中文版 | English
题名

开关型捕收剂强化微细粒氧化铜矿浮选机理研究

姓名
姓名拼音
LONG Qiurong
学号
11930812
学位类型
博士
学位专业
070205 凝聚态物理
学科门类/专业学位类别
07 理学
导师
徐政和(Zhenghe Xu)
导师单位
工学院
外机构导师单位
Southern university of science and technology
论文答辩日期
2023-05-13
论文提交日期
2023-06-29
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

  随着铜矿资源的快速开发利用,品位高、易回收的硫化铜矿资源逐年减少,矿相更为复杂的原生和次生氧化铜矿已成为弥补铜资源短缺的重要来源。细磨技术的引入和环境长期风化不可避免导致大量微细粒氧化铜矿的产生。微细粒氧化铜矿由于粒径小、质量小、比表面积大、亲水性强等问题导致其难以有效回收。目前,浮选是回收微细粒氧化铜矿最有效、经济和环保的方法。然而浮选微细粒氧化铜矿存在药剂消耗大和选择性差的问题,普遍精矿回收率和品位偏低。应对此挑战,本论文通过研究新型开关型捕收剂诱导疏水性团聚来增大微细粒氧化铜矿物表观粒径,降低微细粒氧化铜(CuO)浮选药剂用量、提高回收率,实现微细粒CuOSiO2的有效分离。

   该研究采用接触角测试、浮选实验以及聚焦光束反射测试(FBRM探索研究常用氧化矿捕收剂,筛选出能使微细CuO颗粒疏水性团聚的长碳链十二烷基硫酸钠(SDS)和油酸(OA),初步探讨捕收剂对微细粒氧化铜矿疏水性团聚的机理和浮选行为,揭示疏水长碳链结构对疏水性团聚的重要性。随后并以SDS捕收剂为例,详细探索SDS对微细粒CuO疏水性团聚和浮选的关系,应用扩展胶体相互作用力(EDLVO)理论计算揭示疏水力在微细粒CuO颗粒疏水性团聚中的关键作用。研究表明,在一定pH范围内具有疏水长碳链结构的SDSOA均能使微细粒CuO团聚,显著增大CuO表观粒径,从而提高微细粒CuO浮选回收率。采用全内反射荧光显微镜(TIRFM观察到疏水的团聚体中和表面存在气核,由此提出气核桥连疏水性颗粒强化微细粒CuO疏水性团聚假说,并通过设计实验证实

   探索实验表明捕收剂SDS虽能有效回收微细粒CuO,但药剂消耗大。为了降低浮选捕收剂用量,本研究采用质子化三乙烯四胺(TETA)和SDS阴离子之间的离子配对开发了伪双子型捕收剂T-SDS,其结构和界面活性具有pH可控性。浮选实验表明,T-SDS在酸性条件下(pH5)形成伪双子型结构,能显著降低捕收剂用量,比单分子捕收剂SDS,药剂用量减少近两个数量级的条件下CuO回收率仍高达95%以上。但在pH9时,T-SDS的伪双子型结构打开,SDSTETA单独在溶液中存在,表面活性降低。基于此研究的启发,通过质子化TETA和去质子化OA之间的极性基静电作用,开发了具有伪双子型结构的pH响应开关型捕收剂T-OA。与T-SDS不同的是,在强碱性条件下,OA去质子化形成的OA-与质子化的TETA通过静电作用形成伪双子型结构的T-OA,该分子具有极强的捕收性能,可显著降低捕收剂用量并大幅提高微细粒CuO浮选回收率。在酸性及弱碱性条件下,油酸质子化导致T-OA解组装主要以油酸分子和TETA离子形式在溶液中存在,TETA能有效络合脉石表面和矿浆中的铜离子,大幅降低铜离子对SiO2的活化,从而抑制脉石矿物的上浮,提高精矿中铜的品位。因此,在浮选流程中,粗选调节矿浆pH10,利用T-OA的强捕收能力,提高CuO的浮选回收率,随后在精选时调节矿浆pH5使T-OA解组装,利用TETA的去活化功能和OA的化学吸附捕收特性提高选择性,实现微细粒CuOSiO2的有效分离,提高精矿铜品位。并采用浮选配位场理论以及吸附能计算解析新型捕收剂T-OACuO的强捕收性能及开关性能,为新型捕收剂的开发提供新方法和新思路。

   本研究提出的伪双子型捕收剂T-SDS和开关型捕收剂T-OA不仅为微细粒氧化矿新型捕收剂的开发设计和应用提供了新思路,而且可以通过间隔基和疏水配位分子的设计拓宽开关型伪双子捕收剂在各类矿物浮选中的应用。本论文提出了开关型捕收剂的概念,实现了浮选流程中捕收剂捕收性能和选择性能的开关可控性,提高了矿物整体浮选的性能。

关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2023-06
参考文献列表

[1] LEE J S, NAGARAJ D R, COE J E. Practical aspects of oxide copper recovery with alkyl hydroxamates[J]. Minerals Engineering, 1998, 11(10): 929-939.
[2] MARION C, JORDENS A, LI R H, et al. An evaluation of hydroxamate collectors for malachite flotation[J]. Separation and Purification Technology, 2017, 183: 258-269.
[3] LIU G Y, LIU J, HUANG Y G, et al. New advances in the understanding and development of flotation collectors: A Chinese experience[J]. Minerals Engineering, 2018, 118: 78-86.
[4] HAN G, WEN S M, WANG H, et al. Surface sulfidization mechanism of cuprite and its response to xanthate adsorption and flotation performance[J]. Minerals Engineering, 2021, 169: 106982.
[5] YOON R H, FLINN D H, RABINOVICH Y I. Hydrophobic interactions between dissimilar surfaces[J]. Journal of Colloid and Interface Science, 1997, 185(2): 363-370.
[6] WANG D W, LIU Q. Influence of aggregation/dispersion state of hydrophilic particles on their entrainment in fine mineral particle flotation[J]. Minerals Engineering, 2021, 166: 106835.
[7] ARRIAGADA S, ACUNA C, VERA M. New technology to improve the recovery of fine particles in froth flotation based on using hydrophobized glass bubbles[J]. Minerals Engineering, 2020, 156: 106364.
