[1] HAN S T, ZHOU Y, ROY V A L. Towards the development of flexible non-Volatile memories [J]. Advanced Materials, 2013, 25(38): 5425-5449.
[2] STADLOBER B, ZIRKL M, IRIMIA-VLADU M. Route towards sustainable smart sensors: ferroelectric polyvinylidene fluoride-based materials and their integration in flexible electronics [J]. Chemical Society Reviews, 2019, 48(6): 1787-1825.
[3] FROST J M, BUTLER K T, BRIVIO F, et al. Atomistic origins of high-performance in hybrid halide perovskite solar cells[J]. Nano Letters, 2014, 14(5): 2584-2590.
[4] LU C, WU M, LIN L, et al. Single-phase multiferroics: new materials, phenomena, and physics [J]. National Science Review, 2019, 6(4): 653-668.
[5] DANG Z M, YUAN J K, YAO S H, et al. Flexible nanodielectric materials with high permittivity for power energy storage[J]. Advanced Materials, 2013, 25(44): 6334-6365.
[6] NABER R C, TANASE C, BLOM P W, et al. High-performance solution-processed polymer ferroelectric field-effect transistors[J]. Nature Materials, 2005, 4(3): 243-248.
[7] BLATTNER H, MATTHIAS B, MERZ W, et al. Untersuchungen an bariumtitanat-einkristallen [J]. Experientia, 1947, 3(4): 148-149.
[8] VON HIPPEL A. Ferroelectricity, domain structure, and phase transitions of barium titanate [J]. Reviews of Modern Physics, 1950, 22(3): 221-237.
[9] LIVAGE J. Sol-gel processes[J]. Current Opinion in Solid State and Materials Science, 1997, 2(2): 132-138.
[10] LIU S, ZOU D, YU X, et al. Transfer-free PZT thin films for flexible Nanogenerators derived from a single-step modified sol–gel process on 2D mica[J]. ACS Applied Materials & Interfaces, 2020, 12(49): 54991-54999.
[11] SWANN S. Magnetron sputtering[J]. Physics in Technology, 1988, 19(2): 67.
[12] 余东海成晓玲, 宋月贤. 磁控溅射镀膜技术的发展[J]. 真空, 2009, 46(19-25).
[13] THONGRIT P, CHANANONNAWATHORN C, HORPRATHUM M, et al. Improving the mi-crostructure and properties of PZT thin films via annealing prepared by RF magnetron sputtering using Pb(Zr0.52Ti0.48)O3 target[J]. Ceramics International, 2023, 49(8): 12912-12924.
[14] KATHIRESAN M, MANIKANDAN C, PREMKUMAR S, et al. Effect of Sr and La co-doping on structural and electrical properties of RF sputtered PZT thin films[J]. Materials Research Express, 2020, 7(2): 026406.
[15] HAMEED M A. Physical properties of nanostructured silicon dioxide prepared by pulsed-laser deposition[J]. Journal of Physical Vapor Deposition Science and Technology, 2015, 9(10): 451-454.
[16] KREBS M, Hans-Ulrichand Weisheit, FAUPEL J, SÜSKE E, et al. Pulsed Laser Deposition (PLD) – A Versatile Thin Film Technique[M]. Berlin, Heidelberg: Springer, 2003: 505-518.
[17] 李铁军, 戴骐, 杨若曦, 等. 基于 PVDF 压电薄膜的触觉传感器研究[J]. 传感器与微系统, 2021, 40(68-70).
[18] WU L, YUAN W, HU N, et al. Improved piezoelectricity of PVDF-HFP/carbon black composite films[J]. Journal of Physics D: Applied Physics, 2014, 47(13): 135302.
[19] CAUDA V, STASSI S, BEJTKA K, et al. Nanoconfinement: an effective way to enhance PVDF piezoelectric properties[J]. ACS Applied Materials & Interfaces, 2013, 5(13): 6430-6437.
[20] REN G, CAI F, LI B, et al. Flexible pressure sensor based on a poly (VDF-TrFE) nanofiber web [J]. Macromolecular Materials and Engineering, 2013, 298(5): 541-546.
[21] ER X, WANG H, SHAO P W, et al. The microstructure and ferroelectric properties of PbZr0.52Ti0.48O3 films on mica substrates[J]. Ceramics International, 2021, 47(7): 9252-9257.
