中文版 | English
题名

基于金刚石散热片的 GaN 器件热压键合研究

其他题名
STUDY ON THERMAL COMPRESSION BONDING OF GAN DEVICES BASED ON DIAMOND SPREADER
姓名
姓名拼音
CHENG Lu
学号
12132438
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
0856 材料与化工
导师
郭跃进
导师单位
深港微电子学院
论文答辩日期
2023-05-18
论文提交日期
2023-06-29
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

近年来,GaN 射频器件在高频应用场景大放异彩,但 GaN 射频器件的 高功率带来的高工作结温问题反而限制了其优点的发挥,解决 GaN 射频器件散热问题是进一步扩展其应用的必经之路。而金刚石拥有优异的热导性, 利用金刚石辅助 GaN 射频器件散热的重点在于将器件有源面上的高工作结温通过键合层扩散至散热片。本文提出利用金等金属作为键合层材料,辅助 GaN 射频器件将热扩散至散热片。

通过使用拥有高导热性能的纯金材料,将 GaN 射频器件与金刚石键合起来,可以有效地改善器件工作时高热量密度的情况,提升器件的可靠性,延长器件的使用寿命。本文主要完成的工作如下:

在进行键合工艺实验阶段,使用硅片代替硅基 GaN 外延片及金刚石片,对其表面进行金属化后完成热压键合。探究了在相同的键合温度、键合时间的条件下,改变键合压力和键合层厚度对于键合质量的影响,并研究了各参数样品整体热传导性能,性能测试后取热传导性能最佳的工艺参数完 成硅基 GaN 外延片及金刚石薄片的热压键合,所得样品键合情况良好。

使用原子力显微镜、扫描电子显微镜、能谱仪、超声扫描显微镜及热常数分析仪从多角度分析了样品的键合质量,发现当金层厚度为 300 nm、 键合压力为 9 MPa、键合温度为 300℃、键合时间为 60 min 所得样品键合层综合效果最好,键合率为 97%,热导率为 101.32 W/(mK),热扩散率为 44.45 mm2/s。

其他摘要

In the latest developments, GaN RF PA devices have exhibited remarkable efficacy in high-frequency applications. However, the high power of GaN RF PA devices results in a high working temperature that limits their full potential. Therefore, resolving the heat dissipation issue is crucial to further expand the application of GaN RF PA devices. Diamond, renowned for its excellent thermal conductivity, offers a promising solution to this challenge. The key to utilizing diamond as a heat spreader to aid GaN power device heat dissipation is to diffuse the concentrated high working temperature on the active surface of the GaN power device to the heat spreader through a bonding layer. This study proposes employing gold as the bonding layer material to assist GaN RF PA devices in dissipating heat to the heat spreader.

By utilizing high thermal conductivity gold, it is possible to bond GaN RF devices with diamond, thus significantly enhancing their high heat density, improving their reliability, and extending their lifespan. The main objective of this research is as follows:

(1) At the bonding process experiment stage, silicon wafers are utilized to substitute silicon GaN epitaxial wafers and diamond wafers, with their surfaces metallized to perform thermal compression bonding. By changing the bonding pressure and bonding layer thickness while maintaining the same bonding temperature and bonding time, the influence of these variables on the bonding quality is explored, and the overall thermal conductivity of each parameter of the sample is studied. After conducting performance tests, the process parameters with the highest heat conductivity are chosen for the thermal compression bonding of silicon GaN epitaxial sheet and diamond sheet, resulting in well-bonded samples.

(2) The bonding quality of the samples is then analyzed using atomic force microscope, scanning electron microscope, energy spectrometer, ultrasonic scanning microscope and thermal constant analyzer. The composite effect of the bonding layer is found to be optimal when the thickness of the gold layer is 300 nm, the bonding pressure is 9 MPa, the bonding temperature is 300℃, and the bonding time is 60 min. The bonding rate is 97%, with a thermal conductivity of 101.32 W/(mK) and a thermal diffusivity of 44.45 mm2 /s.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2023-06
参考文献列表

