, 18(10): 1091-1097.
[116]POPOV A A, STEPANOV M V, SHERSTNEV V V, et al. 3.3-μm LEDs for measuring methane[J]. Technical Physics Letters, 1997, 23(11): 828-830.
[117]HADJI E, BLEUSE J, MAGNEA N, et al. 3.2 μm infrared resonant cavity light emitting diode[J]. Applied Physics Letters, 1995, 67(18): 2591-2593.
[118]POPOV A A, STEPANOV M V, SHERSTNEV V V, et al. InAsSb light-emitting diodes for the detection of CO2 (λ=4.3 μm)[J]. Technical Physics Letters, 1998, 24(8): 596-598.
[119]DAS N C, OLVER K, TOWNER F, et al. Infrared (3.8μm) interband cascade light-emitting diode array with record high efficiency[J]. Applied Physics Letters, 2005, 87(4): 041105.
[120]DAS N C. Infrared light emitting device with two color emission[J]. Solid-State Electronics, 2010, 54(11): 1381-1383.
[121]BANDYOPADHYAY N, SLIVKEN S, BAI Y, et al. High power, continuous wave, room temperature operation of λ ∼ 3.4 μm and λ ∼ 3.55 μm InP-based quantum cascade lasers[J]. Applied Physics Letters, 2012, 100(21): 212104.
[122]XIE F, CANEAU C, LEBLANC H P, et al. Room temperature CW operation of short wavelength quantum cascade lasers made of strain balanced GaxIn1-xAs/AlyIn1-yAs material on InP substrates[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2011, 17(5): 1445-1452.
[123]FAN H Y. Temperature dependence of the energy gap in semiconductors[J]. Physical Review, 1951, 82(6): 900-905.
[124]BABA M, NAKAMURA Y, SHIBATA K, et al. Photoconduction of black phosphorus in the infrared region[J]. Japanese Journal of Applied Physics, 1991, 30(7A): L1178.
[125]SCHMIDT R, NIEHUES I, SCHNEIDER R, et al. Reversible uniaxial strain tuning in atomically thin WSe2[J]. 2D Materials, 2016, 3(2): 021011.
[126]AHN G H, AMANI M, RASOOL H, et al. Strain-engineered growth of two-dimensional materials[J]. Nature Communications, 2017, 8(1): 608.
[127]DESAI S B, SEOL G, KANG J S, et al. Strain-induced indirect to direct bandgap transition in multilayer WSe2[J]. Nano Letters, 2014, 14(8): 4592-4597.
[128]FRISENDA R, DRüPPEL M, SCHMIDT R, et al. Biaxial strain tuning of the optical properties of single-layer transition metal dichalcogenides[J]. npj 2D Materials and Applications, 2017, 1(1): 10.
[129]CHO C, WONG J, TAQIEDDIN A, et al. Highly strain-tunable interlayer excitons in MoS2/WSe2 heterobilayers[J]. Nano Letters, 2021, 21(9): 3956-3964.
[130]KEYES R W. The electrical properties of black phosphorus[J]. Physical Review, 1953, 92(3): 580-584.
[131]SANSONE G, KARTTUNEN A J, USVYAT D, et al. On the exfoliation and anisotropic thermal expansion of black phosphorus[J]. Chemical Communications, 2018, 54(70): 9793-9796.
[132]JIRO O, TOMISI K. Thermal expansion of fused quartz[J]. Metrologia, 1969, 5(2): 50.
[133]HU X, YASAEI P, JOKISAARI J, et al. Mapping thermal expansion coefficients in freestanding 2D materials at the nanometer scale[J]. Physical Review Letters, 2018, 120(5): 055902.
[134]JOSEPH B, DEMITRI N, LOTTI P, et al. Unraveling the peculiarities in the temperature-dependent structural evolution of black phosphorus[J]. Condensed Matter, 2017, 2(1): 11.
[135]YANG Z, ZHAO J, WEI N. Temperature-dependent mechanical properties of monolayer black phosphorus by molecular dynamics simulations[J]. Applied Physics Letters, 2015, 107(2): 023107.
