中文版 | English
题名

科科斯板块驱动力研究及其对洋中脊扩张速率的影响

其他题名
RESEARCH ON DRIVING FORCES OF THE COCOS PLATE AND ITS EFFECT ON SPREADING RATES OF MID-OCEAN RIDGES
姓名
姓名拼音
DU Changxue
学号
12032368
学位类型
硕士
学位专业
0702 物理学
学科门类/专业学位类别
07 理学
导师
JIAN LIN
导师单位
海洋科学与工程系
论文答辩日期
2023-05-16
论文提交日期
2023-06-29
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

洋中脊是横贯在全球大洋底部的巨型张裂和板块增生系统。地幔物质在洋中脊之下上涌,并冷却凝固成新的海洋岩石圈,从而形成地球的新生板块。俯冲带是地球板块消亡的场所,新生的海洋岩石圈在此向下俯冲潜没,重新回到地幔中去。洋中脊和俯冲带分别作为板块的出生地与消亡地,记录了板块的运动学与动力学过程,驱动着全球尺度的构造活动和演化,然而目前对这两种系统动力学关系的联合讨论的研究甚少。

扩张速率是决定洋中脊构造特征的一阶影响因素。板块重构结果表明,洋中脊扩张速率与周围俯冲带密切相关,其本质上受控于板块运动的驱动力。因此,定量研究板块运动驱动力及其对洋中脊扩张速率的影响,对于探讨全球洋中脊扩张速率差异性的成因具有重要意义,为从洋中脊-俯冲带系统的角度阐述板块运动的驱动机制问题提供新见解。

本研究以科科斯板块为研究区,基于全球板块运动模型、全球俯冲板片深度和厚度数据以及全球海底水深数据,定量化计算板块驱动力,获取东太平洋海隆的洋脊推力和中美俯冲带的板片拖拽力,并分析这两种板块驱动力与洋中脊全扩张速率之间的关系。此外,选取超慢速-中速扩张的大西洋脊和印度洋脊开展全球类比研究,以期进一步揭示板块驱动力的机制。

研究结果表明:板片拖拽力的量级大小为1012 N/m,而洋脊推力的量级则仅为1011 N/m,前者比后者大一个数量级;板片拖拽力与洋中脊全扩张速率具有强相关性,全扩张速率> 90%受控于板片拖拽力,而剩余10%的贡献来自洋脊推力,因此板片拖拽力的大小是影响洋中脊全扩张速率快慢的决定性因素;洋中脊和俯冲带系统存在相互作用,俯冲带俯冲时产生的板片拖拽力可能拉动邻近的洋中脊,从而产生洋脊推力,导致进一步加速俯冲过程。

其他摘要

Mid‐ocean ridges are giant rifts and plate accretion systems in the global oceans. Thermal mantle material upwells beneath mid‐ocean ridges, cools and solidifies into new oceanic lithosphere, thus forming the Earth's new plate. Subduction zones are places where plates demise (i.e., the oceanic lithosphere subducts downward and returns to the mantle). Mid‐ocean ridges and subduction zones, as the birthplace and extinction sites of plates, respectively, record the kinematic and dynamical processes of plates, and drive the tectonic activities and evolution on a global scale. However, there are few researches on the joint discussion of the dynamical relationship between these two systems.

Spreading rates are the first order factor that determine the tectonic characteristics of mid‐ocean ridges. The results of plate reconstruction show that spreading rates of mid‐ocean ridges are closely related to the surrounding subduction zones, which are essentially controlled by driving forces of plate motions. Therefore, the quantitative research on driving forces of plate motions and their effects on spreading rates of mid‐ocean ridges is of great significance to explore the causes of the differences in spreading rates of global mid‐ocean ridges, and provides new insights into the driving mechanism of plate motions from the perspective of mid‐ocean ridges and subduction zones.

In this research, the Cocos plate was taken as the research area. Based on the global plate motion model, global slab depth and thickness, and global seafloor bathymetry, we quantitatively calculated plate driving forces to obtain the ridge push of the East Pacific Rise and the slab pull of the middle America subduction zone. Then, we analyzed the relationship between these two plate driving forces and full spreading rates of mid‐ocean ridges. Furthermore, the ultraslow to intermediate spreading Atlantic and Indian ridges were selected for global comparative research to further reveal the mechanism of plate driving forces.