[22] ZUO Z, CHEN B, ZHAN Q F, et al. Preparation and ferroelectric properties of freestanding Pb (Zr, Ti) O3 thin membranes[J]. Journal of Physics D: Applied Physics, 2012, 45(18): 185302.
[23] ARUL K T, RAO M R. Ferroelectric properties of flexible PZT composite films[J]. Journal of Physics and Chemistry of Solids, 2020, 146: 109371.
[24] JAIN A, KUMAR S J, KUMAR M R, et al. PVDF-PZT composite films for transducer appli-cations[J]. Mechanics of Advanced Materials and Structures, 2014, 21(3): 181-186.
[25] SUO G, YU Y, ZHANG Z, et al. Piezoelectric and triboelectric dual effects in mechanical-energy harvesting using BaTiO3/polydimethylsiloxane composite film[J]. ACS Applied Mate-rials & Interfaces, 2016, 8(50): 34335-34341.
[26] HAN J H, SAIF M T A. In situ microtensile stage for electromechanical characterization of nanoscale freestanding films[J]. Review of Scientific Instruments, 2006, 77(4): 045102.
[27] SAI N, KOLPAK A M, RAPPE A M. Ferroelectricity in ultrathin perovskite films[J]. Physical Review B, 2005, 72(2): 020101.
[28] CHU C F, LAI F I, CHU J T, et al. Study of GaN light-emitting diodes fabricated by laser lift-off technique[J]. Journal of Applied Physics, 2004, 95(8): 3916-3922.
[29] HE J, ZHANG J, QIAN S, et al. Flexible heterogeneous integration of PZT film by controlled spalling technology[J]. Journal of Alloys and Compounds, 2019, 807: 151696.
[30] ZHANG J, JIA W, ZHANG Q, et al. Controlled spalling and flexible integration of PZT film based on LaNiO3 buffer layer[J]. Ceramics International, 2019, 45(5): 6373-6379.
[31] BAKAUL S R, SERRAO C R, LEE M, et al. Single crystal functional oxides on silicon[J]. Nature Communications, 2016, 7(1): 10547.
[32] LU D, BAEK D J, HONG S S, et al. Synthesis of freestanding single-crystal perovskite films and heterostructures by etching of sacrificial water-soluble layers[J]. Nature Materials, 2016, 15(12): 1255-1260.
[33] LI D, ADAMO C, WANG B Y, et al. Stabilization of Sr3Al2O6 growth templates for ex situ synthesis of freestanding crystalline oxide membranes[J]. Nano Letters, 2021, 21(10): 4454-4460.
[34] XU R, HUANG J, BARNARD E S, et al. Strain-induced room-temperature ferroelectricity in SrTiO3 membranes[J]. Nature Communications, 2020, 11(1): 3141.
[35] ZANG Y, DI C, GENG Z, et al. Giant thermal transport tuning at a metal/ferroelectric interface [J]. Advanced Materials, 2022, 34(3): 2105778.
[36] JI D, CAI S, PAUDEL T R, et al. Freestanding crystalline oxide perovskites down to the mono-layer limit[J]. Nature, 2019, 570(7759): 87-90.
[37] BINNIG G, ROHRER H, GERBER C, et al. Tunneling through a controllable vacuum gap[J]. Applied Physics Letters, 1982, 40(2): 178-180.
[38] BINNIG G, QUATE C F, GERBER C. Atomic force microscope[J]. Physical Review Letters, 1986, 56(9): 930.
[39] ALEXANDER S, HELLEMANS L, MARTI O, et al. An atomic-resolution atomic-force micro-scope implemented using an optical lever[J]. Journal of Applied Physics, 1989, 65(1): 164-167.
[40] GÜTHNER P, DRANSFELD K. Local poling of ferroelectric polymers by scanning force mi-croscopy[J]. Applied Physics Letters, 1992, 61(9): 1137-1139.
[41] NONNENMACHER M, O’BOYLE M, WICKRAMASINGHE H K. Kelvin probe force mi-croscopy[J]. Applied Physics Letters, 1991, 58(25): 2921-2923.
[42] BALKE N, JESSE S, KIM Y, et al. Real space mapping of Li-ion transport in amorphous Si anodes with nanometer resolution[J]. Nano Letters, 2010, 10(9): 3420-3425.
[43] SADER J E, CHON J W, MULVANEY P. Calibration of rectangular atomic force microscope cantilevers[J]. Review of Scientific Instruments, 1999, 70(10): 3967-3969.