[136]FENG L-P, LI N, YANG M-H, et al. Effect of pressure on elastic, mechanical and electronic properties of WSe2: a first-principles study[J]. Materials Research Bulletin, 2014, 50: 503-508.
[137]ZENG F, ZHANG W-B, TANG B-Y. Electronic structures and elastic properties of monolayer and bilayer transition metal dichalcogenides MX2 (M = Mo, W; X = O, S, Se, Te): a comparative first-principles study[J]. Chinese Physics B, 2015, 24(9): 097103.
[138]KANG J, TONGAY S, ZHOU J, et al. Band offsets and heterostructures of two-dimensional semiconductors[J]. Applied Physics Letters, 2013, 102(1): 012111.
[139]ÇAKıR D, PEETERS F M, SEVIK C. Mechanical and thermal properties of h-MX2 (M = Cr, Mo, W; X = O, S, Se, Te) monolayers: a comparative study[J]. Applied Physics Letters, 2014, 104(20): 203110.
[140]DING W, HAN D, ZHANG J, et al. Mechanical responses of WSe2 monolayers: a molecular dynamics study[J]. Materials Research Express, 2019, 6(8): 0
[141]CASTELLANOS-GOMEZ A, BUSCEMA M, MOLENAAR R, et al. Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping[J]. 2D Materials, 2014, 1(1): 011002.
[142]SAHIN H, TONGAY S, HORZUM S, et al. Anomalous Raman spectra and thickness-dependent electronic properties of WSe2[J]. Physical Review B, 2013, 87(16): 165409.
[143]CASTELLANOS-GOMEZ A, VICARELLI L, PRADA E, et al. Isolation and characterization of few-layer black phosphorus[J]. 2D Materials, 2014, 1(2): 025001.
[144]YOU Y, ZHANG X-X, BERKELBACH T C, et al. Observation of biexcitons in monolayer WSe2[J]. Nature Physics, 2015, 11(6): 477-481.
[145]JONES A M, YU H, GHIMIRE N J, et al. Optical generation of excitonic valley coherence in monolayer WSe2[J]. Nature Nanotechnology, 2013, 8(9): 634-638.
[146]HONG X, KIM J, SHI S-F, et al. Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures[J]. Nature Nanotechnology, 2014, 9(9): 682-686.
[147]ZHANG X-X, YOU Y, ZHAO S Y F, et al. Experimental evidence for dark excitons in monolayer WSe2[J]. Physical Review Letters, 2015, 115(25): 257403.
[148]ROBERTSON J. High dielectric constant oxides[J]. The European Physical Journal - Applied Physics, 2004, 28(3): 265-291.
[149]QIU D Y, DA JORNADA F H, LOUIE S G. Environmental screening effects in 2D materials: renormalization of the bandgap, electronic structure, and optical spectra of few-layer black phosphorus[J]. Nano Letters, 2017, 17(8): 4706-4712.
[150]GU M, ZHOU Y, SUN C Q. Local bond average for the thermally induced lattice expansion[J]. The Journal of Physical Chemistry B, 2008, 112(27): 7992-7995.
[151]SUN C Q. Thermo-mechanical behavior of low-dimensional systems: the local bond average approach[J]. Progress in Materials Science, 2009, 54(2): 179-307.
[152]ARORA A, KOPERSKI M, NOGAJEWSKI K, et al. Excitonic resonances in thin films of WSe2: from monolayer to bulk material[J]. Nanoscale, 2015, 7(23): 10421-10429.
[153]WANG Z-Y, ZHOU Y-L, WANG X-Q, et al. Effects of in-plane stiffness and charge transfer on thermal expansion of monolayer transition metal dichalcogenide[J]. Chinese Physics B, 2015, 24(2): 026501.
[154]MORELL N, RESERBAT-PLANTEY A, TSIOUTSIOS I, et al. High quality factor mechanical resonators based on WSe2 monolayers[J]. Nano Letters, 2016, 16(8): 5102-5108.
[155]LI Z, WANG Y, JIANG J, et al. Temperature-dependent Raman spectroscopy studies of 1–5-layer WSe2[J]. Nano Research, 2020, 13(2): 591-595.
