中文版 | English
题名

基于周期移相技术的高增益端射天线的研究

其他题名
DESIGN OF HIGH GAIN ENDFIRE ANTENNA BASED ON PERIODIC PHASE-REVERSAL TECHNOLOGY
姓名
姓名拼音
XIAO Mingru
学号
12032195
学位类型
硕士
学位专业
0809 电子科学与技术
学科门类/专业学位类别
08 工学
导师
张青峰
导师单位
电子与电气工程系
论文答辩日期
2023-05-08
论文提交日期
2023-06-29
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

随着医疗成像、物联网、远程通信和毫米波技术等应用的不断发展,对于实现这些应用的系统的性能也提出了更高的要求。天线,作为组成这些系统的重要一部分,其性能的好坏能够很大程度上影响系统对信号的收发功能,因此也在不断的往更高性能方向发展。端射天线是一种定向天线,具有天然高增益、高定向性、结构简单等优点,被广泛用于各种微波领域应用中。然而,传统的端射天线设计存在大尺寸、增益不够高等问题,鉴于此,本文对于高增益和小口径的端射天线进行了研究与设计,并基于周期移相技术设计了三种新型端射天线及其天线阵的设计。

本文的主要研究内容如下:首先,将周期移相技术与漏波天线结合,提出了两种基于陶瓷介质的高增益端射漏波天线。第一种天线将周期移相技术与漏波天线相结合,克服了漏波天线不能在端射方向辐射的弊端,设计的天线实现了在3.4 - 5.3 GHz 频段内的全空间波束快速扫描,工作频带内平均增益为8 dBi,端射增益为10.2 dBi,增益变化比较平坦;第二种端射漏波天线通过额外设计一个波导馈电端口,并且通过与周期移相技术结合实现了设计的天线在太赫兹频段的高增益辐射,设计的天线中心频率为100GHz,中心频率的端射增益为16.2 dBi

接着,采用周期移相技术打破了传统端射天线设计中存在的增益-口径折衷问题,并设计了一个中心频率在10 GHz的小口径高增益端射天线,单根天线端射增益为13.6 dBi。并且在单根天线设计的基础之上,研究了端射天线组成天线阵的最优条件,所设计的天线间距为半波长,水平摆放四根天线的14天线阵的端射增益为19.6 dBi,验证了严格按照半波长天线间距组成天线阵来实现天线的增益叠加的设计方案的可行性。

最后,将周期移相技术与人工表面等离激元相结合,设计一个高增益表面波人工表面等离激元端射天线。设计的端射天线通过沿传播方向为轴翻转非对称人工表面等离激元结构实现180°的周期移相,并且为了进一步抑制天线的旁瓣电平,在馈电结构上引入梯度渐变凹槽来抑制天线在其他方向上的辐射。所设计的人工表面等离激元端射天线实现了17 - 19 GHz 的带宽,天线的最大增益为16.2 dBi

 