[1] 李晋闽. SiC 材料及器件研制的进展[J]. 物理, 2000.
[2] 钱照明. 电力电子器件及其应用的现状和发展[J]. 变频器世界, 2014(9):2.
[3] 张峰, 张国良. 宽禁带半导体碳化硅 IGBT 器件研究进展与前瞻[J]. 电子与封装, 2023, 23(1):13.
[4] 杨静, 杨洪星. 几种典型宽禁带半导体材料的制备及发展现状[J]. 电子工业专用设备, 2016(8):4.
[5] 李国熠, 滑育楠, 邬海峰. 高功率微波 GaN 器件研究现状与发展趋势[J]. 电子世界, 2018(10):2.
[6] Jia C, Zhang B. CMP development of gallium nitride material[C]// International Conference on Planarization/cmp Technology. IEEE, 2016.
[7] Noriko, Ohmori, Tomonori, et al. Characterization of Dislocations in GaN Thin Film and GaN/AIN Multilayer[J]. Materials science forum, 2012.
[8] Yaita J, Fukuda K, Yamada A, et al. Improved Channel Electron Mobility Thr ough Electric Field Reduction in GaN Quantum-Well Double-Heterostructures[J]. IEEE Electron Device Letters, 2021(42-11).
[9] 赵正平. 发展中的 GaN 微电子(一)[J]. 中国电子科学研究院学报, 2011, 6(3):7.
[10] Shealy J R. Progress in Si-based AlGaN HEMTs for RF power amplifiers[C]// Silicon Monolithic Integrated Circuits in RF Systems, 2001. Digest of Papers. 2001 Topical Meeting on. IEEE, 2001.
[11] Singhal S, Li T, Chaudhari A, et al. Reliability of large periphery GaN-on-Si HFETs[C]// Rocs Workshop. IEEE, 2006.
[12] Mishra U K, Parikh P, Wu Y F. AlGaN/GaN HEMTs-an overview of device operation and applications[J]. Proc IEEE, 2002, 90(6):1022-1031.
[13] Won Y, Houshmand F, Agonafer D, et al. Microfluidic Heat Exchangers for High Power Density GaN on SiC[C]// Compound Semiconductor Integrated Circuit Symposium. IEEE, 2014.
[14] 郭海军. Si/InP 晶片低温键合技术的理论分析和实验研究[D]. 北京邮电大学.
[15] Albrecht J D, Ruden P P, Binari S C, et al. AlGaN/GaN heterostructure field -effect transistor model including thermal effects[J]. IEEE Transactions on Electron Devices, 2000, 47(11):2031-2036.
[16] Chu K K, Chao P C, Diaz J A, et al. S2-T4: Low-temperature substrate bonding technology for high power GaN-on-diamond HEMTs[C]// Lester Eastman Conference on High Performance Devices. IEEE, 2014.
[17] Chao P C, Chu K, Creamer C, et al. Low-Temperature Bonded GaN-on-Diamond HEMTs with 11 W/mm Output Power at 10 GHz[J]. Electron Devices IEEE Transactions on, 2015, 62(11):3658-3664.
[18] Francis D, Ejeckam F, Wasserbauer J, et al. Method for manufacturing semiconductor devices having gallium nitride epilayers on diamond substra tes. US, 2015.
[19] K. Hirama, M. Kasu and Y. Taniyasu, "RF High-Power Operation of AlGaN/GaN HEMTs Epitaxially Grown on Diamond," in IEEE Electron Device Letters, vol. 33, no. 4, pp. 513-515, April 2012, doi: 10.1109/LED.2012.2185678.
[20] Kazuyuki Hirama, Yoshitaka Taniyasu, and Makoto Kasu, "AlGaN/GaN high-electron mobility transistors with low thermal resistance grown on single-crystal diamond (111) substrates by metalorganic vapor-phase epitaxy", Appl. Phys. Lett. 98, 162112(2011) https://doi.org/10.1063/1.3574531
[21] Ranjan K, Arulkumaran S, Ng G I, et al. Investigation of Self-Heating Effect on DC and RF Performances in AlGaN/GaN HEMTs on CVD-Diamond[J]. IEEE Journal of the Electron Devices Society, 2019, 7:1264-1269.
[22] Anderson T J, Koehler A D, Tadjer M J, et al. Process improvements for an improved diamond - capped GaN HEMT device[C]// International Conference on Compound Semiconductor Manufacturing Technology. 2013.
[23] Impact of Intrinsic Stress in Diamond Capping Layers on the Electrical Behavior of AlGaN/GaN HEMTs[J]. IEEE Transactions on Electron Devices, 2013, 60(10):3149 - 3156.
[24] Wang A, Tadjer M J, Calle F. Simulation of thermal management in AlGaN/GaN HEMTs with integrated diamond heat spreaders[J]. Semiconductor Science & Technology, 2013, 28(5):055010.
[25] M. Wang, Y. Mei, X. Li, R. Burgos, D. Boroyevich and G. -Q. Lu, "Pressureless Silver Sintering on Nickel for Power Module Packaging," in IEEE Transactions on Power Electronics, vol. 34, no. 8, pp.7121-7125, Aug.2019, doi: 10. 1109/TPEL. 2019. 2893238.
[26] Anderson J H, Maithripala S, Holtz M W. Direct measurement of thermal conductivity of gold nanowires and nanoribbons at ambient room temperature and 100°C[J]. Journal of Applied Physics, 2021, 129(24):245108-.
[27] Yong S, Yeo J, Ha C W, et al. Application of the specific thermal properties of Ag nanoparticles to high-resolution metal patterning[J]. Thermochimica Acta, 2012, 542(none):52-56.