[156]PEASE R S. An X-ray study of boron nitride[J]. Acta Crystallographica, 1952, 5(3): 356-361.
[157]CAI Q, SCULLION D, GAN W, et al. High thermal conductivity of high-quality monolayer boron nitride and its thermal expansion[J]. Science Advances, 2019, 5(6): eaav0129.
[158]KANETA C, KATAYAMA-YOSHIDA H, MORITA A. Lattice dynamics of black phosphorus[J]. Solid State Communications, 1982, 44(5): 613-617.
[159]ALLEN P B, CARDONA M. Theory of the temperature dependence of the direct gap of germanium[J]. Physical Review B, 1981, 23(4): 1495-1505.
[160]ALLEN P B, CARDONA M. Temperature dependence of the direct gap of Si and Ge[J]. Physical Review B, 1983, 27(8): 4760-4769.
[161]LAUTENSCHLAGER P, ALLEN P B, CARDONA M. Temperature dependence of band gaps in Si and Ge[J]. Physical Review B, 1985, 31(4): 2163-2171.
[162]SCHNATTERLY S E. Effect of applied uniaxial stresses on the optical absorption of F centers in alkali halides[J]. Physical Review, 1965, 140(4A): A1364-A1383.
[163]EMURA S, MOHD-TAWIL S-N, KRISHNAMURTHY D, et al. An approach to temperature-insensitive band gap – the InGaGdN case[J]. Physica Status Solidi (b), 2012, 249(3): 489-493.
[164]CARDONA M. Renormalization of the optical response of semiconductors by electron–phonon interaction[J]. Physica Status Solidi (a), 2001, 188(4): 1209-1232.
[165]PäSSLER R. Basic model relations for temperature dependencies of fundamental energy gaps in semiconductors[J]. Physica Status Solidi (b), 1997, 200(1): 155-172.
[166]PäSSLER R. Temperature dependence of exciton peak energies in multiple quantum wells[J]. Journal of Applied Physics, 1998, 83(6): 3356-3359.
[167]PäSSLER R. Moderate phonon dispersion shown by the temperature dependence of fundamental band gaps of various elemental and binary semiconductors including wide-band gap materials[J]. Journal of Applied Physics, 2000, 88(5): 2570-2577.
[168]ISHITANI Y, YAGUCHI H, SHIRAKI Y. Temperature dependence of excitonic Γc–Γv transition energies of GaxIn1-xP crystals[J]. Japanese Journal of Applied Physics, 2001, 40(3R): 1183.
[169]KIM C K, LAUTENSCHLAGER P, CARDONA M. Temperature dependence of the fundamental energy gap in GaAs[J]. Solid State Communications, 1986, 59(12): 797-802.
[170]MANOOGIAN A, WOOLLEY J C. Temperature dependence of the energy gap in semiconductors[J]. Canadian Journal of Physics, 1984, 62(3): 285-287.
[171]张熬, 陈鹏, 周婧, 等. 半导体的禁带宽度与温度关系研究[J]. 光电子技术, 2019, 39(03): 160-167.
[172]GIBBS Z M, KIM H, WANG H, et al. Temperature dependent band gap in PbX (X = S, Se, Te)[J]. Applied Physics Letters, 2013, 103(26): 262109.
[173]KEFFER C, HAYES T M, BIENENSTOCK A. PbTe Debye-Waller factors and band-gap temperature dependence[J]. Physical Review Letters, 1968, 21(25): 1676-1678.
[174]DEY P, PAUL J, BYLSMA J, et al. Origin of the temperature dependence of the band gap of PbS and PbSe quantum dots[J]. Solid State Communications, 2013, 165: 49-54.
[175]OKADA Y, TOKUMARU Y. Precise determination of lattice parameter and thermal expansion coefficient of silicon between 300 and 1500 K[J]. Journal of Applied Physics, 1984, 56(2): 314-320.
[176]SKELTON J M, PARKER S C, TOGO A, et al. Thermal physics of the lead chalcogenides PbS, PbSe, and PbTe from first principles[J]. Physical Review B, 2014, 89(20): 205203.