The results showed that the magnitude of the slab pull is 1012 N/m, while the magnitude of the ridge push is only 1011 N/m, which is one order of magnitude smaller than that of slab pull. Slab pull is strongly correlated with full spreading rates of mid‐ocean ridges, with more than 90% of full spreading rates controlled by slab pull and less than 10% of full spreading rates contributed by ridge push. Therefore, slab pull is the decisive factor affecting full spreading rates of mid‐ocean ridges. Moreover, there is an interaction between mid‐ocean ridges and subduction zones: the slab pull generated by subduction zones may have driving force on adjacent mid‐ocean ridges, thus generating ridge push and further accelerating the subduction process.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2023-06
参考文献列表

[1] WEGENER A. The origin of continents and oceans[M]. Massachusetts: Courier Corporation, 1966: 268-270.
[2] HESS H H. History of ocean basins[J]. In: Engel A E, James H L, Leonard B F, eds. Petrologic Studies: A Volume in Honor of A.F. Buddington. Boulder: Geological Society of America, 1962: 599-620.
[3] MORGAN W J. Rises, trenches, great faults, and crustal blocks[J]. Journal of Geophysical Research, 1968, 73(6): 1959-1982.
[4] 陈凌, 王旭, 梁晓峰, 等. 俯冲构造 vs.地幔柱构造——板块运动驱动力探讨[J]. 中国科学: 地球科学, 2020, 50(4): 501-514.
[5] 梁鑫峰. 海底山脉——大洋中脊[J]. 百科知识, 2013, 544(19): 17-19.
[6] 肖文交, 宋东方, 张继恩, 等. 俯冲带结构演变解剖与研究展望[J]. 地球科学, 2022, 47(9): 3073-3106.
[7] ZAHIROVIC S, MÜLLER R D, SETON M, et al. Tectonic speed limits from plate kinematic reconstructions[J]. Earth and Planetary Science Letters, 2015, 418: 40 -52.
[8] MÜLLER R D, SDROLIAS M, GAINA C, et al. Age, spreading rates, and spreading asymmetry of the world's ocean crust[J]. Geochemistry, Geophysics, Geosystems, 2008, 9(4): 1-19.
[9] 祝渊陵. 构造动力成矿路径探讨[J]. 四川地质学报, 1987, 2: 50-63.
[10] MÜLLER R D, SETON M, ZAHIROVIC S, et al. Ocean Basin Evolution and Global-Sale Plate Reorganization Events Since Pangea Breakup[J]. Annual Review of Earth and Planetary Sciences, 2016, 44(1): 107-138.
[11] FORSYTH D, UYEDA S. On the Relative Importance of the Driving Forces of Plate Motion[J]. Geophysical Journal of the Royal Astronomical Society, 1975, 43: 163 -200.
[12] CONRAD C P, LITHGOW-BERTELLONI C. The temporal evolution of plate driving forces: Importance of “slab suction” versus “slab pull” during the Cenozoic[J]. Journal of Geophysical Research, 2004, 109(B10): 1-14.
[13] SCHELLART W P. Quantifying the net slab pull force as a driving mechanism for plate tectonics[J]. Geophysical Research Letters, 2004, 31(L07611): 1 -5.
[14] BARCKHAUSEN U, RANERO C R, VON HUENE R, et al. Revised tectonic boundaries in the Cocos Plate off Costa Rica: Implications for the segmentation of the convergent margin and for plate tectonic models[J]. Journal of Geophysical Research, 2001, 106(B9): 19207-19220.
[15] VAN AVENDONK H J A, HOLBROOK W S, LIZARRALDE D, et al. Structure and serpentinization of the subducting Cocos plate offshore Nicaragua and Costa Rica[J]. Geochemistry, Geophysics, Geosystems, 2011, 12(6): 1-23.