[44] BIRK H, GLATZ-REICHENBACH J, JIE L, et al. The local piezoelectric activity of thin poly-mer films observed by scanning tunneling microscopy[J]. Journal of Vacuum Science & Tech-nology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenom-ena, 1991, 9(2): 1162-1165.
[45] HONG S. Single frequency vertical piezoresponse force microscopy[J]. Journal of Applied Physics, 2021, 129(5): 051101.
[46] GEORGE S M. Atomic layer deposition: an overview[J]. Chemical Reviews, 2010, 110(1):111- 131.
[47] PUURUNEN R L, VANDERVORST W. Island growth as a growth mode in atomic layer depo-sition: A phenomenological model[J]. Journal of Applied Physics, 2004, 96(12): 7686-7695.
[48] YANG F, WANG C, BAI H, et al. Periodic island-layer-island growth during deposition of ultrastable metallic glasses[J]. Communications Materials, 2021, 2(1): 75.
[49] RYU Y, ZHU S, BUDAI J, et al. Optical and structural properties of ZnO films deposited on GaAs by pulsed laser deposition[J]. Journal of Applied Physics, 2000, 88(1): 201-204.
[50] Y DÍAZ E C, CAMACHO J M, DUARTE-MOLLER A, et al. Influence of the oxygen pressure on the physical properties of the pulsed-laser deposited Te doped SnO2 thin films[J]. Journal of Alloys and Compounds, 2010, 508(2): 342-347.
[51] ZHOU Y, WANG D, LI Y, et al. Critical effect of oxygen pressure in pulsed laser deposition for room temperature and high performance amorphous In-Ga-Zn-O thin film transistors[J]. Nanomaterials, 2022, 12(24): 4358.
[52] OKUWADA K, YOSHIDA K I, SAITOU T, et al. Epitaxial growth at PZT/Ir interface[J]. Journal of Materials Research, 2000, 15(12): 2667-2671.
[53] SAROTT M F, BUCHELI U, LOCHMANN A, et al. Controlling the polarization in ferroelec-tric PZT films via the epitaxial growth conditions[J]. Advanced Functional Materials, 2023: 2214849.
[54] LEE C, WEI X, KYSAR J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science, 2008, 321(5887): 385-388.
[55] LI Y, YU C, GAN Y, et al. Elastic properties and intrinsic strength of two-dimensional InSe flakes[J]. Nanotechnology, 2019, 30(33): 335703.
[56] JAFFE H. Piezoelectric ceramics[J]. Journal of the American Ceramic Society, 1958, 41(11):494- 498.
[57] YAGNAMURTHY S, CHASIOTIS I, LAMBROS J, et al. Mechanical and ferroelectric be-havior of PZT-based thin films[J]. Journal of Microelectromechanical Systems, 2011, 20(6): 1250-1258.
[58] NAZEER H, NGUYEN M D, SUKAS Ö S, et al. Compositional dependence of the young’s modulus and piezoelectric coefficient of (110)-oriented pulsed laser deposited PZT thin films [J]. Journal of Microelectromechanical Systems, 2014, 24(1): 166-173.
[59] GRUVERMAN A, KALININ S V. Piezoresponse force microscopy and recent advances in nanoscale studies of ferroelectrics[J]. Journal of Materials Science, 2006, 41: 107-116.
[60] RODRIGUEZ B J, CALLAHAN C, KALININ S V, et al. Dual-frequency resonance-tracking atomic force microscopy[J]. Nanotechnology, 2007, 18(47): 475504.
[61] GANNEPALLI A, YABLON D, TSOU A, et al. Mapping nanoscale elasticity and dissipation using dual frequency contact resonance AFM[J]. Nanotechnology, 2011, 22(35): 355705.
[62] HUANG B, ESFAHANI E N, YU J, et al. High-throughput sequential excitation for nanoscale mapping of electrochemical strain in granular ceria[J]. Nanoscale, 2019, 11(48): 23188-23196.
[63] YUAN F G. 5 - Flexoelectric effect, materials, and structures[M]//Structural Health Monitoring (SHM) in Aerospace Structures. Woodhead Publishing, 2016: 119-148.
[64] ZUBKO P, CATALAN G, TAGANTSEV A K. Flexoelectric effect in solids[J]. Annual Review of Materials Research, 2013, 43: 387-421.
[65] LEE D, YOON A, JANG S, et al. Giant flexoelectric effect in ferroelectric epitaxial thin films [J]. Physical Review Letters, 2011, 107(5): 057602.
修改评论