[177]XU T, WANG X, MAI J, et al. Strain engineering for 2D ferroelectricity in lead chalcogenides[J]. Advanced Electronic Materials, 2020, 6(1): 1900932.
[178]CAI J, ISHIKAWA Y, WADA K. Strain induced bandgap and refractive index variation of silicon[J]. Optics Express, 2013, 21(6): 7162-7170.
[179]TSANG Y W, COHEN M L. Calculation of the temperature dependence of the energy gaps in PbTe and SnTe[J]. Physical Review B, 1971, 3(4): 1254-1261.
[180]SCHLüTER M, MARTINEZ G, COHEN M L. Pressure and temperature dependence of electronic energy levels in PbSe and PbTe[J]. Physical Review B, 1975, 12(2): 650-658.
[181]SMITH A M, MANCINI M C, NIE S. Second window for in vivo imaging[J]. Nature Nanotechnology, 2009, 4(11): 710-711.
[182]EGGEBRECHT A T, FERRADAL S L, ROBICHAUX-VIEHOEVER A, et al. Mapping distributed brain function and networks with diffuse optical tomography[J]. Nature Photonics, 2014, 8(6): 448-454.
[183]ZHAO X, TAN Z-K. Large-area near-infrared perovskite light-emitting diodes[J]. Nature Photonics, 2020, 14(4): 215-218.
[184]BOREK C, HANSON K, DJUROVICH P I, et al. Highly efficient, near-infrared electrophosphorescence from a Pt–metalloporphyrin complex[J]. Angewandte Chemie International Edition, 2007, 46(7): 1109-1112.
[185]HUANG H, YU H, XU H, et al. Near infrared spectroscopy for on/in-line monitoring of quality in foods and beverages: a review[J]. Journal of Food Engineering, 2008, 87(3): 303-313.
[186]HAN C B, HE C, LI X J. Near-infrared light emission from a GaN/Si nanoheterostructure array[J]. Advanced Materials, 2011, 23(41): 4811-4814.
[187]SENNAROGLU A, MOROVA Y. Divalent (Cr2+), trivalent (Cr3+), and tetravalent (Cr4+) chromium ion-doped tunable solid-state lasers operating in the near and mid-infrared spectral regions[J]. Applied Physics B, 2021, 128(1): 9.
[188]LI D, YU Y, NING C-Z. Super-stable high-quality few-layer black phosphorus for photonic applications[J]. ACS Applied Nano Materials, 2021, 4(5): 4746-4753.
[189]HE Y-M, CLARK G, SCHAIBLEY J R, et al. Single quantum emitters in monolayer semiconductors[J]. Nature Nanotechnology, 2015, 10(6): 497-502.
[190]KISTANOV A A, CAI Y, ZHOU K, et al. The role of H2O and O2 molecules and phosphorus vacancies in the structure instability of phosphorene[J]. 2D Materials, 2017, 4(1): 015010.
[191]AHMED T, BALENDHRAN S, KARIM M N, et al. Degradation of black phosphorus is contingent on UV–blue light exposure[J]. npj 2D Materials and Applications, 2017, 1(1): 18.
[192]WALIA S, SABRI Y, AHMED T, et al. Defining the role of humidity in the ambient degradation of few-layer black phosphorus[J]. 2D Materials, 2017, 4(1): 015025.
[193]何定飞. 成像光谱仪分光技术概览[J]. 工程技术(全文版), 2016, (8): 00319-00320.
[194]庞亚军. 小型化高分辨率多次色散光栅光谱仪研究[D]. 天津: 天津大学, 2018.
[195]PLANCK M. On the law of distribution of energy in the normal spectrum[J]. Annalen der physik, 1901, 4(553): 1.
[196]朱亮. 弱无序红外半导体合金材料的变条件光致发光谱研究[D]. 上海: 中国科学院研究生院(上海技术物理研究所), 2016.
[197]ROWELL N L, BUIJS H. Double modulation Fourier transform infrared photoluminescence of InSb[J]. Microchimica Acta, 1988, 94(1): 435-439.
[198]FUCHS F, LUSSON A, KOIDL P, et al. Fourier transform infrared photoluminescence of Hg1-xCdxTe[J]. Journal of Crystal Growth, 1990, 101(1): 722-726.
