[1] Bojarski M, Del Testa D, Dworakowski D, et al. End to end learning for self-driving cars[J]. arXiv preprint arXiv:1604.07316, 2016.
[2] He K, Zhang X, Ren S, et al. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification[C]//Proceedings of the IEEE international conference on computer vision. 2015: 1026-1034.
[3] Koubaa A. GPT-4 vs. GPT-3.5: A concise showdown[J]. 2023.
[4] Stanev V, Oses C, Kusne A G, et al. Machine learning modeling of superconducting critical temperature[J]. npj Computational Materials, 2018, 4(1): 29.
[5] Zheng X, Zheng P, Zhang R Z. Machine learning material properties from the periodic table using convolutional neural networks[J]. Chemical science, 2018, 9(44): 8426-8432.
[6] Madsen J, Liu P, Kling J, et al. A deep learning approach to identify local structures in atomic‐resolution transmission electron microscopy images[J]. Advanced Theory and Simulations, 2018, 1(8): 1800037.
[7] Park W B, Chung J, Jung J, et al. Classification of crystal structure using a convolutional neural network[J]. IUCrJ, 2017, 4(4): 486-494.
[8] Hart G L W, Mueller T, Toher C, et al. Machine learning for alloys[J]. Nature Reviews Materials, 2021, 6(8): 730-755.
[9] Kang P L, Shang C, Liu Z P. Large-scale atomic simulation via machine learning potentials constructed by global potential energy surface exploration[J]. Accounts of Chemical Research, 2020, 53(10): 2119-2129.
[10] Xiong J, Shi S Q, Zhang T Y. Machine learning prediction of glass-forming ability in bulk metallic glasses[J]. Computational Materials Science, 2021, 192: 110362.
[11] Zhou Y X, Zhang H Y, Deringer V L, et al. Structure and Dynamics of Supercooled Liquid Ge2Sb2Te5 from Machine‐Learning‐Driven Simulations[J]. physica status solidi (RRL)–Rapid Research Letters, 2021, 15(3): 2000403.
[12] Giannetti C, Capone M, Fausti D, et al. Ultrafast optical spectroscopy of strongly correlated materials and high-temperature superconductors: a non-equilibrium approach[J]. Advances in Physics, 2016, 65(2): 58-238.
[13] Žutić I, Fabian J, Sarma S D. Spintronics: Fundamentals and applications[J]. Reviews of modern physics, 2004, 76(2): 323.
[14] Ladd T D, Jelezko F, Laflamme R, et al. Quantum computers[J]. nature, 2010, 464(7285): 45-53.
[15] Thouless D J. Electrons in disordered systems and the theory of localization[J]. Physics Reports, 1974, 13(3): 93-142.
[16] McCann E, Kechedzhi K, Fal’ko V I, et al. Weak-localization magnetoresistance and valley symmetry in graphene[J]. Physical review letters, 2006, 97(14): 146805.
[17] Scheffler M, Dressel M, Jourdan M, et al. Extremely slow Drude relaxation of correlated electrons[J]. Nature, 2005, 438(7071): 1135-1137.
[18] Mashiko H, Oguri K, Yamaguchi T, et al. Petahertz optical drive with wide-bandgap semiconductor[J]. Nature physics, 2016, 12(8): 741-745.
[19] Fuchs G D, Dobrovitski V V, Toyli D M, et al. Gigahertz dynamics of a strongly driven single quantum spin[J]. Science, 2009, 326(5959): 1520-1522.
[20] Ulbricht R, Hendry E, Shan J, et al. Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy[J]. Reviews of Modern Physics, 2011, 83(2): 543.
[21] Xiang X D, Sun X, Briceno G, et al. A combinatorial approach to materials discovery[J]. Science, 1995, 268(5218): 1738-1740.
[22] Lu Y, Wei T, Duewer F, et al. Nondestructive imaging of dielectric-constant profiles and ferroelectric domains with a scanning-tip microwave near-field microscope[J]. Science, 1997, 276(5321): 2004-2006.