[16] RANERO C R, MORGAN J P, MCINTOSH K, et al. Bending-related faulting and mantle serpentinization at the Middle America trench [J]. Nature, 2003, 425(6956): 367-373.
[17] 葛振敏. 哥斯达黎加西海岸外科科斯脊基底玄武岩岩石地球化学研究及其质意义[D]. 山东: 自然资源部第一海洋研究所海洋地质学科硕士学位论文, 2020: 9-11.
[18] WHEAT C G, FISHER A T. Massive, low-temperature hydrothermal flow from a basaltic outcrop on 23 Ma seafloor of the Cocos Plate: Chemical constraints and implications[J]. Geochemistry, Geophysics, Geosystems, 2008, 9(12): 1 -16.
[19] BRANDSTÄTTER J, KURZ W, KRENN K, et al. Fluid inclusion petrology and microthermometry of the Cocos Ridge hydrothermal system, IODP Expedition 344 (CRISP 2), Site U1414[J]. Geochemistry, Geophysics, Geosystems, 2016, 17(4): 1419 -1434.
[20] 赵仁杰, 鄢全树, 张海桃, 等. 中美洲俯冲带南段上覆板块沉积物化学组分及其地质意义[J]. 岩石学报, 2021, 37(7): 1949-1963.
[21] WALTHER C H E. Crustal structure of the Cocos Ridge northeast of Cocos Island, Panamá Basin[J]. Geophysical Research Letters, 2002, 29(20): 1-4.
[22] WALTHER C H E. The crustal structure of the Cocos ridge off Costa Rica [J]. Journal of Geophysical Research, 2003, 108(B3): 2136.
[23] HARPP K S, WANLESS V D, OTTO R H, et al. The Cocos and Carnegie Aseismic Ridges: a Trace Element Record of Long-term Plume-Spreading Center Interaction [J]. Journal of Petrology, 2005, 46(1): 109-133.
[24] RANERO C R, VON HUENE R. Subduction erosion along the Middle America convergent margin[J]. Nature, 2000, 404: 748-752.
[25] WERNER R, HOERNLE K, PAUL V D B, et al. Drowned 14-m.y.-old Galápagos archipelago off the coast of Costa Rica: Implications for tectonic and evolutionary models [J]. Geology, 1999, 27(6): 499-502.
[26] 鄢全树, 石学法. 无震脊或海山链俯冲对超俯冲带处的地质效应[J]. 海洋学报(中文版), 2014, 36(5): 107-123.
[27] 李永祥, 鄢全树, 赵西西. 剥蚀型汇聚板块边缘大地震成因机理研究: 来自国际综合大洋钻探 344 航次的报告[J]. 地球科学进展, 2013, 28(6): 728-736.
[28] PARMENTIER E, MORGAN J. Spreading rate dependence of three -dimensional structure in oceanic spreading centres[J]. Nature, 1990, 348: 325-328.
[29] SMALL C. Global Systematics of Mid-Ocean Ridge Morphology[J]. Geophysical Monograph, 1998, 106: 1-25.
[30] 于淼. 快、慢速扩张洋中脊玄武岩特征对比及意义[D]. 北京: 中国地质大学海洋地质学科博士学位论文, 2013: 86-95.
[31] 刘持恒, 李江海, 刘仲兰, 等. 超慢速扩张洋中脊岩浆形成和迁移汇聚动力学研究[J]. 海洋学报, 2019, 41(3): 86-95.
[32] 李龑, 牛雄伟, 阮爱国, 等. 洋中脊扩张速率对洋壳速度结构的约束[J]. 地球物理学报, 2020, 63(5): 1913-1926.
[33] ZHOU D, LI C F, ZLOTNIK S, et al. Correlations between oceanic crustal thickness,melt volume, and spreading rate from global gravity observation[J]. Marine Geophysical Research, 2020, 41(14): 1-16.
[34] LUO Y M, LIN J, ZHANG F, et al. Spreading rate dependence of morphological characteristics in global oceanic transform faults[J]. Acta Oceanologica Sinica, 2021, 40(4): 39-64.
[35] ISACKS B, OLIVER J, SYKES L R. Seismology and the new global tectonics[J]. Journal of Geophysical Research, 1968, 73(18): 5855-5899.
[36] ISACKS B, MOLNAR P. Mantle earthquake mechanisms and the sinking of the lithosphere[J]. Nature, 1969, 223: 1121-1124.
[37] 郑永飞. 21 世纪板块构造[J]. 中国科学: 地球科学, 2023, 53(1): 1-40.
[38] 谈镐生, 关德相. 大陆板块运动的经验规律[J]. 中国科学, 1981, 3: 337-340.
[39] DAVIS D M, SOLOMON S C. True Polar Wander and Plate-Driving Forces[J]. Journal of Geophysical Research, 1985, 90(B2): 1837-1841.