[199]FUCHS F, SCHNEIDER H, KOIDL P, et al. Far-infrared emission by resonant-polaron effects in narrow-band-gap Hg1-xCdxTe[J]. Physical Review Letters, 1991, 67(10): 1310-1313.
[200]REISINGER A R, ROBERTS R N, CHINN S R, et al. Photoluminescence of infrared sensing materials using an FTIR spectrometer[J]. Review of Scientific Instruments, 1989, 60(1): 82-86.
[201]翁诗甫. 傅里叶变换红外光谱分析[M]. 北京: 化学工业出版社, 2010: 42-72.
[202]杨庆华. 高光谱分辨率时间调制傅氏变换成像光谱技术研究[D]. 西安: 中国科学院研究生院(西安光学精密机械研究所), 2009.
[203]丛 景 宇 . 基 于 数 字 锁 相 放 大 器 的 拉 曼 光 谱 信 号 检 测 [D]. 青 岛 : 中 国 海 洋 大 学 , 2015.
[204]邵欣. 准连续信号相敏检测方法及其在光谱分析中的应用[D]. 天津: 河北工业大学, 2014.
[205]毛圣源, 罗向东, 周传航. 数字锁相放大器探测微弱调制信号[J]. 激光杂志, 2019, 40(02): 49-53.
[206]ZHANG Y G, GU Y, WANG K, et al. Fourier transform infrared spectroscopy approach for measurements of photoluminescence and electroluminescence in mid-infrared[J]. Review of Scientific Instruments, 2012, 83(5): 053106.
[207]SHAO J, YUE F, Lü X, et al. Photomodulated infrared spectroscopy by a step-scan Fourier transform infrared spectrometer[J]. Applied Physics Letters, 2006, 89(18): 182121.
[208]SHAO J, LU W, Lü X, et al. Modulated photoluminescence spectroscopy with a step-scan Fourier transform infrared spectrometer[J]. Review of Scientific Instruments, 2006, 77(6): 063104.
[209]ZHANG X, SHAO J, CHEN L, et al. Infrared photoluminescence of arsenic-doped HgCdTe in a wide temperature range of up to 290 K[J]. Journal of Applied Physics, 2011, 110(4): 043503.
[210]邵军, 陆卫, 吕翔, 等. 基于步进扫描的红外调制光致发光谱的方法及装置: 中国, CN200610023133.6[P]. 2008-10-08.
[211]杨全魁. InGaAs/InAlAs 量子级联激光器物理、材料及器件[D]. 上海: 中国科学院上海冶金研究所, 2000.
[212]陈熙仁. 红外调制光谱研究Ⅲ-Ⅴ族窄禁带锑化物与稀铋半导体电子能带结构[D]. 上海: 中国科学院研究生院(上海技术物理研究所), 2015.
[213]CUI X, LEE G-H, KIM Y D, et al. Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform[J]. Nature Nanotechnology, 2015, 10(6): 534-540.
[214]HUANG M, LI S, ZHANG Z, et al. Multifunctional high-performance van der Waals heterostructures[J]. Nature Nanotechnology, 2017, 12(12): 1148-1154.
[215]LIU X, QU D, LI H-M, et al. Modulation of quantum tunneling via a vertical two-dimensional black phosphorus and molybdenum disulfide p–n junction[J]. ACS Nano, 2017, 11(9): 9143-9150.
[216]YAN R, FATHIPOUR S, HAN Y, et al. Esaki diodes in van der Waals heterojunctions with broken-gap energy band alignment[J]. Nano Letters, 2015, 15(9): 5791-5798.
[217]SHIM J, OH S, KANG D-H, et al. Phosphorene/rhenium disulfide heterojunction-based negative differential resistance device for multi-valued logic[J]. Nature Communications, 2016, 7(1): 13413.
[218]CHHOWALLA M, JENA D, ZHANG H. Two-dimensional semiconductors for transistors[J]. Nature Reviews Materials, 2016, 1(11): 16052.