[8] JAMESON G J. Advances in fine and coarse particle flotation[J]. Canadian Metallurgical Quarterly, 2010, 49(4): 325-330.
[9] NTLHABANE S, BECKER M, CHARIKINYA E, et al. Towards the development of an integrated modelling framework underpinned by mineralogy[J]. Minerals Engineering, 2018, 116: 123-131.
[10] LIU J, HU Z, LIU G, et al. Selective flotation of copper oxide minerals with a novel amino-triazole-thione surfactant: A comparison to hydroxamic acid collector[J]. Mineral Processing and Extractive Metallurgy Review, 2020, 41(2): 96-106.
[11] RALSTON J, FORNASIERO D, GRANO S, et al. Reducing uncertainty in mineral flotation-flotation rate constant prediction for particles in an operating plant ore[J]. International Journal of Mineral Processing, 2007, 84(1-4): 89-98.
[12] LI R, LU Y, ZHANG Z Q, et al. Role of surfactants based on fatty acids in the wetting behavior of solid-oil-aqueous solution systems[J]. Langmuir, 2021, 37(18): 5682-5690.
[13] XU W L, GU H Y, ZHU X L, et al. CO2-controllable foaming and emulsification properties of the stearic acid soap systems[J]. Langmuir, 2015, 31(21): 5758-5766.
[14] ARNOULD A, COUSIN F, CHABAS L, et al. Impact of the molar ratio and the nature of the counter-ion on the self-assembly of myristic acid[J]. Journal of Colloid and Interface Science, 2018, 510: 133-141.
[15] XU P P, WANG Z Z, XU Z H, et al. Highly effective emulsification/demulsification with a CO2-switchable superamphiphile[J]. Journal of Colloid and Interface Science, 2016, 480: 198-204.
[16] CHEN X Y, MA X R, YAN C, et al. CO2-responsive O/W microemulsions prepared using a switchable superamphiphile assembled by electrostatic interactions[J]. Journal of Colloid and Interface Science, 2019, 534: 595-604.
[17] HAO J C, HOFFMANN H. Self-assembled structures in excess and salt-free catanionic surfactant solutions[J]. Current Opinion in Colloid & Interface Science, 2004, 9(3-4): 279-293.
[18] LI Z H, CHANG P H, JIANG W T. Mechanisms of Cu(2+), triethylenetetramine (TETA), and Cu-TETA sorption on rectorite and its use for metal removal via metal-TETA complexation[J]. Journal of Hazardous Materials, 2019, 373: 187-196.
[19] LIU L F, ZHANG M S, LU Z G, et al. Molecular structure-tuned stability and switchability of CO2-responsive oil-in-water emulsions[J]. Journal of colloid interface science, 2022, 627: 661-670.
[20] 张亮, 杨卉芃, 赵军伟, 等. 世界铜矿资源系列研究之−资源概况及供需分析[J]. 矿产保护与利用, 2015, 5: 63-67.
[21] SUMMARIES M C. Mineral commodity summaries[J]. US Geological Survey: Reston, VA, USA, 2021, 200.
[22] 刘晓慧. 碳中和背景下铜资源需求保持高位[N]. 2022-02-16.
[23] 赵涌泉. 氧化铜矿的处理[M]. 北京: 地质出版社, 1982.
[24] CAO Z F, ZHONG H, LIU G Y, et al. Techniques of copper recovery from Mexican copper oxide ore[J]. Mining Science Technology, 2009, 19(1): 45-48.
[25] 罗良烽, 文书明, 周兴龙, 等. 氧化铜选矿的研究现状及存在问题探讨[J]. 矿业快报, 2007, 23(8): 26-28.
[26] 彭宇, 肖发新, 孙树臣, 等. 高碱性脉石低品位氧化铜矿提铜研究进展[J]. 有色金属科学与工程, 2020, 11(5): 69-74.
[27] WANG X H, FORSSBERG K S E. The solution electrochemistry of sulfide-xanthate-cyanide systems in sulfide mineral flotation[J]. Minerals Engineering, 1996, 9(5): 527-546.
[28] PHETLA T P, MUZENDA E. A multistage sulphidisation flotation procedure for a low grade malachite copper ore[J]. Worl Academy of Science, Engineering Technology, International Journal of Chemical Molecular Engineering, 2010, 4(9): 580-586.
[29] KONGOLO K, KIPOKA M, MINANGA K, et al. Improving the efficiency of oxide copper-cobalt ores flotation by combination of sulphidisers[J]. Minerals Engineering, 2003, 16(10): 1023-1026.
[30] LEE K, ARCHIBALD D, MCLEAN J, et al. Flotation of mixed copper oxide and sulphide minerals with xanthate and hydroxamate collectors[J]. Minerals Engineering, 2009, 22(4): 395-401.
[31] HOPE G A, BUCKLEY A N, PARKER G K, et al. The interaction of n-octanohydroxamate with chrysocolla and oxide copper surfaces[J]. Minerals Engineering, 2012, 36: 2-11.
[32] FUERSTENAU D W, HERRERA URBINA R, MCGLASHAN D W. Studies on the applicability of chelating agents as universal collectors for copper minerals[J]. International Journal of Mineral Processing, 2000, 58(1-4): 15-33.
[33] BULATOVIC S M. Flotation of oxide copper and copper cobalt ores[J]. Handbook of flotation reagents: Chemistry, theory practice Digest, 2010, 2: 47-65.
[34] YANG X L, LIU S, LIU G Y, et al. A DFT study on the structure-reactivity relationship of aliphatic oxime derivatives as copper chelating agents and malachite flotation collectors[J]. Journal of Industrial Engineering Chemistry, 2017, 46: 404-415.
[35] W F D, PRADIP. The adsorption of hydroxamate on semi-soluble minerals. Part I: Adsorption on barite, calcite and bastnaesite[J]. Colloids and Surfaces, 1983, 8(2): 103-119.
[36] LENORMAND J, SALMAN T, YOON R H. Hydroxamate Flotation of Malachite[J]. Canadian Metallurgical Quarterly, 1979, 18(2): 125-129.
[37] PETERSON H D, FUERSTENAU M C, RICKARD R S, et al. Chrysocolla flotation by the formation of insoluble surface chelates[J]. Transactions of the Institution of Chemical Engineers, 1965, 232: 388-392.
