[1] 李晋闽. SiC 材料及器件研制的进展[J]. 物理, 2000.
[2] 钱照明. 电力电子器件及其应用的现状和发展[J]. 变频器世界, 2014(9):2.
[3] 张峰, 张国良. 宽禁带半导体碳化硅 IGBT 器件研究进展与前瞻[J]. 电子与封装, 2023, 23(1):13.
[4] 杨静, 杨洪星. 几种典型宽禁带半导体材料的制备及发展现状[J]. 电子工业专用设备, 2016(8):4.
[5] 李国熠, 滑育楠, 邬海峰. 高功率微波 GaN 器件研究现状与发展趋势[J]. 电子世界, 2018(10):2.
[6] Jia C, Zhang B. CMP development of gallium nitride material[C]// International Conference on Planarization/cmp Technology. IEEE, 2016.
[7] Noriko, Ohmori, Tomonori, et al. Characterization of Dislocations in GaN Thin Film and GaN/AIN Multilayer[J]. Materials science forum, 2012.
[8] Yaita J, Fukuda K, Yamada A, et al. Improved Channel Electron Mobility Thr ough Electric Field Reduction in GaN Quantum-Well Double-Heterostructures[J]. IEEE Electron Device Letters, 2021(42-11).
[9] 赵正平. 发展中的 GaN 微电子(一)[J]. 中国电子科学研究院学报, 2011, 6(3):7.
[10] Shealy J R. Progress in Si-based AlGaN HEMTs for RF power amplifiers[C]// Silicon Monolithic Integrated Circuits in RF Systems, 2001. Digest of Papers. 2001 Topical Meeting on. IEEE, 2001.
[11] Singhal S, Li T, Chaudhari A, et al. Reliability of large periphery GaN-on-Si HFETs[C]// Rocs Workshop. IEEE, 2006.
[12] Mishra U K, Parikh P, Wu Y F. AlGaN/GaN HEMTs-an overview of device operation and applications[J]. Proc IEEE, 2002, 90(6):1022-1031.
[13] Won Y, Houshmand F, Agonafer D, et al. Microfluidic Heat Exchangers for High Power Density GaN on SiC[C]// Compound Semiconductor Integrated Circuit Symposium. IEEE, 2014.
[14] 郭海军. Si/InP 晶片低温键合技术的理论分析和实验研究[D]. 北京邮电大学.
[15] Albrecht J D, Ruden P P, Binari S C, et al. AlGaN/GaN heterostructure field -effect transistor model including thermal effects[J]. IEEE Transactions on Electron Devices, 2000, 47(11):2031-2036.
[16] Chu K K, Chao P C, Diaz J A, et al. S2-T4: Low-temperature substrate bonding technology for high power GaN-on-diamond HEMTs[C]// Lester Eastman Conference on High Performance Devices. IEEE, 2014.
[17] Chao P C, Chu K, Creamer C, et al. Low-Temperature Bonded GaN-on-Diamond HEMTs with 11 W/mm Output Power at 10 GHz[J]. Electron Devices IEEE Transactions on, 2015, 62(11):3658-3664.
[18] Francis D, Ejeckam F, Wasserbauer J, et al. Method for manufacturing semiconductor devices having gallium nitride epilayers on diamond substra tes. US, 2015.
[19] K. Hirama, M. Kasu and Y. Taniyasu, "RF High-Power Operation of AlGaN/GaN HEMTs Epitaxially Grown on Diamond," in IEEE Electron Device Letters, vol. 33, no. 4, pp. 513-515, April 2012, doi: 10.1109/LED.2012.2185678.
[20] Kazuyuki Hirama, Yoshitaka Taniyasu, and Makoto Kasu, "AlGaN/GaN high-electron mobility transistors with low thermal resistance grown on single-crystal diamond (111) substrates by metalorganic vapor-phase epitaxy", Appl. Phys. Lett. 98, 162112(2011) https://doi.org/10.1063/1.3574531
[21] Ranjan K, Arulkumaran S, Ng G I, et al. Investigation of Self-Heating Effect on DC and RF Performances in AlGaN/GaN HEMTs on CVD-Diamond[J]. IEEE Journal of the Electron Devices Society, 2019, 7:1264-1269.
[22] Anderson T J, Koehler A D, Tadjer M J, et al. Process improvements for an improved diamond - capped GaN HEMT device[C]// International Conference on Compound Semiconductor Manufacturing Technology. 2013.
[23] Impact of Intrinsic Stress in Diamond Capping Layers on the Electrical Behavior of AlGaN/GaN HEMTs[J]. IEEE Transactions on Electron Devices, 2013, 60(10):3149 - 3156.
[24] Wang A, Tadjer M J, Calle F. Simulation of thermal management in AlGaN/GaN HEMTs with integrated diamond heat spreaders[J]. Semiconductor Science & Technology, 2013, 28(5):055010.
[25] M. Wang, Y. Mei, X. Li, R. Burgos, D. Boroyevich and G. -Q. Lu, "Pressureless Silver Sintering on Nickel for Power Module Packaging," in IEEE Transactions on Power Electronics, vol. 34, no. 8, pp.7121-7125, Aug.2019, doi: 10. 1109/TPEL. 2019. 2893238.