[40] RICHARDSON R M. Ridge forces, absolute plate motions, and the intraplate stress field[J]. Journal of Geophysical Research, 1992, 97(B8): 11739-11748.
[41] BOTT M H P. Modelling the loading stresses associated with active continental rift systems[J]. Tectonophysics, 1992, 215: 99-115.
[42] BOTT M H P. Upper Mantle Density Anomalies, Tectonic Stress in the Lithosphere, and Plate Boundary Forces[M]. In Relating Geophysical Structures and Processes: The Jeffreys Volume, 1993: 27-38.
[43] MARUYAMA S. Plume tectonics[J]. Journal of the Geological Society of Japan, 1994, 100(1): 24-49.
[44] CONRAD C P, LITHGOW-BERTELLONI C. How mantle slabs drive plate tectonics[J]. Science, 2002, 298: 207-209.
[45] LITHGOW-BERTELLONI C, RICHARDS M A. The dynamics of Cenozoic and Mesozoic plate motions[J]. Reviews of Geophysics, 1998, 36(1): 27-78.
[46] HALL C E, GURNIS M, SDROLIAS M, et al. Catastrophic initiation of subduction following forced convergence across fracture zones[J]. Earth and Planetary Science Letters, 2003, 212(1-2): 15-30.
[47] SILVER P G, RUSSO R M, LITHGOW-BERTELLONI C. Coupling of South American and African Plate Motion and Plate Deformation[J]. Science, 1998, 279(5347): 60-63.
[48] CONRAD C P, HAGER B H. Effects of plate bending and fault strength at subduction zones on plate dynamics[J]. Journal of Geophysical Research, 1999, 104(B8): 17551 - 17571.
[49] SOLOMON S C, SLEEP N H. Some simple physical models for absolute plate motions[J]. Journal of Geophysical Research, 1974, 79(17): 2557-2567.
[50] STERN R J. When and how did plate tectonics begin? Theoretical and empirical considerations[J]. Chinese Science Bulletin, 2007, 52(5): 578-591.
[51] COMBES M, GRIGNÉ C, HUSSON L, et al. Multiagent simulation of evolutive plate tectonics applied to the thermal evolution of the Earth[J]. Geochemistry, Geophysics, Geosystems, 2012, 13(5): 1-24.
[52] CONRAD C P, LITHGOW-BERTELLONI C. Influence of continental roots and asthenosphere on plate-mantle coupling[J]. Geophysical Research Letters, 2006, 33(5): 1-4.
[53] GHOSH A, HOLT W E. Plate motions and stresses from global dynamic models[J]. Science, 2012, 335(6070): 838-843.
[54] QUINTEROS J, SOBOLEV S V. Why has the Nazca plate slowed since the Neogene? Geology, 2013, 41(1): 31-34.
[55] KUMAR P, YUAN X, KUMAR M R, et al. The rapid drift of the Indian tectonic plate[J]. Nature, 2007, 449: 894-897.
[56] CANDE S C, STEGMAN D R. Indian and African plate motions driven by the pushforce of the Réunion plume head[J]. Nature, 2011, 475: 47-52.
[57] WALTER M J, KOHN S C, ARAUJO D, et al. Deep mantle cycling of oceanic crust: Evidence from diamonds and their mineral inclusions[J]. Science, 2011, 334(6052): 54-57.
[58] LEONARD T, LIU L J. The role of a mantle plume in the formation of Yellowstone volcanism[J]. Geophysical Research Letters, 2016, 43(3): 1132-1139.
[59] HASSAN R, MÜLLER R D, GURNIS M, et al. A rapid burst in hotspot motion through the interaction of tectonics and deep mantle flow[J]. Nature, 2016, 533: 239 -242.
[60] 万博, 吴福元, 陈凌, 等. 重力驱动的特提斯单向裂解-聚合动力学[J]. 中国科学: 地球科学, 2019, 49(12): 2004-2017.