[38] LIU J, HU Z, LIU G Y, et al. Selective flotation of copper oxide minerals with a novel amino-triazole-thione surfactant: A comparison to hydroxamic acid collector[J]. Mineral Processing and Extractive Metallurgy Review, 2020, 41(2): 96-106.
[39] LI F X, ZHONG H, XU H F, et al. Flotation behavior and adsorption mechanism of α-hydroxyoctyl phosphinic acid to malachite[J]. Minerals Engineering, 2015, 71: 188-193.
[40] XU H F, ZHONG H, WANG S, et al. Synthesis of 2-ethyl-2-hexenal oxime and its flotation performance for copper ore[J]. Minerals Engineering, 2014, 66: 173-180.
[41] LIU G Y, HUANG Y G, QU X Y, et al. Understanding the hydrophobic mechanism of 3-hexyl-4-amino-1, 2, 4-triazole-5-thione to malachite by ToF-SIMS, XPS, FTIR, contact angle, zeta potential and micro-flotation[J]. Colloids Surfaces A: Physicochemical Engineering Aspects, 2016, 503: 34-42.
[42] ZHANG X R, LU L, ZHU Y G, et al. Research on the separation of malachite from quartz with S-carboxymethyl-O, O′-dibutyl dithiophosphate chelating collector and its insights into flotation mechanism[J]. Powder Technology, 2020, 366: 130-136.
[43] CHOI J, CHOI S Q, PARK K, et al. Flotation behaviour of malachite in mono-and di-valent salt solutions using sodium oleate as a collector[J]. International Journal of Mineral Processing, 2016, 146: 38-45.
[44] LIU W J, ZHANG S Q, WANG W Q, et al. The effects of Ca (II) and Mg (II) ions on the flotation of spodumene using NaOL[J]. Minerals Engineering, 2015, 79: 40-46.
[45] SUN Q Y, YIN W Z, CAO S H, et al. Mechanism study of direct flotation on malachite by sodium oleate[J]. Journal of Northeastern University, 2017, 38(5): 716.
[46] GAO Z Y, JIANG Z Y, SUN W, et al. Typical roles of metal ions in mineral flotation: A review[J]. Transactions of Nonferrous Metals Society of China, 2021, 31(7): 2081-2101.
[47] FUERSTENAU M C, MILLER J D, PRAY R E, et al. Metal ion activation in xanthate flotation of quartz[J]. Transaction of American Institute of Mining, 1965, 232: 359-365.
[48] LONG Q R, WANG H, JIANG F, et al. Enhancing flotation separation of fine copper oxide from silica by microbubble assisted hydrophobic aggregation[J]. Minerals Engineering, 2022, 189: 107863.
[49] HAN G, WEN S M, WANG H, et al. Identification of copper-sulfide species on the cuprite surface and its role in sulfidization flotation[J]. Colloids Surfaces A: Physicochemical Engineering Aspects, 2021, 624: 126854.
[50] FENG Q, ZHAO W, WEN S. Surface modification of malachite with ethanediamine and its effect on sulfidization flotation[J]. Applied Surface Science, 2018, 436: 823-831.
[51] PATIAL P, CHANDEL M. Synthesis, characterization&evaluation of cationic gemini surfactants: Synthesis of surfactants[M]. LAP LAMBERT Academic Publishing, 2016.
[52] BUNTON C A, ROBINSON L B, SCHAAK J, et al. Catalysis of nucleophilic substitutions by micelles of dicationic detergents[J]. The Journal of Organic Chemistry, 1971, 36(16): 2346-2350.
[53] ZANA R, XIA J. Gemini surfactants: synthesis, interfacial and solution-phase behavior, and applications[J]. Journal of Surfactants Detergents, 2004, 7(4): 348.
[54] WANG L, LIU P, LAI X J, et al. Effect of spacer on surface activity and foam properties of betaine gemini surfactants[J]. Tenside Surfactants Detergents, 2019, 56(3): 222-230.
[55] MENGER F M, LITTAU C A. Gemini surfactants-synthesis and properties[J]. Journal of the American Chemical Society, 1991, 113(4): 1451-1452.
[56] SHUKLA D, TYAGI V K. Anionic gemini surfactants: A distinct class of surfactants[J]. Journal of Oleo Science, 2006, 55(5): 215-226.
[57] ZANA R. Dimeric and oligomeric surfactants. Behavior at interfaces and in aqueous solution: A review[J]. Advances in Colloid Interface Science, 2002, 97(1-3): 205-253.
[58] KAMAL M S. A review of gemini surfactants: Potential application in enhanced oil recovery[J]. Journal of Surfactants Detergents, 2016, 19(2): 223-236.
[59] RAJPUT S M, KUMAR S, ASWAL V, et al. Drug-induced micelle-to-vesicle transition of a cationic gemini surfactant: Potential applications in drug delivery[J]. ChemPhysChem, 2018, 19(7): 865-872.
[60] HEAKAL F E T, ELKHOLY A E. Gemini surfactants as corrosion inhibitors for carbon steel[J]. Journal of Molecular Liquids, 2017, 230: 395-407.
[61] LU Y, LI R, MANICA R, et al. Enhancing oil-solid and oil-water separation in heavy oil recovery by CO2-responsive surfactants[J]. AIChE Journal, 2021, 67(1): e17033.
[62] LU Y, LI R, MANICA R, et al. CO2-responsive surfactants for greener extraction of heavy oil: A bench-scale demonstration[J]. Journal of Cleaner Production, 2022, 338: 130554.
[63] PISáRČIK M, JAMPíLEK J, LUKáČ M, et al. Silver nanoparticles stabilised by cationic gemini surfactants with variable spacer length[J]. Molecules, 2017, 22(10): 1794.
[64] ZANA R. Dimeric (gemini) surfactants: Effect of the spacer group on the association behavior in aqueous solution[J]. Journal of Colloid and Interface Science, 2002, 248(2): 203-220.
[65] ZHU Y P, MASUYAMA A, OKAHARA M. Preparation and surface active properties of amphipathic compounds with two sulfate groups and two lipophilic alkyl chains[J]. Journal of the American Oil Chemists’ Society, 1990, 67(7): 459-463.
[66] BRYCKI B E, KOWALCZYK I H, SZULC A, et al. Multifunctional gemini surfactants: Structure, synthesis, properties and applications[J]. Application Characterization of Surfactants, 2017: 97-155.