[23] Dressel M, Grüner G. Electrodynamics of solids: optical properties of electrons in matter[J]. 2002.
[24] Ulbricht R, Hendry E, Shan J, et al. Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy[J]. Reviews of Modern Physics, 2011, 83(2): 543.
[25] Youn S J, Rho T H, Min B I, et al. Extended Drude model analysis of noble metals[J]. physica status solidi (b), 2007, 244(4): 1354-1362.
[26] Olmon R L, Slovick B, Johnson T W, et al. Optical dielectric function of gold[J]. Physical Review B, 2012, 86(23): 235147.
[27] Yang H U, D'Archangel J, Sundheimer M L, et al. Optical dielectric function of silver[J]. Physical Review B, 2015, 91(23): 235137.
[28] Marković M I, Rakić A D. Determination of optical properties of aluminium including electron reradiation in the Lorentz-Drude model[J]. Optics & Laser Technology, 1990, 22(6): 394-398.
[29] Zhang P, Tang H, Gu C, et al. A direct measurement method of quantum relaxation time[J]. National Science Review, 2021, 8(4): nwaa242.
[30] Tompkins H, Irene E A. Handbook of ellipsometry[M]. William Andrew, 2005.
[31] Schubert M. Infrared ellipsometry on semiconductor layer structures: phonons, plasmons, and polaritons[M]. Springer Science & Business Media, 2004.
[32] Aspnes D E, Studna A A. High precision scanning ellipsometer[J]. Applied Optics, 1975, 14(1): 220-228.
[33] Muller R H, Farmer J C. Fast, self‐compensating spectral‐scanning ellipsometer[J]. Review of scientific instruments, 1984, 55(3): 371-374.
[34] Kim Y T, Collins R W, Vedam K. Fast scanning spectroelectrochemical ellipsometry: In-situ characterization of gold oxide[J]. Surface Science, 1990, 233(3): 341-350.
[35] Chu Y, Zhang Z. Birefringent and complex dielectric functions of monolayer WSe2 derived by spectroscopic ellipsometer[J]. The Journal of Physical Chemistry C, 2020, 124(23): 12665-12671.
[36] Khasanov T K. Detection of Weak Optical Anisotropy in Strontium Tetraborate Activated by Ytterbium Ions[J]. Optics and Spectroscopy, 2019, 127: 271-278.
[37] Shoji E, Komiya A, Okajima J, et al. Three-step phase-shifting imaging ellipsometry to measure nanofilm thickness profiles[J]. Optics and Lasers in Engineering, 2019, 112: 145-150.
[38] Anwar S, Firdous S. Optical diagnosis of dengue virus infected human blood using Mueller matrix polarimetry[J]. Optics and Spectroscopy, 2016, 121(2): 322-325.
[39] Ahmad I, Khaliq A, Iqbal M, et al. Mueller matrix polarimetry for characterization of skin tissue samples: A review[J]. Photodiagnosis and photodynamic therapy, 2020, 30: 101708.
[40] Badieyan S, Ameri A, Razzaghi M R, et al. Mueller matrix imaging of prostate bulk tissues; Polarization parameters as a discriminating benchmark[J]. Photodiagnosis and photodynamic therapy, 2019, 26: 90-96.
[41] Yimam D T, Van Der Ree A J T, Abou El Kheir O, et al. Phase Separation in Ge-Rich GeSbTe at Different Length Scales: Melt-Quenched Bulk versus Annealed Thin Films[J]. Nanomaterials, 2022, 12(10): 1717.
[42] Jung Y W, Lee R S, Kim J H, et al. Study on TiN film growth mechanism using spectroscopic ellipsometry[J]. Journal of the Korean Physical Society, 2022: 1-5.
[43] Hilse M, Wang X, Killea P, et al. Spectroscopic ellipsometry as an in-situ monitoring tool for Bi2Se3 films grown by molecular beam epitaxy[J]. Journal of Crystal Growth, 2021, 566: 126177.