[61] 丁暄. 板块构造与地球运动[J]. 地质地球化学, 1978, 7: 38-46.
[62] 王心源. 板块运动速度模式与驱动机制的研究[J]. 安徽师大学报(自然科学版), 1992, 3: 39-45.
[63] 孙忠实, 邓军. 驱动板块动力源之一——地磁斥、引力初探[J]. 吉林地质, 2001, 3: 1-8.
[64] 孙卫东. “岩浆引擎”与板块运动驱动力[J]. 科学通报, 2019, 64(Z2): 2988-3006.
[65] STADLER G, GURNIS M, BURSTEDDE C, et al. The dynamics of plate tectonics and mantle flow: From local to global scales[J]. Science, 2010, 329: 1033 -1038.
[66] LI Z X, ZHONG S J. Supercontinent-superplume coupling, true polar wander and plume mobility: Plate dominance in whole-mantle tectonics[J]. Physics of the Earth and Planetary Interiors, 2009, 176: 143-156.
[67] LI Z X, MITCHELL R N, SPENCER C J, et al. Decoding Earth’s rhythms: Modulation of supercontinent cycles by longer superocean episodes[J]. Precambrian Research, 2019, 323: 1-5.
[68] 方曙. 板块运动规律梳理及其源动力实验计算研究[J]. 大地测量与地球动力学, 2021, 41(6): 551-560.
[69] ZHOU Z Y, LIN J. Elasto-plastic deformation and plate weakening due to normal faulting in the subducting plate along the Mariana Trench[J]. Tectonophysi cs, 2018, 734-735: 59-68.
[70] MÜLLER R D, CANNON J, QIN X, et al. GPlates: Building a virtual Earth through deep time[J]. Geochemistry, Geophysics, Geosystems, 2018, 19(7): 2243 -2261.
[71] MATTHEWS K J, MALONEY K T, ZAHIROVIC S, et al. Global plate boundary evolution and kinematics since the late Paleozoic[J]. Global and Planetary Change, 2016, 146: 226-250.
[72] BRUNE S, WILLIAMS S E, BUTTERWORTH N P, et al. Abrupt plate accelerations shape rifted continental margins[J]. Nature, 2016, 536(7615): 201 -204.
[73] DYKSTERHUIS S, MÜLLER R D. Future intraplate stress and the longevity of carbon storage[J]. Fuel, 2017, 200: 31-36.
[74] RUBEY M, BRUNE S, HEINE C, et al. Global patterns in Earth’s dynamic topography since the Jurassic: The role of subducted slabs[J]. Solid Ea rth, 2017, 8(5): 899-919.
[75] COOK K L, HOVIUS N, WITTMANN H, et al. Causes of rapid uplift and exceptional topography of Gongga Shan on the eastern margin of the Tibetan Plateau[J]. Earth and Planetary Science Letters, 2018, 481: 328-337.
[76] FLAMENT N, WILLIAMS S, MÜLLER R D, et al. Origin and evolution of the deep thermochemical structure beneath Eurasia[J]. Nature Communications, 2017, 8: 14164.
[77] BOWER D J, GURNIS M, FLAMENT N. Assimilating lithosphere and slab history in 4-D Earth models[J]. Physics of the Earth and Planetary Interiors, 2015, 238: 8-22.
[78] WESSEL P, SMITH W H F. Free software helps map and display data[J]. Eos, Transactions American Geophysical Union, 1991, 72(41): 441-446.
[79] WESSEL P, SMITH W H F. New, improved version of Generic Mapping Tools released[J]. EOS Transactions, AGU, 1998, 79(47): 579.
[80] MÜLLER R D, ZAHIROVIC S, WILLIAMS S E, et al. A global plate model including lithospheric deformation along major rifts and orogens since the Triassic[J]. Tectonics, 2019, 38(6): 1884-1907.
[81] 龚福秀, 陈建平, 于淼, 等. 球面几何构建欧拉极的方法[J]. 地球物理学进展, 2009, 24(2): 475-480.
[82] 林成发, 刘少峰, Simon Williams. 基于 GPlates 平台的“深时”板块构造重建: 数据库现状与应用实例[J]. 高校地质学报, 2020, 26(4): 444-463.
[83] 李三忠, 索艳慧, 周洁, 等. 微板块与大板块:基本原理与范式转换[J]. 地质学报, 2022, 96(10): 3541-3558.