[67] XIA L Y, ZHONG H, LIU G Y, et al. Comparative studies on flotation of illite, pyrophyllite and kaolinite with Gemini and conventional cationic surfactants[J]. Transactions of Nonferrous Metals Society of China, 2009, 19(2): 446-453.
[68] HUANG Z Q, SHUAI S Y, WANG H L, et al. Froth flotation separation of lepidolite ore using a new gemini surfactant as the flotation collector[J]. Separation and Purification Technology, 2022, 282: 119122.
[69] ZHANG S Y, HUANG Z Q, WANG H L, et al. Flotation performance of a novel Gemini collector for kaolinite at low temperature[J]. International Journal of Mining Science and Technology, 2021, 31(6): 1145-1152.
[70] LIU C, DENG J S, NI C Q, et al. Reverse froth flotation separation of limonite and quartz with cationic gemini surfactant[J]. Minerals Engineering, 2022, 177: 107391.
[71] NI C Q, LIU C, FANG X Z, et al. A novel collector with wide pH adaptability and high selectivity towards flotation separation of scheelite from calcite[J]. Minerals Engineering, 2020, 158: 106606.
[72] HUANG Z Q, CHENG C, ZHONG H, et al. Flotation of sylvite from potash ore by using the Gemini surfactant as a novel flotation collector[J]. Minerals Engineering, 2019, 132: 22-26.
[73] HUANG Z Q, ZHONG H, WANG S, et al. Gemini trisiloxane surfactant: Synthesis and flotation of aluminosilicate minerals[J]. Minerals Engineering, 2014, 56: 145-154.
[74] SAKAI H, OKABE Y, TSUCHIYA K, et al. Catanionic mixtures forming gemini-like amphiphiles[J]. Journal of Oleo Science, 2011, 60(11): 549-555.
[75] WU X P, WU Y N, YANG S, et al. Synergistic effect of pH-responsive wormlike micelles based on a simple amphiphile[J]. Soft Matter, 2016, 12(20): 4549-4556.
[76] HE S, XU B, ZHANG Y M. Krafft temperature, critical micelle concentration, and rheology of "pseudo-gemini" surfactant comprising fatty acid soap and bola-type quaternary ammonium salt[J]. Journal of Surfactants and Detergents, 2019, 22(6): 1269-1277.
[77] LI Y, LI H G, CHAI J L, et al. Self-assembly and rheological properties of a pseudogemini surfactant formed in a salt-free catanionic surfactant mixture in water[J]. Langmuir, 2015, 31(41): 11209-11219.
[78] ZHANG Y M, FENG Y J, WANG Y J, et al. CO2-switchable viscoelastic fluids based on a pseudogemini surfactant[J]. Langmuir, 2013, 29(13): 4187-4192.
[79] SUN N, SHI L J, LU F, et al. Spontaneous vesicle phase formation by pseudogemini surfactants in aqueous solutions[J]. Soft Matter, 2014, 10(30): 5463-5471.
[80] YIN H Y, FENG Y J, LIU H B, et al. Insights into the relationship between CO2 switchability and basicity: Examples of melamine and its derivatives[J]. Langmuir, 2014, 30(33): 9911-9919.
[81] LU H S, GUAN X Q, DAI S S, et al. Application of CO2-triggered switchable surfactants to form emulsion with Xinjiang heavy oil[J]. Journal of Dispersion Science and Technology, 2014, 35(5): 655-662.
[82] CHEN Q Q, WANG L, REN G H, et al. A fatty acid solvent of switchable miscibility[J]. Journal of Colloid and Interface Science, 2017, 504: 645-651.
[83] WERNER J R G, NAWAR S, SOLOVEV A A, et al. Hydrogel microcapsules with dynamic pH-responsive properties from methacrylic anhydride[J]. Macromolecules, 2018, 51(15): 5798-5805.
[84] LU Y, ZHU Y L, YANG F, et al. Advanced switchable molecules and materials for oil recovery and oily waste cleanup[J]. Advance Science, 2021, 8(15): 2004082.
[85] TAKAHASHI Y, FUKUYASU K, HORIUCHI T, et al. Photoinduced demulsification of emulsions using a photoresponsive gemini surfactant[J]. Langmuir, 2014, 30(1): 41-47.
[86] LU H S, SHI Q P, WANG B G, et al. Spherical-to-wormlike micelle transition in a pseudogemini surfactant system with two types of effective pH-responsive groups[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 494: 74-80.
[87] YANG B Q, DUHAMEL J. Extraction of oil from oil sands using thermo responsive polymeric surfactants[J]. ACS Applied Materials & Interfaces, 2015, 7(10): 5879-5889.
[88] LU Y, SUN D J, RALSTON J, et al. CO2-responsive surfactants with tunable switching pH[J]. Journal of Colloid and Interface Science, 2019, 557: 185-195.
[89] ZHANG M S, NAN Y L, LU Y, et al. CO2-responsive surfactant for oil-in-water emulsification and demulsification from molecular perspectives[J]. Fuel, 2023, 331: 125773.
[90] KIM D H, JUNG M C, CHO S H, et al. UV-responsive nano-sponge for oil absorption and desorption[J]. Scientific Reports, 2015, 5(1): 12908.
[91] CESCHIA E, HARJANI J R, LIANG C, et al. Switchable anionic surfactants for the remediation of oil-contaminated sand by soil washing[J]. RSC Advances, 2014, 4(9): 4638-4645.
[92] DAI S S, SUO Y X, LIU D F, et al. Controllable CO2-responsiveness of O/W emulsions by varying the alkane carbon number of a tertiary amine[J]. Physical Chemistry Chemical Physics, 2018, 20(16): 11285-11295.
[93] YE S F, ZHAI Z L, SHANG S B, et al. pH-induced hydrogels and viscoelastic solutions constructed by a rosin-based pseudo-gemini surfactant[J]. Journal of Molecular Liquids, 2022, 361: 119445.
[94] LU H S, GUAN X Q, WANG B G, et al. CO2-switchable oil/water emulsion for pipeline transport of heavy oil[J]. Journal of Surfactants and Detergents, 2015, 18(5): 773-782.