[26] Anderson J H, Maithripala S, Holtz M W. Direct measurement of thermal conductivity of gold nanowires and nanoribbons at ambient room temperature and 100°C[J]. Journal of Applied Physics, 2021, 129(24):245108-.
[27] Yong S, Yeo J, Ha C W, et al. Application of the specific thermal properties of Ag nanoparticles to high-resolution metal patterning[J]. Thermochimica Acta, 2012, 542(none):52-56.
[28] Hai, Jun, et al. Thermal conductivity of copper-diamond composite materials producedby electrodeposition and the effect of TiC coatings on diamond particles[J]. Composites Part B Engineering, 2018.
[29] S. -B. Wang, A. -H. Hsu, C. -L. Kao, D. Tarng, C. -L. Liang and K. -L. Lin. Novel Ga Assisted Low-temperature Bonding Technology for Fine-pitch Interconnects[C]// 2022 IEEE 72nd Electronic Components and Technology Conference (ECTC). IEEE, 2022.
[30] Liu D, Kuo T Y, Liu Y W, et al. Investigation of Low Temperature Cu -Cu Direct Bonding with Pt Passivation Layer in 3D Integration[J]. IEEE Tran sactions on Components, Packaging, and Manufacturing Technology, 2021, PP (99):1 -1.
[31] Liu D, Chen P C, Chou T C, et al. Demonstration of Low-Temperature Fine-Pitch Cu/SiO? Hybrid Bonding by Au Passivation[J]. IEEE Journal of the Electron Devices Society, 2021(9-).
[32] Wang, Fei and Dai, Jiayun and Cui, Dongyi and Kong, Yuechan. Low Temperature Wafer Level Au-Au Bonding for Heterogeneous Integration [C]// 2021 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP). IEEE, 2021.
[33] 胥超, 徐永青, 杨拥军,等. Au/Sn 共晶键合技术在 MEMS 封装中的应用[J]. 微纳电子技术, 2014, 51(002):131-135.
[34] 肖斌, 邝云斌, 虢晓双,等. Au-Al 共晶键合在 MEMS 器件封装中应用的研究[J]. 传感器与微系统, 2022, 41(7):4.
[35] Wang K, Ruan K, Hu W B, et al. Room temperature bonding of GaN on diamond by using Mo/Au nano-adhesion layer[C]// 2019 6th International Workshop on Low Temperature Bonding for 3D Integration (LTB-3D). 2019.
[36] BAO S C, ZHONG Y, HE Y M, et al. Low - Temperature Die to Glass Wafer Bonding Based on Au-Au Atomic Diffusion [C]// 2022 China Semiconductor Technology International Conference (CSTIC). 2022.
[37] Hsu W Y, Wu J, Chen C. Low temperature Au-Au direct bonding with highly - oriented Au films[C]// 2019 6th International Workshop on Low Temperature Bonding for 3D Integration (LTB-3D). 2019.
[38] Ling X, Wickramanayaka S, Chong S C, et al. 6um Pitch High Density Cu-Cu Bonding for 3D IC Stacking[C]// 2016 IEEE 66th Electronic Components and Technology Conference (ECTC). IEEE, 2016.
[39] Mu F, Cheng Z, Shi J, et al. High Thermal Boundary Conductance across Bonded Heterogeneous GaN-SiC Interfaces: American Chemical Society, 10.1021/ACSAMI.9B10106[P]. 2019.
[40] Yamamoto M, Matsumae T, Kurashima Y, et al. Wafer-scale Au-Au surface activated bonding using atmospheric-pressure plasma[C]// 2019 International Conference on Electronics Packaging (ICEP). 2019.
[41] Okada, Nimura, Shigetou, et al. Low temperature Au-Au flip chip bonding with VUV/O3 treatment for 3D integration[C]// IEEE International Workshop on Low Temperature Bonding for 3d Integration. IEEE, 2012.
[42] Faiz M K, Yamamoto T, Yoshida M. Sn-Bi added Ag-based transient liquid phase sintering for low temperature bonding[C]// International Workshop on Low Temperature Bonding for 3d Integration. IEEE, 2017.
[43] Shimatsu T, Yoshida H, Uomoto M, et al. Atomic Diffusion Bonding using Y2O3 and 55ZrO2 films [C]// 2021 7th International Workshop on Low Temperature Bonding for 3D Integration (LTB-3D), 2021.
[44] Goorsky M S, Schjolberg-Henriksen K, Beekley B, et al. Low temperature metal-metal bonding for heterogeneous integration and performance scaling[C]// International Workshop on Low Temperature Bonding for 3d Integration. IEEE, 2017.
[45] Fu W, Kasahara T, Okada A, et al. Low temperature and low-pressure bump bonding realized by single-micrometer Ag-nanoparticle bumps[C]// IEEE International Workshop on Low Temperature Bonding for 3d Integration. IEEE, 2014.
[46] Ishida H, Ogashiwa T, Kanehira Y, et al. Low-temperature, surface-compliant wafer bonding using sub-micron gold particles for wafer-level MEMS packaging[C]// 2012:1140-1145.
修改评论