[84] HAYES G P, WALD D J, JOHNSON R L. Slab1.0: A three-dimensional model of global subduction zone geometries[J]. Journal of Geophysical Research, 2012, 117(B1): 1-15.
[85] PAGANI M, MONELLI D, WEATHERILL G, et al. OpenQuake Engine: An Open Hazard (and Risk) Software for the Global Earthquake Model[J]. Seismological Research Letters, 2014, 85(3): 692-702.
[86] GEIST E L, LYNETT P J. Source Processes for the Probabilistic Assessment of Tsunami Hazards[J]. Oceanography, 2014, 27(2): 86-93.
[87] EAKIN C M, LONG M D. Complex anisotropy beneath the Peruvian flat slab from frequency-dependent, multiple-phase shear wave splitting analysis[J]. Journal of Geophysical Research, 2013, 118(9): 4794-4813.
[88] BLETERY Q, THOMAS A M, REMPEL A W, et al. Mega-earthquakes rupture flat megathrusts[J]. Science, 2016, 354(6315): 1027-1031.
[89] YOGODZINSKI G M, BROWN S T, KELEMEN P B, et al. The role of subducted basalt in the source of island arc magmas: evidence from seafloor lavas of the western Aleutians[J]. Journal of Petrology, 2015, 56(3): 441-492.
[90] MORISHIGE M, HONDA S. Mantle flow and deformation of subducting slab at a plate junction[J]. Earth and Planetary Science Letters, 2013, 365: 132 -142.
[91] HAYES G P, MOORE G L, PORTNER D E, et al. Slab2, a comprehensive subduction zone geometry model[J]. Science, 2018, 362(6410): 58-61.
[92] PORTNER D E, HAYES G P. Incorporating teleseismic tomography data into models of upper mantle slab geometry[J]. Geophysical Journal International, 2018, 215(1): 325-332.
[93] PÉREZ-CAMPOS X, KIM Y, HUSKER A, et al. Horizontal subduction and truncation of the Cocos Plate beneath central Mexico[J]. Geophysical Research Letters, 2008,35(18): 1-6.
[94] SCIRE A, ZANDT G, BECK S, et al. The deforming Nazca slab in the mantle transition zone and lower mantle: Constraints from teleseismic tomography on the deeply subducted slab between 6°S and 32°S[J]. Geosphere, 2017, 13(3): 665-680.
[95] MCCRORY P A, BLAIR J L, WALDHAUSER F, et al. Juan de Fuca Slab Geometry and Its Relation to Wadati-Benioff Zone Seismicity[J]. Journal of Geophysical Research, 2012, 117(B9): 1-23.
[96] PACHECO J F, SYKES L R, SCHOLZ C H. Nature of seismic coupling along simple plate boundaries of the subduction type[J]. Journal of Geophysical Research, 1993, 98(B8): 14133-14159.
[97] WESSEL P, LUIS J F, UIEDA L, et al. The Generic Mapping Tools version 6[J]. Geochemistry, Geophysics, Geosystems, 2019, 20(11): 5556-5564.
[98] TOZER B, SANDWELL D T, SMITH W H F, et al. Global bathymetry and topography at 15 arc sec: SRTM15+[J]. Earth and Space Science, 2019, 6(10): 1847 -1864.
[99] FRISCH W, MESCHEDE M, BLAKEY R. Plate Tectonics: Continental Drift and Mountain Building[M]. Heidelberg: Springer, 2011: 6.

所在学位评定分委会
物理学
国内图书分类号
P542.4
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/544611
专题工学院_海洋科学与工程系
推荐引用方式
GB/T 7714
杜昌学. 科科斯板块驱动力研究及其对洋中脊扩张速率的影响[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032368-杜昌学-海洋科学与工程(9629KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[杜昌学]的文章
百度学术
百度学术中相似的文章
[杜昌学]的文章
必应学术
必应学术中相似的文章
[杜昌学]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。