[95] TAO D. Role of bubble size in flotation of coarse and fine particles−a review[J]. Separation Science and Technology, 2005, 39(4): 741-760.
[96] WANG L, PENG Y, RUNGE K, et al. A review of entrainment: Mechanisms, contributing factors and modelling in flotation[J]. Minerals Engineering, 2015, 70: 77-91.
[97] FENG D, ALDRICH C. Effect of particle size on flotation performance of complex sulphide ores[J]. Minerals Engineering, 1999, 12(7): 721-731.
[98] SCHUBERT H. On the optimization of hydrodynamics in fine particle flotation[J]. Minerals Engineering, 2008, 21(12-14): 930-936.
[99] YOON R H. The role of hydrodynamic and surface forces in bubble-particle interaction[J]. International Journal of Mineral Processing, 2000, 58(1-4): 129-143.
[100] YOON R H, LUTTRELL G H. The effect of bubble size on fine coal flotation[J]. Coal Preparation, 1986, 2(3): 179-192.
[101] CHIPFUNHU D, ZANIN M, GRANO S. Flotation behaviour of fine particles with respect to contact angle[J]. Chemical Engineering Research and Design, 2012, 90(1a): 26-32.
[102] PARKINSON L, RALSTON J. Dynamic aspects of small bubble and hydrophilic solid encounters[J]. Advance Colloid Interface Science, 2011, 168(1-2): 198-209.
[103] FARROKHPAY S, FILIPPOV L, FORNASIERO D. Flotation of fine particles: A review[J]. Mineral Processing and Extractive Metallurgy Review, 2021, 42(7): 473-483.
[104] SIVAMOHAN R. The problem of recovering very fine particles in mineral processing-a review[J]. International Journal of Mineral Processing, 1990, 28(3-4): 247-288.
[105] GAUDIN A M, SCHUHMANN JR R, SCHLECHTEN A W. Flotation Kinetics. II. The effect of size on the behavior of galena particles[J]. Journal of Physical Chemistry, 1942, 46(8): 902-910.
[106] SUTHERLAND K L. Physical chemistry of flotation. XI. kinetics of the flotation process[J]. Journal of Physical Chemistry, 1948, 52(2): 394-425.
[107] REAY D, RATCLIFF G A. Removal of fine particles from water by dispersed air flotation-effects of bubble size and particle-size on collection efficiency[J]. Canadian Journal of Chemical Engineering, 1973, 51(2): 178-185.
[108] NGUYEN A V, GEORGE P, JAMESON G J. Demonstration of a minimum in the recovery of nanoparticles by flotation: Theory and experiment[J]. Chemical Engineering Science, 2006, 61(8): 2494-2509.
[109] MIETTINEN T, RALSTON J, FORNASIERO D. The limits of fine particle flotation[J]. Minerals Engineering, 2010, 23(5): 420-437.
[110] BENZAAZOUA M, BUSSIERE B, KONGOLO M, et al. Environmental desulphurization of four Canadian mine tailings using froth flotation[J]. International Journal of Mineral Processing, 2000, 60(1): 57-74.
[111] MBAMBA C K, HARRISON S T L, FRANZIDIS J P, et al. Mitigating acid rock drainage risks while recovering low-sulfur coal from ultrafine colliery wastes using froth flotation[J]. Minerals Engineering, 2012, 29: 13-21.
[112] MANOUCHEHRI H R, FARROKHPAY S. Flotation of fine particles-is it the question of power input and bubble size within the cell[J]. IMPC, Quebec, Canada: Canadian Institute of Mining, Metallurgy Petroleum, 2016.
[113] DAI Z F, FORNASIERO D, RALSTON J. Particle-bubble collision models-a review[J]. Advances in Colloid and Interface Science, 2000, 85(2-3): 231-256.
[114] LEISTNER T, PEUKER U A, RUDOLPH M. How gangue particle size can affect the recovery of ultrafine and fine particles during froth flotation[J]. Minerals Engineering, 2017, 109: 1-9.
[115] PEASE J D, CURRY D C, YOUNG M F. Designing flotation circuits for high fines recovery[J]. Minerals Engineering, 2006, 19(6-8): 831-840.
[116] CLARKE P, FORNASIERO D, RALSTON J, et al. A study of the removal of oxidation products from sulfide mineral surfaces[J]. Minerals Engineering, 1995, 8(11): 1347-1357.
[117] YOON R H, LUTTRELL G H. The effect of bubble size on fine particle flotation[J]. Mineral Processing and Extractive Metallurgy Review, 1989, 5(1-4): 101-122.
[118] SONG S, LOPEZ VALDIVIESO A, REYES BAHENA J L, et al. Floc flotation of galena and sphalerite fines[J]. Minerals Engineering, 2001, 14(1): 87-98.
[119] FARROKHPAY S, FILIPPOV L. Aggregation of nickel laterite ore particles using polyacrylamide homo and copolymers with different charge densities[J]. Powder Technology, 2017, 318: 206-213.
[120] FARROKHPAY S. Rheology of titania pigment slurry[J]. Applied Rheology, 2012, 22(5).
[121] SADOWSKI Z, POLOWCZYK I. Agglomerate flotation of fine oxide particles[J]. International Journal of Mineral Processing, 2004, 74(1-4): 85-90.
[122] VAN NETTEN K, BORROW D J, GALVIN K P. Fast agglomeration of ultrafine hydrophobic particles using a high-internal-phase emulsion binder comprising permeable hydrophobic films[J]. Industrial Engineering Chemistry Research, 2017, 56(38): 10658-10666.
[123] PALANIANDY P, ADLAN M N, AZIZ H A, et al. Application of dissolved air flotation (DAF) in semi-aerobic leachate treatment[J]. Chemical Engineering Journal, 2010, 157(2-3): 316-322.
[124] ZHOU Z A, XU Z H, FINCH J A, et al. On the role of cavitation in particle collection in flotation−a critical review. II[J]. Minerals Engineering, 2009, 22(5): 419-433.
[125] MEROUANI S, HAMDAOUI O, REZGUI Y, et al. Modeling of ultrasonic cavitation as an advanced technique for water treatment[J]. Desalination and Water Treatment, 2015, 56(6): 1465-1475.
[126] YALCIN T, BYERS A. Dissolved gas flotation in mineral processing[J]. Mineral Processing Extractive Metallurgy Review, 2006, 27(2): 87-97.
