[1] ANDERSON T R, DAIM T U, KIM J. Technology forecasting for wireless communication[J]. Technovation, 2008, 28(9): 602-614.
[2] ANDERSON T R, DAIM T U, KIM J. Technology forecasting for wireless communication[J]. Technovation, 2008, 28(9): 602-614.
[3] YAGI H, UDA S. Projector of the sharpest beam of electric waves[J]. Proceedings of the Imperial Academy, 1926, 2(2): 49-52.
[4] CHENG D, CHEN C. Optimum element spacings for Yagi-Uda arrays[J]. IEEE Transactions on Antennas and Propagation, 1973, 21(5): 615-623.
[5] ALHALABI R A, REBEIZ G M. High-gain Yagi-Uda antennas for millimeter-wave switched-beam systems[J]. IEEE Transactions on Antennas and Propagation, 2009, 57(11): 3672-3676.
[6] ARCEO D, BALANIS C A. A compact Yagi–Uda antenna with enhanced bandwidth[J]. IEEE Ant-ennas and Wireless Propagation Letters, 2011, 10: 442-445.
[7] LIU Y, LIU H, WEI M, et al. A novel slot Yagi-like multilayered antenna with high gain and large bandwidth[J]. IEEE Antennas and Wireless Propagation Letters, 2014, 13: 790-793.
[8] KANEDA N, DEAL W R, QIAN Y, et al. A broadband planar quasi-Yagi antenna[J]. IEEE Transactions on Antennas and Propagation, 2002, 50(8): 1158-1160.
[9] WU J, ZHAO Z, NIE Z, et al. Bandwidth enhancement of a planar printed quasi-Yagi antenna with size reduction[J]. IEEE Transactions on Antennas and Propagation, 2013, 62(1): 463-467.
[10] HAO J, REN J, DU X, et al. Pattern-reconfigurable Yagi–Uda antenna based on liquid metal[J]. IEEE Antennas and Wireless Propagation Letters, 2021, 20(4): 587-591.
[11] ISBELL D. Log periodic dipole arrays[J]. IRE transactions on antennas and propagation, 1960, 8(3): 260-267.
[12] BANTIN C, BALMAIN K. Study of compressed log-periodic dipole antennas[J]. IEEE Transactions on Antennas and Propagation, 1970, 18(2): 195-203.
[13] CHAN K, SILVESTER P. Analysis of the log-periodic V-dipole antenna[J]. IEEE Transactions on Antennas and Propagation, 1975, 23(3): 397-401.
[14] PANTOJA R, SAPIENZA A. A microwave printed planar log-periodic dipole array antenna[J]. IEEE Transactions on antennas and propagation, 1987, 35(10): 1176-1178.
[15] WAKABAYASHI R, SHIMADA K, KAWAKAMI H, et al. Circularly polarized log-periodic dipole antenna for EMI measurements[J]. IEEE transactions on electromagnetic compatibility, 1999, 41(2): 93-99.
[16] CHEN J, LUDWIG J, LIM S. Design of a compact log-periodic dipole array using T-shaped top loadings[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 1585-1588.
[17] CHANG L, HE S, ZHANG J Q, et al. A compact dielectric-loaded log-periodic dipole array (LPDA) antenna[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 2759-2762.
[18] JARDON-AGUILAR H, TIRADO-MENDEZ J A, FLORES-LEAL R, et al. Reduced log-periodic dipole antenna using a cylindrical-hat cover[J]. IET microwaves, antennas & propagation, 2011, 5(14): 1697-1702.
[19] CASULA G A, MAXIA P, MAZZARELLA G, et al. Design of a printed log-periodic dipole array for ultra-wideband applications[J]. Progress In Electromagnetics Research C, 2013, 38: 15-26.
[20] GIBSON P J. The vivaldi aerial[C]//1979 9th European Microwave Conference. IEEE, 1979: 101-105.
[21] SHIN J, SCHAUBERT D H. A parameter study of stripline-fed Vivaldi notch-antenna arrays[J]. IEEE Transactions on Antennas and Propagation, 1999, 47(5): 879-886.
[22] CHIAPPE M, GRAGNANI G L. Vivaldi antennas for microwave imaging: Theoretical analysis and design considerations[J]. IEEE Transactions on Instrumentation and Measurement, 2006, 55(6): 1885-1891.
[23] NASSAR I T, WELLER T M. A novel method for improving antipodal Vivaldi antenna performance[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(7): 3321-3324.
[24] LIU Y, ZHOU W, YANG S, et al. A novel miniaturized Vivaldi antenna using tapered slot edge with resonant cavity structure for ultrawideband applications[J]. IEEE Antennas and Wireless propagation letters, 2016, 15: 1881-1884.
[25] NATARAJAN R, GEORGE J V, KANAGASABAI M, et al. A compact antipodal Vivaldi antenna for UWB applications[J]. IEEE Antennas and Wireless Propagation Letters, 2015, 14: 1557-1560.
[26] DIXIT A S, KUMAR S. A miniaturized antipodal Vivaldi antenna for 5G communication applications[C]//2020 7th international conference on signal processing and integrated networks (SPIN). IEEE, 2020: 800-803.