[28] Hai, Jun, et al. Thermal conductivity of copper-diamond composite materials producedby electrodeposition and the effect of TiC coatings on diamond particles[J]. Composites Part B Engineering, 2018.
[29] S. -B. Wang, A. -H. Hsu, C. -L. Kao, D. Tarng, C. -L. Liang and K. -L. Lin. Novel Ga Assisted Low-temperature Bonding Technology for Fine-pitch Interconnects[C]// 2022 IEEE 72nd Electronic Components and Technology Conference (ECTC). IEEE, 2022.
[30] Liu D, Kuo T Y, Liu Y W, et al. Investigation of Low Temperature Cu -Cu Direct Bonding with Pt Passivation Layer in 3D Integration[J]. IEEE Tran sactions on Components, Packaging, and Manufacturing Technology, 2021, PP (99):1 -1.
[31] Liu D, Chen P C, Chou T C, et al. Demonstration of Low-Temperature Fine-Pitch Cu/SiO? Hybrid Bonding by Au Passivation[J]. IEEE Journal of the Electron Devices Society, 2021(9-).
[32] Wang, Fei and Dai, Jiayun and Cui, Dongyi and Kong, Yuechan. Low Temperature Wafer Level Au-Au Bonding for Heterogeneous Integration [C]// 2021 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP). IEEE, 2021.
[33] 胥超, 徐永青, 杨拥军,等. Au/Sn 共晶键合技术在 MEMS 封装中的应用[J]. 微纳电子技术, 2014, 51(002):131-135.
[34] 肖斌, 邝云斌, 虢晓双,等. Au-Al 共晶键合在 MEMS 器件封装中应用的研究[J]. 传感器与微系统, 2022, 41(7):4.
[35] Wang K, Ruan K, Hu W B, et al. Room temperature bonding of GaN on diamond by using Mo/Au nano-adhesion layer[C]// 2019 6th International Workshop on Low Temperature Bonding for 3D Integration (LTB-3D). 2019.
[36] BAO S C, ZHONG Y, HE Y M, et al. Low - Temperature Die to Glass Wafer Bonding Based on Au-Au Atomic Diffusion [C]// 2022 China Semiconductor Technology International Conference (CSTIC). 2022.
[37] Hsu W Y, Wu J, Chen C. Low temperature Au-Au direct bonding with highly - oriented Au films[C]// 2019 6th International Workshop on Low Temperature Bonding for 3D Integration (LTB-3D). 2019.
[38] Ling X, Wickramanayaka S, Chong S C, et al. 6um Pitch High Density Cu-Cu Bonding for 3D IC Stacking[C]// 2016 IEEE 66th Electronic Components and Technology Conference (ECTC). IEEE, 2016.
[39] Mu F, Cheng Z, Shi J, et al. High Thermal Boundary Conductance across Bonded Heterogeneous GaN-SiC Interfaces: American Chemical Society, 10.1021/ACSAMI.9B10106[P]. 2019.
[40] Yamamoto M, Matsumae T, Kurashima Y, et al. Wafer-scale Au-Au surface activated bonding using atmospheric-pressure plasma[C]// 2019 International Conference on Electronics Packaging (ICEP). 2019.
[41] Okada, Nimura, Shigetou, et al. Low temperature Au-Au flip chip bonding with VUV/O3 treatment for 3D integration[C]// IEEE International Workshop on Low Temperature Bonding for 3d Integration. IEEE, 2012.
[42] Faiz M K, Yamamoto T, Yoshida M. Sn-Bi added Ag-based transient liquid phase sintering for low temperature bonding[C]// International Workshop on Low Temperature Bonding for 3d Integration. IEEE, 2017.
[43] Shimatsu T, Yoshida H, Uomoto M, et al. Atomic Diffusion Bonding using Y2O3 and 55ZrO2 films [C]// 2021 7th International Workshop on Low Temperature Bonding for 3D Integration (LTB-3D), 2021.
[44] Goorsky M S, Schjolberg-Henriksen K, Beekley B, et al. Low temperature metal-metal bonding for heterogeneous integration and performance scaling[C]// International Workshop on Low Temperature Bonding for 3d Integration. IEEE, 2017.
[45] Fu W, Kasahara T, Okada A, et al. Low temperature and low-pressure bump bonding realized by single-micrometer Ag-nanoparticle bumps[C]// IEEE International Workshop on Low Temperature Bonding for 3d Integration. IEEE, 2014.
[46] Ishida H, Ogashiwa T, Kanehira Y, et al. Low-temperature, surface-compliant wafer bonding using sub-micron gold particles for wafer-level MEMS packaging[C]// 2012:1140-1145.

所在学位评定分委会
材料与化工
国内图书分类号
TM301.2
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/544601
专题南方科技大学-香港科技大学深港微电子学院筹建办公室
推荐引用方式
GB/T 7714
程璐. 基于金刚石散热片的 GaN 器件热压键合研究[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132438-程璐-南方科技大学-香(5005KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[程璐]的文章
百度学术
百度学术中相似的文章
[程璐]的文章
必应学术
必应学术中相似的文章
[程璐]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。