[127] RULYOV N N. Turbulent microflotation of ultrafine minerals[J]. Mineral Processing Extractive Metallurgy, 2008, 117(1): 32-37.
[128] XIONG Y, PENG F. Optimization of cavitation venturi tube design for pico and nano bubbles generation[J]. International Journal of Mining Science, 2015, 25(4): 523-529.
[129] HARBORT G, DE BONO S, CARR D, et al. Jameson cell fundamentals−a revised perspective[J]. Minerals Engineering, 2003, 16(11): 1091-1101.
[130] SOMASUNDARAN P. The physical chemistry of mineral-reagent interactions in sulfide flotation[J]. US Bureau of Mines, IC, 1978.
[131] JAMESON G J. New directions in flotation machine design[J]. Minerals Engineering, 2010, 23(11-13): 835-841.
[132] YOON R H, YORDAN J L. Zeta-potential measurements on microbubbles generated using various surfactants[J]. Journal of Colloid and Interface Science, 1986, 113(2): 430-438.
[133] SONG S X, ZHANG X W, YANG B Q, et al. Flotation of molybdenite fines as hydrophobic agglomerates[J]. Separation Purification Technology, 2012, 98: 451-455.
[134] HU Y H, DAI J. Hydrophobic aggregation of alumina in surfactant solution[J]. Minerals Engineering, 2003, 16(11): 1167-1172.
[135] ZOU S, WANG S, ZHONG H, et al. Hydrophobic agglomeration of rhodochrosite fines in aqueous suspensions with sodium oleate[J]. Powder Technology, 2021, 377: 186-193.
[136] HU Y, LIU L Y, MIN F F, et al. Hydrophobic agglomeration of colloidal kaolinite in aqueous suspensions with dodecylamine[J]. Colloids Surfaces A: Physicochemical Engineering Aspects, 2013, 434: 281-286.
[137] YANG B, YIN W Z, YAO J, et al. Role of decaethoxylated stearylamine in the selective flotation of hornblende and siderite: An experimental and molecular dynamics simulation study[J]. Applied Surface Science, 2022, 571: 151177.
[138] ORUç Ç, ALTıNDAL A. Structural and dielectric properties of CuO nanoparticles[J]. Ceramics International, 2017, 43(14): 10708-10714.
[139] MOLAEI N, WANI O B, BOBICKI E R. A comparative study of biopolymer adsorption on model anisotropic clay surfaces using quartz crystal microbalance with dissipation (QCM-D)[J]. Journal of Colloid and Interface Science, 2022, 615: 543-553.
[140] ALAGHA L, GUO L, GHUZI M, et al. Adsorption of hybrid polyacrylamides on anisotropic kaolinite surfaces: Effect of polymer characteristics and solution properties[J]. Colloids and Surfaces A, 2016, 498: 285-296.
[141] HOU Y, SOBHY A, WANG Y. Significance of reagents addition sequence on iron anionic reverse flotation and their adsorption characteristics using QCM-D[J]. Physicochemical Problems of Mineral Processing, 2020, 57(1): 284-293.
[142] WEISSENBORN P K, PUGH R J. Surface tension of aqueous solutions of electrolytes: Relationship with ion hydration, oxygen solubility, and bubble coalescence[J]. Journal of colloid interface science, 1996, 184(2): 550-563.
[143] ZHANG Q, WEN S M, FENG Q C, et al. Enhanced sulfidization of azurite surfaces by ammonium phosphate and its effect on flotation[J]. International Journal of Minerals, Metallurgy Materials and Corrosion, 2022, 29(6): 1150-1160.
[144] BILAL M, ITO M, KOIKE K, et al. Effects of coarse chalcopyrite on flotation behavior of fine chalcopyrite[J]. Minerals Engineering, 2021, 163: 106776.
[145] HUA X M, ZHENG Y F, XU Q, et al. Interfacial reactions of chalcopyrite in ammonia-ammonium chloride solution[J]. Transactions of Nonferrous Metals Society of China, 2018, 28(3): 556-566.
[146] YIN W Z, SUN Q Y, LI D, et al. Mechanism and application on sulphidizing flotation of copper oxide with combined collectors[J]. Transactions of Nonferrous Metals Society of China, 2019, 29(1): 178-185.
[147] PARK K, PARK S, CHOI J, et al. Influence of excess sulfide ions on the malachite-bubble interaction in the presence of thiol-collector[J]. Separation and Purification Technology, 2016, 168: 1-7.
[148] WU D D, MA W H, MAO Y B, et al. Enhanced sulfidation xanthate flotation of malachite using ammonium ions as activator[J]. Scientific Reports, 2017, 7(1): 1-9.
[149] LIU C, AI G H, SONG S X. The effect of amino trimethylene phosphonic acid on the flotation separation of pentlandite from lizardite[J]. Powder Technology, 2018, 336: 527-532.
[150] HUANG Z Q, CHENG C, LIU Z W, et al. Gemini surfactant: A novel flotation collector for harvesting of microalgae by froth flotation[J]. Bioresour Technology, 2019, 275: 421-424.
[151] FARROKHPAY S, FILIPPOV L, FORNASIERO D. Flotation of fine particles: A review[J]. Mineral Processing Extractive Metallurgy Review, 2021, 42(7): 473-483.
[152] KOHMUENCH J N, MANKOSA M J, THANASEKARAN H, et al. Improving coarse particle flotation using the HydroFloat™(raising the trunk of the elephant curve)[J]. Minerals Engineering, 2018, 121: 137-145.
[153] WANG D W, LIU Q. Hydrodynamics of froth flotation and its effects on fine and ultrafine mineral particle flotation: A literature review[J]. Minerals Engineering, 2021, 173.
[154] FUERSTENAU D W, PRADIP. Zeta potentials in the flotation of oxide and silicate minerals[J]. Advances in Colloid and Interface Science, 2005, 114: 9-26.
[155] KOSMULSKI M. Isoelectric points and points of zero charge of metal (hydr) oxides: 50 years after Parks' review[J]. Advances in Colloid and Interface Science, 2016, 238: 1-61.
[156] YOUNG C A, MILLER J D. Effect of temperature on oleate adsorption at a calcite surface: An FT-NIR/IRS study and review[J]. International Journal of Mineral Processing, 2000, 58(1-4): 331-350.