[27] ZHU S, LIU H, CHEN Z, et al. A compact gain-enhanced Vivaldi antenna array with suppressed mutual coupling for 5G mmWave application[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17(5): 776-779.
[28] E. M. O'CONNOR, D. R. JACKSON AND S. A. Long, "Extension of the Hansen–Woodyard Condition for Endfire Leaky-Wave Antennas," in IEEE Antennas and Wireless Propagation Letters, vol. 9, pp. 1201-1204, 2010, doi: 10.1109/LAWP.2010.2091618.
[29] LIU J, JACKSON D R, LI Y, ET AL. Investigations of SIW leaky-wave antenna for endfire-radiation with narrow beam and sidelobe suppression[J]. IEEE Transactions on antennas and Propagation, 2014, 62(9): 4489-4497.
[30] LIU J, JACKSON D R. Aperture distributions for maximum endfire directivity from a continuous line source with a uniform phase progression[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(10): 5123-5136.
[31] LIU P, FENG H, LI Y, et al. Low-profile endfire leaky-wave antenna with air media[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(3): 1086-1092.
[32] GE S, ZHANG Q, RASHID A K, et al. Design of high-gain and small-aperture endfire antenna using a phase-reversal technique[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(7): 5142-5150.
[33] HOU Y, LI Y, ZHANG Z, et al. Narrow-width periodic leaky-wave antenna array for endfire radiation based on Hansen–Woodyard condition[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(11): 6393-6396.
[34] KODERA T, CALOZ C. Uniform ferrite-loaded open waveguide structure with CRLH response and its application to a novel backfire-to-endfire leaky-wave antenna[J]. IEEE Transactions on microwave theory and techniques, 2009, 57(4): 784-795.
[35] 钟顺时. 天线理论与技术[M]. Dian zi gong ye chu ban she, 2015.
[36] BALANIS C A. Antenna theory: analysis and design[M]. John wiley & sons, 2015.
[37] HANSEN W W, WOODYARD J R. A new principle in directional antenna design[J]. Proceedings of the Institute of Radio Engineers, 1938, 26(3): 333-345.
[38] GE S, ZHANG Q, RASHID A K, et al. General design technique for high-gain traveling-wave endfire antennas using periodic arbitrary-phase loading technique[J]. IEEE Transactions on Antennas and Propagation, 2020, 69(6): 3094-3105.
[39] SEBASTIAN M T, JANTUNEN H. Low loss dielectric materials for LTCC applications: a review[J]. International Materials Reviews, 2008, 53(2): 57-90.
[40] JACKSON D R, CALOZ C, ITOH T. Leaky-wave antennas[J]. Proceedings of the IEEE, 2012, 100(7): 2194-2206.
[41] MONTICONE F, ALU A. Leaky-wave theory, techniques, and applications: from microwaves to visible frequencies[J]. Proceedings of the IEEE, 2015, 103(5): 793-821.
[42] JIANG H, XU K, ZHANG Q, et al. Backward-to-forward wide-angle fast beam-scanning leaky-wave antenna with consistent gain[J]. IEEE Transactions on Antennas and Propagation, 2020, 69(5): 2987-2992.
[43] ZHANG G, ZHANG Q, CHEN Y, et al. High-scanning-rate and wide-angle leaky-wave antennas based on glide-symmetry Goubau line[J]. IEEE Transactions on Antennas and Propagation, 2019, 68(4): 2531-2540.
[44] GUAN D F, ZHANG Q, YOU P, et al. Scanning rate enhancement of leaky-wave antennas using slow-wave substrate integrated waveguide structure[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(7): 3747-3751.
[45] ALI M Z, KHAN Q U. High gain backward scanning substrate integrated waveguide leaky wave antenna[J]. IEEE Transactions on Antennas and Propagation, 2020, 69(1): 562-565.
[46] BARONE S R, NARCOWICH M A, NARCOWICH F J. Floquet theory and applications[J]. Physical Review A, 1977, 15(3): 1109.
[47] BIGLIERI E, CALDERBANK R, CONSTANTINIDES A, et al. MIMO wireless communications[M]. Cambridge university press, 2007.
[48] TANG W X, ZHANG H C, MA H F, et al. Concept, theory, design, and applications of spoof surface plasmon polaritons at microwave frequencies[J]. Advanced Optical Materials, 2019, 7(1): 1800421.
[49] MAIER S A. Plasmonics: fundamentals and applications[M]. New York: springer, 2007.
[50] KANDWAL A, ZHANG Q, TANG X L, et al. Low-profile spoof surface plasmon polaritons traveling-wave antenna for near-endfire radiation[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 17(2): 184-187.
[51] GE S, ZHANG Q, RASHID A K, et al. Analysis of asymmetrically corrugated goubau-line antenna for endfire radiation[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(11): 7133-7138.
[52] LIU L, CHEN M, YIN X. Single-layer high gain endfire antenna based on spoof surface plasmon polaritons[J]. IEEE Access, 2020, 8: 64139-64144.
修改评论