[44] MacPhee A G, Bell P M, Boyle D, et al. Performance of a hardened x-ray streak camera at Lawrence Livermore National Laboratory’s National Ignition Facility[J]. Review of Scientific Instruments, 2022, 93(8): 083519.
[45] Borin V, Dorokhov V, Karpov G, et al. The study of beam-beam effects on BINP electron-positron colliders[C]//Proc. of the 10th Intern. Accel. Conf.(IPAC2019), Melbourne, Australia. 2019: 2629-2631.
[46] Kisiel A, Ptaszkiewicz M, Cabala S, et al. Diagnostic Beamlines at the Solaris Storage Ring[C]//8th International Beam Instrumentation Conference (IBIC'19), Malmö, Sweden, 08-12 September 2019. JACOW Publishing, Geneva, Switzerland, 2019: 366-368.
[47] Zhou X, Liu L, Xu T, et al. Low Optical Loss Amplified Spontaneous Emission and Lasing in a Solution‐Processed Organic Semiconductor[J]. Advanced Optical Materials, 2019, 7(18): 1900701.
[48] Liu R T, Zhai X P, Zhu Z Y, et al. Disentangling the luminescent mechanism of Cs4PbBr6 single crystals from an ultrafast dynamics perspective[J]. The Journal of Physical Chemistry Letters, 2019, 10(21): 6572-6577.
[49] Liu H, Zhao J, Wu Z, et al. Experimental investigations on energy deposition and morphology of exploding aluminum wires in argon gas[J]. Journal of Applied Physics, 2019, 125(10): 103301.
[50] Baksht R B, Tkachenko S I, Zhigalin A S, et al. A study of the foil explosion in vacuum using spectral streak camera diagnostics[J]. Physics of Plasmas, 2021, 28(6): 062706.
[51] Monin J, Boutry G A. Optical and photoelectric properties of alkali metals[J]. Physical Review B, 1974, 9(4): 1309.
[52] Haynes W M. CRC handbook of chemistry and physics[M]. CRC press, 2016.
[53] Fox M. The Handbook on Optical Constants of Metals: In Tables and Figures & The Handbook on Optical Constants of Semiconductors: In Tables and Figures, by Sadao Adachi: Scope: reference. Level: researcher[J]. 2013.
[54] Tu J J, Carr G L, Perebeinos V, et al. Optical properties of c-axis oriented superconducting MgB 2 films[J]. Physical review letters, 2001, 87(27): 277001.
[55] Fudamoto Y, Lee S. Anisotropic electrodynamics of MgB 2 detected by optical reflectance[J]. Physical Review B, 2003, 68(18): 184514.
[56] Kaindl R A, Carnahan M A, Orenstein J, et al. Far-infrared optical conductivity gap in superconducting MgB 2 films[J]. Physical review letters, 2001, 88(2): 027003.
[57] Železný V, Chvostova D, Tarasenko A, et al. Anisotropy in the optical response of superconducting MgB2 films[J]. Thin solid films, 2008, 516(21): 7758-7763.
[58] Kortus J, Mazin I I, Belashchenko K D, et al. Superconductivity of metallic boron in MgB 2[J]. Physical Review Letters, 2001, 86(20): 4656.
[59] Philipp H R, Ehrenreich H. Optical properties of semiconductors[J]. Physical Review, 1963, 129(4): 1550.
[60] Sze S M, Li Y, Ng K K. Physics of semiconductor devices[M]. John wiley & sons, 2021.
[61] Hummel R E. Electronic properties of materials[M]. New York: Springer, 2011.
[62] Panah M E A, Takayama O, Morozov S V, et al. Highly doped InP as a low loss plasmonic material for mid-IR region[J]. Optics express, 2016, 24(25): 29077-29088.
[63] Kim Y S, Hummer K, Kresse G. Accurate band structures and effective masses for InP, InAs, and InSb using hybrid functionals[J]. Physical Review B, 2009, 80(3): 035203.