[157] CHOI J, CHOI S Q, PARK K, et al. Flotation behaviour of malachite in mono- and di-valent salt solutions using sodium oleate as a collector[J]. International Journal of Mineral Processing, 2016, 146: 38-45.
[158] YI H, ZHAO Y L, RAO F, et al. Hydrophobic agglomeration of talc fines in aqueous suspensions[J]. Colloids and Surfaces A, 2018, 538: 327-332.
[159] AKDEMIR Ü, HIçYILMAZ C. Shear flocculation of chromite fines in sodium oleate solutions[J]. Colloids Surfaces A: Physicochemical Engineering Aspects, 1996, 110(1): 87-93.
[160] ZOU S, WANG S, ZHONG H, et al. Hydrophobic agglomeration of rhodochrosite fines in aqueous suspensions with sodium oleate[J]. Powder Technology, 2021, 377: 186-193.
[161] SHIBATA J, FUERSTENAU D W. Flocculation and flotation characteristics of fine hematite with sodium oleate[J]. International Journal of Mineral Processing, 2003, 72(1-4): 25-32.
[162] CHEN W, FENG Q M, ZHANG G F, et al. Effect of energy input on flocculation process and flotation performance of fine scheelite using sodium oleate[J]. Minerals Engineering, 2017, 112: 27-35.
[163] FUERSTENAU D W, PRADIP. Zeta potentials in the flotation of oxide and silicate minerals[J]. Advance Colloid and Interface Science, 2005, 114: 9-26.
[164] BAI B F, HANKINS N P, HEY M J, et al. In situ mechanistic study of SDS adsorption on hematite for optimized froth flotation[J]. Industrial Engineering Chemistry Research, 2004, 43(17): 5326-5338.
[165] FORBES E. Shear, selective and temperature responsive flocculation: A comparison of fine particle flotation techniques[J]. International Journal of Mineral Processing, 2011, 99(1-4): 1-10.
[166] XU Z H, LI Z, LIU Q X. Recent advances in studying colloidal interactions in mineral processing[J]. Mining, Metallurgy Exploration, 2019, 36(1): 35-53.
[167] XU Z H, YOON R H. The role of hydrophobia interactions in coagulation[J]. Journal of Colloid and Interface Science, 1989, 132(2): 532-541.
[168] YOON R H, RAVISHANKAR S A. Long-range hydrophobic forces between mica surfaces in alkaline dodecylammonium chloride solutions[J]. Journal of colloid interface science, 1996, 179(2): 403-411.
[169] TAO D P, WU Z X, SOBHY A. Investigation of nanobubble enhanced reverse anionic flotation of hematite and associated mechanisms[J]. Powder Technology, 2021, 379: 12-25.
[170] ELARBI F M, JANGER A A, ABU-SEN L M, et al. Determination of CMC and interfacial properties of anionic (SDS) and cationic (CPB) surfactants in aqueous solutions[J]. American Journal of Engineering Research, 2020, 9: 118-126.
[171] DRZYMALA J, FUERSTENAU D W. Selective flocculation of hematite in the hematite-quartz-ferric ion-polyacrylic acid system. Part 1, activation and deactivation of quartz[J]. International Journal of Mineral Processing, 1981, 8(3): 265-277.
[172] RULYOV N N, FILIPPOV L O, KRAVCHENKO O V. Combined microflotation of glass beads[J]. Colloids and Surfaces A, 2020, 598: 124810.
[173] HUANG X T, XIAO W, ZHAO H B, et al. Hydrophobic flocculation flotation of rutile fines in presence of styryl phosphonic acid[J]. Transactions of Nonferrous Metals Society of China, 2018, 28(7): 1424-1432.
[174] ISRAELACHVILI J N. Intermolecular and surface forces [M]. Academic press, 2011.
[175] ZHANG Z J, LIU J T, FENG L, et al. Calculation of critical hardness of coal slime water system based on DLVO theory[J]. Journal of China University of Mining Technology, 2014, 43(1): 120-125.
[176] HUANG K, KELES S, SHERRELL I, et al. Development of a flotation simulator that can predict grade vs. Recovery curves from mineral liberation data[J]. Minerals Engineering, 2022, 181: 107510.
[177] VAN OSS C J. DLVO and non-DLVO interactions in hectorite[J]. Clays and Clay Minerals, 1990, 38(2): 151-159.
[178] ISRAELACHVILI J N, MCGUIGGAN P M. Forces between Surfaces in Liquids[J]. Science, 1988, 241(4867): 795-800.
[179] RABINOVICH Y I, YOON R H. Use of atomic-force microscope for the measurements of hydrophobic forces between silanated silica plate and glass sphere[J]. Langmuir, 1994, 10(6): 1903-1909.
[180] GEORGE P, NGUYEN A V, JAMESON G J. Assessment of true flotation and entrainment in the flotation of submicron particles by fine bubbles[J]. Minerals Engineering, 2004, 17(7-8): 847-853.
[181] ROBB I D. Specialist Surfactants[M]. Springer Science & Business Media, 1996.
[182] WERNER J G, NAWAR S, SOLOVEV A A, et al. Hydrogel Microcapsules with dynamic pH-responsive properties from methacrylic anhydride[J]. Macromolecules, 2018, 51(15): 5798-5805.
[183] HUANG Z Y, JIANG L, WU P X, et al. Leaching characteristics of heavy metals in tailings and their simultaneous immobilization with triethylenetetramine functioned montmorillonite (TETA-Mt) against simulated acid rain[J]. Environmental Pollution, 2020, 266: 115236.
[184] MIURA M, KODAMA M. The second CMC of the aqueous solution of sodium dodecyl sulfate. I. Conductivity[J]. Bulletin of the Chemical Society of Japan, 1972, 45(2): 428-431.
[185] SHARMA R, SHAHEEN A, MAHAJAN R K. Cyclic voltammetry and viscosity measurements of aggregated assemblies of anionic surfactants with nonionic surfactants and triblock copolymers[J]. Colloid Polymer Science, 2011, 289(1): 43-51.
[186] HUSSAIN T. Development of SDS modified graphite electrode for effective oxidation of methanol and ethanol[J]. Open Journal of Applied Sciences, 2016, 6(13): 853.