关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2023-06
参考文献列表

[1] ANDERSON T R, DAIM T U, KIM J. Technology forecasting for wireless communication[J]. Technovation, 2008, 28(9): 602-614.
[2] ANDERSON T R, DAIM T U, KIM J. Technology forecasting for wireless communication[J]. Technovation, 2008, 28(9): 602-614.
[3] YAGI H, UDA S. Projector of the sharpest beam of electric waves[J]. Proceedings of the Imperial Academy, 1926, 2(2): 49-52.
[4] CHENG D, CHEN C. Optimum element spacings for Yagi-Uda arrays[J]. IEEE Transactions on Antennas and Propagation, 1973, 21(5): 615-623.
[5] ALHALABI R A, REBEIZ G M. High-gain Yagi-Uda antennas for millimeter-wave switched-beam systems[J]. IEEE Transactions on Antennas and Propagation, 2009, 57(11): 3672-3676.
[6] ARCEO D, BALANIS C A. A compact Yagi–Uda antenna with enhanced bandwidth[J]. IEEE Ant-ennas and Wireless Propagation Letters, 2011, 10: 442-445.
[7] LIU Y, LIU H, WEI M, et al. A novel slot Yagi-like multilayered antenna with high gain and large bandwidth[J]. IEEE Antennas and Wireless Propagation Letters, 2014, 13: 790-793.
[8] KANEDA N, DEAL W R, QIAN Y, et al. A broadband planar quasi-Yagi antenna[J]. IEEE Transactions on Antennas and Propagation, 2002, 50(8): 1158-1160.
[9] WU J, ZHAO Z, NIE Z, et al. Bandwidth enhancement of a planar printed quasi-Yagi antenna with size reduction[J]. IEEE Transactions on Antennas and Propagation, 2013, 62(1): 463-467.
[10] HAO J, REN J, DU X, et al. Pattern-reconfigurable Yagi–Uda antenna based on liquid metal[J]. IEEE Antennas and Wireless Propagation Letters, 2021, 20(4): 587-591.
[11] ISBELL D. Log periodic dipole arrays[J]. IRE transactions on antennas and propagation, 1960, 8(3): 260-267.
[12] BANTIN C, BALMAIN K. Study of compressed log-periodic dipole antennas[J]. IEEE Transactions on Antennas and Propagation, 1970, 18(2): 195-203.
[13] CHAN K, SILVESTER P. Analysis of the log-periodic V-dipole antenna[J]. IEEE Transactions on Antennas and Propagation, 1975, 23(3): 397-401.
[14] PANTOJA R, SAPIENZA A. A microwave printed planar log-periodic dipole array antenna[J]. IEEE Transactions on antennas and propagation, 1987, 35(10): 1176-1178.
[15] WAKABAYASHI R, SHIMADA K, KAWAKAMI H, et al. Circularly polarized log-periodic dipole antenna for EMI measurements[J]. IEEE transactions on electromagnetic compatibility, 1999, 41(2): 93-99.
[16] CHEN J, LUDWIG J, LIM S. Design of a compact log-periodic dipole array using T-shaped top loadings[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 1585-1588.
[17] CHANG L, HE S, ZHANG J Q, et al. A compact dielectric-loaded log-periodic dipole array (LPDA) antenna[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 2759-2762.
[18] JARDON-AGUILAR H, TIRADO-MENDEZ J A, FLORES-LEAL R, et al. Reduced log-periodic dipole antenna using a cylindrical-hat cover[J]. IET microwaves, antennas & propagation, 2011, 5(14): 1697-1702.
[19] CASULA G A, MAXIA P, MAZZARELLA G, et al. Design of a printed log-periodic dipole array for ultra-wideband applications[J]. Progress In Electromagnetics Research C, 2013, 38: 15-26.
[20] GIBSON P J. The vivaldi aerial[C]//1979 9th European Microwave Conference. IEEE, 1979: 101-105.
[21] SHIN J, SCHAUBERT D H. A parameter study of stripline-fed Vivaldi notch-antenna arrays[J]. IEEE Transactions on Antennas and Propagation, 1999, 47(5): 879-886.
[22] CHIAPPE M, GRAGNANI G L. Vivaldi antennas for microwave imaging: Theoretical analysis and design considerations[J]. IEEE Transactions on Instrumentation and Measurement, 2006, 55(6): 1885-1891.
[23] NASSAR I T, WELLER T M. A novel method for improving antipodal Vivaldi antenna performance[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(7): 3321-3324.
[24] LIU Y, ZHOU W, YANG S, et al. A novel miniaturized Vivaldi antenna using tapered slot edge with resonant cavity structure for ultrawideband applications[J]. IEEE Antennas and Wireless propagation letters, 2016, 15: 1881-1884.
[25] NATARAJAN R, GEORGE J V, KANAGASABAI M, et al. A compact antipodal Vivaldi antenna for UWB applications[J]. IEEE Antennas and Wireless Propagation Letters, 2015, 14: 1557-1560.
[26] DIXIT A S, KUMAR S. A miniaturized antipodal Vivaldi antenna for 5G communication applications[C]//2020 7th international conference on signal processing and integrated networks (SPIN). IEEE, 2020: 800-803.
[27] ZHU S, LIU H, CHEN Z, et al. A compact gain-enhanced Vivaldi antenna array with suppressed mutual coupling for 5G mmWave application[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17(5): 776-779.