[64] Kwon Y, Kim S. Indium phosphide magic-sized clusters: chemistry and applications[J]. NPG Asia Materials, 2021, 13(1): 37.
[65] Rakhshani A E, Makdisi Y, Ramazaniyan H A. Electronic and optical properties of fluorine-doped tin oxide films[J]. Journal of applied physics, 1998, 83(2): 1049-1057.
[66] Zhang W, Mazzarello R, Wuttig M, et al. Designing crystallization in phase-change materials for universal memory and neuro-inspired computing[J]. Nature Reviews Materials, 2019, 4(3): 150-168.
[67] Ding K, Wang J, Zhou Y, et al. Phase-change heterostructure enables ultralow noise and drift for memory operation[J]. Science, 2019, 366(6462): 210-215.
[68] 宋志棠. 相变存储器与应用基础[M]. Ke xue chu ban she, 2013.
[69] Zidan M A, Strachan J P, Lu W D. The future of electronics based on memristive systems[J]. Nature electronics, 2018, 1(1): 22-29.
[70] Wuttig M, Yamada N. Phase-change materials for rewriteable data storage[J]. Nature materials, 2007, 6(11): 824-832.
[71] Sebastian A, Le Gallo M, Eleftheriou E. Computational phase-change memory: beyond von Neumann computing[J]. Journal of Physics D: Applied Physics, 2019, 52(44): 443002.
[72] Terao M, Morikawa T, Ohta T. Electrical phase-change memory: fundamentals and state of the art[J]. Japanese Journal of Applied Physics, 2009, 48(8R): 080001.
[73] Orava J, Greer A L, Gholipour B, et al. Characterization of supercooled liquid Ge2Sb2Te5 and its crystallization by ultrafast-heating calorimetry[J]. Nature materials, 2012, 11(4): 279-283.
[74] Chen B, Chen Y, Ding K, et al. Kinetics features conducive to cache-type nonvolatile phase-change memory[J]. Chemistry of Materials, 2019, 31(21): 8794-8800.
[75] Bai K, Tan T L, Branicio P S, et al. Time-temperature-transformation and continuous-heating-transformation diagrams of GeSb2Te4 from nanosecond-long ab initio molecular dynamics simulations[J]. Acta Materialia, 2016, 121: 257-265.
[76] Branicio P S, Bai K, Ramanarayan H, et al. Atomistic insights into the nanosecond long amorphization and crystallization cycle of nanoscale G e 2 S b 2 T e 5: An ab initio molecular dynamics study[J]. Physical Review Materials, 2018, 2(4): 043401.
[77] Sajid M, Hassan I, Rahman A. An overview of cooling of thermoelectric devices[J]. Renewable and Sustainable Energy Reviews, 2017, 78: 15-22.
[78] Shi X L, Chen W Y, Zhang T, et al. Fiber-based thermoelectrics for solid, portable, and wearable electronics[J]. Energy & Environmental Science, 2021, 14(2): 729-764.
[79] Cramer C L, Wang H, Ma K. Performance of functionally graded thermoelectric materials and devices: a review[J]. Journal of electronic materials, 2018, 47: 5122-5132.
[80] Ioffe F. Semiconductor Thermoelements and Thermoelectric Refrigeration[J]. Infosearch, London, 1957, 39.
[81] Madsen G K H, Singh D J. BoltzTraP. A code for calculating band-structure dependent quantities[J]. Computer Physics Communications, 2006, 175(1): 67-71.
[82] Singh D J, Mazin I I. Calculated thermoelectric properties of La-filled skutterudites[J]. Physical Review B, 1997, 56(4): R1650.
[83] Scheidemantel T J, Ambrosch-Draxl C, Thonhauser T, et al. Transport coefficients from first-principles calculations[J]. Physical Review B, 2003, 68(12): 125210.Madsen G K H. Automated search for new thermoelectric materials: the case of LiZnSb[J]. Journal of the American Chemical Society, 2006, 128(37): 12140-12146.
修改评论