[187] LUN H L, OUYANG J, YANG H M. Enhancing dispersion of halloysite nanotubes via chemical modification[J]. Physics Chemistry of Minerals, 2014, 41(4): 281-288.
[188] IDIYATULLIN B Z, POTARIKINA K S, ZUEV Y F, et al. Association of sodium dodecyl sulfate in aqueous solutions according to chemical shifts in 1H NMR spectra[J]. Colloid Journal, 2013, 75(5): 532-537.
[189] SURATKAR V, MAHAPATRA S. Solubilization site of organic perfume molecules in sodium dodecyl sulfate micelles: New insights from proton NMR studies[J]. Journal of Colloid and Interface Science, 2000, 225(1): 32-38.
[190] SHUKLA D, TYAGI V K. Cationic gemini surfactants: A review[J]. Journal of Oleo Science, 2006, 55(8): 381-390.
[191] NURCHI V M, CRISPONI G, CRESPO-ALONSO M, et al. Complex formation equilibria of Cu(II) and Zn(II) with triethylenetetramine and its mono- and di-acetyl metabolites[J]. Dalton Transactions, 2013, 42(17): 6161-6170.
[192] HUELLEMEIER H A, EREN N M, ORTEGA-ANAYA J, et al. Application of quartz crystal microbalance with dissipation (QCM-D) to study low-temperature adsorption and fouling of milk fractions on stainless steel[J]. Chemical Engineering Science, 2022, 247: 117004.
[193] KELEBEK S, TUKEL C. The effect of sodium metabisulfite and triethylenetetramine system on pentlandite-pyrrhotite separation[J]. International Journal of Mineral Processing, 1999, 57(2): 135-152.
[194] LI M Y, XIANG Y H, CHEN T J, et al. Separation of ultra-fine hematite and quartz particles using asynchronous flocculation flotation[J]. Minerals Engineering, 2021, 164: 106817.
[195] YANG G, ZHAO J X. A rheological study of reverse vesicles formed by oleic acid and diethylenetriamine in cyclohexane[J]. RSC Advances, 2016, 6(54): 48810-48815.
[196] MCBAIN J W, SIERICHS W C. The solubility of sodium and potassium soaps and the phase diagrams of aqueous potassium soaps[J]. Journal of the American Oil Chemists Society, 1948, 25(6): 221-225.
[197] WOLFRUM S, MARCUS J, TOURAUD D, et al. A renaissance of soaps?−How to make clear and stable solutions at neutral pH and room temperature[J]. Advances in Colloid Interface Science, 2016, 236: 28-42.
[198] ZHOU C C, CHENG X H, ZHAO O D, et al. The evolution of self-assemblies in the mixed system of oleic acid-diethylenetriamine based on the transformation of electrostatic interactions and hydrogen bonds[J]. Soft Matter, 2014, 10(40): 8023-8030.
[199] PUDNEY P D A, MUTCH K J, ZHU S P. Characterising the phase behaviour of stearic acid and its triethanolamine soap and acid-soap by infrared spectroscopy[J]. Physical Chemistry Chemical Physics, 2009, 11(25): 5010-5018.
[200] YAN Z H, DAI C L, ZHAO M W, et al. Development, formation mechanism and performance evaluation of a reusable viscoelastic surfactant fracturing fluid[J]. Journal of Industrial and Engineering Chemistry, 2016, 37: 115-122.
[201] HAUNER I M, DEBLAIS A, BEATTIE J K, et al. The dynamic surface tension of water[J]. Journal of Physical Chemistry Letters, 2017, 8(7): 1599-1603.
[202] MAHIEU N, CANET D, CASES J M, et al. Micellization of sodium oleate in D2O as probed by proton longitudinal magnetic relaxation and self-diffusion measurements [J]. Journal of Physical Chemistry, 2002, 95(4): 1844-1846.
[203] LIU G Y, YANG X L, ZHONG H. Molecular design of flotation collectors: A recent progress[J]. Advances in Colloid and Interface Science, 2017, 246: 181-195.
[204] LIU W G, ZHAO L, LIU W B, et al. Synthesis and utilization of a gemini surfactant as a collector for the flotation of hemimorphite from quartz[J]. Minerals Engineering, 2019, 134: 394-401.
[205] CHAU T T, BRUCKARD W J, KOH P T, et al. A review of factors that affect contact angle and implications for flotation practice[J]. Advances in Colloid and Interface Science, 2009, 150(2): 106-115.
[206] IBARRA J, MELENDRES J, ALMADA M, et al. Synthesis and characterization of magnetite/PLGA/chitosan nanoparticles[J]. Materials Research Express, 2015, 2(9): 095010.
[207] MONTAGNE F, MONDAIN MONVAL O, PICHOT C, et al. Preparation and characterization of narrow sized (O/W) magnetic emulsion[J]. Journal of Magnetism and Magnetic Materials, 2002, 250(1-3): 302-312.
[208] 陈建华, 朱阳戈. 浮选体系矿物表面金属离子的半约束性质研究[J]. 中国矿业大学学报, 2021, 50(6): 1181-1188.
[209] CHEN J H. The interaction of flotation reagents with metal ions in mineral surfaces: A perspective from coordination chemistry[J]. Minerals Engineering, 2021, 171: 107067.
[210] CHEN J H, WANG J M, LI Y Q, et al. Effects of surface spatial structures and electronic properties of chalcopyrite and pyrite on Z-200 selectivity[J]. Minerals Engineering, 2021, 163: 106803.
[211] CHEN Y, LIU X M, CHEN J H. Steric hindrance effect on adsorption of xanthate on sphalerite surface: A DFT study[J]. Minerals Engineering, 2021, 165: 106834.
[212] CHEN J H, LI Y Q. Orbital symmetry matching study on the interactions of flotation reagents with mineral surfaces[J]. Minerals Engineering, 2022, 179: 107469.

所在学位评定分委会
物理学
国内图书分类号
TD923
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/544619
专题工学院_材料科学与工程系
推荐引用方式
GB/T 7714
龙秋容. 开关型捕收剂强化微细粒氧化铜矿浮选机理研究[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930812-龙秋容-材料科学与工程(12332KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[龙秋容]的文章
百度学术
百度学术中相似的文章
[龙秋容]的文章
必应学术
必应学术中相似的文章
[龙秋容]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。