[28] E. M. O'CONNOR, D. R. JACKSON AND S. A. Long, "Extension of the Hansen–Woodyard Condition for Endfire Leaky-Wave Antennas," in IEEE Antennas and Wireless Propagation Letters, vol. 9, pp. 1201-1204, 2010, doi: 10.1109/LAWP.2010.2091618.
[29] LIU J, JACKSON D R, LI Y, ET AL. Investigations of SIW leaky-wave antenna for endfire-radiation with narrow beam and sidelobe suppression[J]. IEEE Transactions on antennas and Propagation, 2014, 62(9): 4489-4497.
[30] LIU J, JACKSON D R. Aperture distributions for maximum endfire directivity from a continuous line source with a uniform phase progression[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(10): 5123-5136.
[31] LIU P, FENG H, LI Y, et al. Low-profile endfire leaky-wave antenna with air media[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(3): 1086-1092.
[32] GE S, ZHANG Q, RASHID A K, et al. Design of high-gain and small-aperture endfire antenna using a phase-reversal technique[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(7): 5142-5150.
[33] HOU Y, LI Y, ZHANG Z, et al. Narrow-width periodic leaky-wave antenna array for endfire radiation based on Hansen–Woodyard condition[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(11): 6393-6396.
[34] KODERA T, CALOZ C. Uniform ferrite-loaded open waveguide structure with CRLH response and its application to a novel backfire-to-endfire leaky-wave antenna[J]. IEEE Transactions on microwave theory and techniques, 2009, 57(4): 784-795.
[35] 钟顺时. 天线理论与技术[M]. Dian zi gong ye chu ban she, 2015.
[36] BALANIS C A. Antenna theory: analysis and design[M]. John wiley & sons, 2015.
[37] HANSEN W W, WOODYARD J R. A new principle in directional antenna design[J]. Proceedings of the Institute of Radio Engineers, 1938, 26(3): 333-345.
[38] GE S, ZHANG Q, RASHID A K, et al. General design technique for high-gain traveling-wave endfire antennas using periodic arbitrary-phase loading technique[J]. IEEE Transactions on Antennas and Propagation, 2020, 69(6): 3094-3105.
[39] SEBASTIAN M T, JANTUNEN H. Low loss dielectric materials for LTCC applications: a review[J]. International Materials Reviews, 2008, 53(2): 57-90.
[40] JACKSON D R, CALOZ C, ITOH T. Leaky-wave antennas[J]. Proceedings of the IEEE, 2012, 100(7): 2194-2206.
[41] MONTICONE F, ALU A. Leaky-wave theory, techniques, and applications: from microwaves to visible frequencies[J]. Proceedings of the IEEE, 2015, 103(5): 793-821.
[42] JIANG H, XU K, ZHANG Q, et al. Backward-to-forward wide-angle fast beam-scanning leaky-wave antenna with consistent gain[J]. IEEE Transactions on Antennas and Propagation, 2020, 69(5): 2987-2992.
[43] ZHANG G, ZHANG Q, CHEN Y, et al. High-scanning-rate and wide-angle leaky-wave antennas based on glide-symmetry Goubau line[J]. IEEE Transactions on Antennas and Propagation, 2019, 68(4): 2531-2540.
[44] GUAN D F, ZHANG Q, YOU P, et al. Scanning rate enhancement of leaky-wave antennas using slow-wave substrate integrated waveguide structure[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(7): 3747-3751.
[45] ALI M Z, KHAN Q U. High gain backward scanning substrate integrated waveguide leaky wave antenna[J]. IEEE Transactions on Antennas and Propagation, 2020, 69(1): 562-565.
[46] BARONE S R, NARCOWICH M A, NARCOWICH F J. Floquet theory and applications[J]. Physical Review A, 1977, 15(3): 1109.
[47] BIGLIERI E, CALDERBANK R, CONSTANTINIDES A, et al. MIMO wireless communications[M]. Cambridge university press, 2007.
[48] TANG W X, ZHANG H C, MA H F, et al. Concept, theory, design, and applications of spoof surface plasmon polaritons at microwave frequencies[J]. Advanced Optical Materials, 2019, 7(1): 1800421.
[49] MAIER S A. Plasmonics: fundamentals and applications[M]. New York: springer, 2007.
[50] KANDWAL A, ZHANG Q, TANG X L, et al. Low-profile spoof surface plasmon polaritons traveling-wave antenna for near-endfire radiation[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 17(2): 184-187.
[51] GE S, ZHANG Q, RASHID A K, et al. Analysis of asymmetrically corrugated goubau-line antenna for endfire radiation[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(11): 7133-7138.
[52] LIU L, CHEN M, YIN X. Single-layer high gain endfire antenna based on spoof surface plasmon polaritons[J]. IEEE Access, 2020, 8: 64139-64144.

所在学位评定分委会
电子科学与技术
国内图书分类号
TN82
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/544605
专题工学院_电子与电气工程系
推荐引用方式
GB/T 7714
肖铭汝. 基于周期移相技术的高增益端射天线的研究[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032195-肖铭汝-电子与电气工程(8127KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[肖铭汝]的文章
百度学术
百度学术中相似的文章
[肖铭汝]的文章
必应学术
必应学术中相似的文章
[肖铭汝]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。