[219]GOOSSENS S, NAVICKAITE G, MONASTERIO C, et al. Broadband image sensor array based on graphene–CMOS integration[J]. Nature Photonics, 2017, 11(6): 366-371.
[220]AKINWANDE D, HUYGHEBAERT C, WANG C-H, et al. Graphene and two-dimensional materials for silicon technology[J]. Nature, 2019, 573(7775): 507-518.
[221]JARIWALA D, MARKS T J, HERSAM M C. Mixed-dimensional van der Waals heterostructures[J]. Nature Materials, 2017, 16(2): 170-181.
[222]YANG H, HEO J, PARK S, et al. Graphene barristor, a triode device with a gate-controlled Schottky barrier[J]. Science, 2012, 336(6085): 1140-1143.
[223]MIAO J, LIU X, JO K, et al. Gate-tunable semiconductor heterojunctions from 2D/3D van der Waals interfaces[J]. Nano Letters, 2020, 20(4): 2907-2915.
[224]XU K, CAI Y, ZHU W. Esaki diodes based on 2-D/3-D heterojunctions[J]. IEEE Transactions on Electron Devices, 2018, 65(10): 4155-4159.
[225]KRISHNAMOORTHY S, II E W L, LEE C H, et al. High current density 2D/3D MoS2/GaN Esaki tunnel diodes[J]. Applied Physics Letters, 2016, 109(18): 183505.
[226]MIAO J, LEBLANC C, WANG J, et al. Heterojunction tunnel triodes based on two-dimensional metal selenide and three-dimensional silicon[J]. Nature Electronics, 2022, 5(11): 744-751.
[227]WANG Z, HEMMETTER A, UZLU B, et al. Graphene in 2D/3D heterostructure diodes for high performance electronics and optoelectronics[J]. Advanced Electronic Materials, 2021, 7(7): 2001210.
[228]朱淼. 石墨烯/硅异质结光电探测器性能研究[D]. 北京: 清华大学, 2015.
[229]AN X, LIU F, JUNG Y J, et al. Tunable graphene–silicon heterojunctions for ultrasensitive photodetection[J]. Nano Letters, 2013, 13(3): 909-916.
[230]YE Y, DAI L. Graphene-based Schottky junction solar cells[J]. Journal of Materials Chemistry, 2012, 22(46): 24224-24229.
[231]LOPEZ-SANCHEZ O, ALARCON LLADO E, KOMAN V, et al. Light generation and harvesting in a van der Waals heterostructure[J]. ACS Nano, 2014, 8(3): 3042-3048.
[232]LI D, CHENG R, ZHOU H, et al. Electric-field-induced strong enhancement of electroluminescence in multilayer molybdenum disulfide[J]. Nature Communications, 2015, 6(1): 7509.
[233]LIU Y, LIU S, WANG Z, et al. Low-resistance metal contacts to encapsulated semiconductor monolayers with long transfer length[J]. Nature Electronics, 2022, 5(9): 579-585.
[234]LIU Y, HUANG Y, DUAN X. Van der Waals integration before and beyond two-dimensional materials[J]. Nature, 2019, 567(7748): 323-333.
[235]LIU Y, GUO J, ZHU E, et al. Approaching the Schottky–Mott limit in van der Waals metal–semiconductor junctions[J]. Nature, 2018, 557(7707): 696-700.
[236]TAO Q, WU R, LI Q, et al. Reconfigurable electronics by disassembling and reassembling van der Waals heterostructures[J]. Nature Communications, 2021, 12(1): 1825.
[237]PERELLO D J, CHAE S H, SONG S, et al. High-performance n-type black phosphorus transistors with type control via thickness and contact-metal engineering[J]. Nature Communications, 2015, 6(1): 7809.
[238]TAKAHAGI T, NAGAI I, ISHITANI A, et al. The formation of hydrogen passivated silicon single‐crystal surfaces using ultraviolet cleaning and HF etching[J]. Journal of Applied Physics, 1988, 64(7): 3516-3521.
[239]王溪, 林春, 林加木, 等. 利用傅里叶变换测量红外焦平面器件响应光谱[J]. 激光与红外, 2016, 46(02): 200-203.
修改评论