中文版 | English
题名

功能化超疏水织物的设计、制备及应用研究

其他题名
DESIGN, PRERARATION AND APPLICATION OF FUNCTIONALIZED SUPERHYDROPHOBIC FABRICS
姓名
姓名拼音
LIU Yi
学号
12032252
学位类型
硕士
学位专业
0703 化学
学科门类/专业学位类别
07 理学
导师
徐政和(Zhenghe Xu)
导师单位
工学院
论文答辩日期
2023-05-12
论文提交日期
2023-06-29
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

人们通常将表面水接触角θ>150°,滚动接触角α<10°的材料称为超疏水材料,近年来这类材料成为研究热点之一。超疏水材料最初的设计理念来源于自然界,随着表面科学和纳米技术的发展,研究人员能够制备出各种具有超疏水性能的材料,在自清洁、减阻、防冰、防雾、抗细菌黏附等领域展现出良好的应用前景。但是,现有超疏水材料制备工艺还存在巨大挑战,例如制备工艺复杂、成本高、受外界环境影响材料疏水性能下降(即稳定性差)等,严重阻碍了超疏水材料的广泛应用。

为解决这些问题,本论文从以下两种思路开展研究,一是通过材料表面涂覆高分子或纳米材料涂层来增强超疏水织物的稳定性,二是直接制备具有表面可自修复功能的超疏水织物。我们分别通过浸渍法和水热法制备了超疏水织物,重点研究了纳米材料尺寸和添加剂添加量对超疏水稳定性能的影响,以及基于磷酸锆原位生长过程超疏水自修复机理,在此基础上探讨了超疏水织物的应用场景,主要研究结果如下:

为制备具有良好稳定性的超疏水织物,本论文通过两步浸渍法在织物表面涂覆了TiO2@PVDF-g-FAS,当TiO2纳米粒子为500 nm、TiO2/PVDF 质量比为0.01/1时,织物表现出优异的超疏水性能(接触角:161°,滚动角:1.7°),良好的热稳定性(180℃)、耐紫外性(可在紫外光照下600 h仍保持超疏水性能)、耐酸碱腐蚀性(在不同酸碱条件下浸泡48 h仍保持超疏水性能)和机械稳定性(砂纸摩擦600次)。涂覆TiO2@PVDF-g-FAS的超疏水织物还表现出很强的抗菌性能,对于革兰氏阴性菌(大肠杆菌)和革兰氏阳性菌(金葡萄球菌)的杀菌率分别达到84%和99%。此超疏水织物的制备方法简单,反应条件温和,可实现大批量生产,具有较好的实际应用前景。

为制备可自修复的超疏水织物,本论文设计了以氧氯化锆、磷酸、吐温-80为原料,通过原位生长法在织物表面生成了α-磷酸锆纳米片,并通过十八烷基胺(ODA)改性,制备了超疏水织物(接触角:163°,滚动角:3.7°)。使用Plasma辐照法验证了超疏水涂层的自修复性能,在氧Plasma处理1分钟后,织物的水接触角降为0°,通过100℃热处理4 h后,内部的ODA扩散至表面实现自修复,织物重新恢复超疏水性能。使用该超疏水织物进行油水分离,对于不同种类油的油水分离率皆可达到95% 以上,并可在多种应用条件下实现油水分离。织物循环25次油水分离后,性能仍可保持稳定。织物具有较高的膜通量及截留率,且当超疏水性能被破坏-修复后仍表现出良好的油水分离效果。

综上所述,本论文分别通过制备高分子/纳米复合材料涂层和具有自修复功能纳米涂层的方式来提升超疏水织物(表面)的稳定性,这些制备方法简单可行,可以扩展到其它材料或基底表面,为超疏水现象更广泛的实际应用提供了新的解决方案。

人们通常将表面水接触角θ>150°,滚动接触角α<10°的材料称为超疏水材料,近年来这类材料成为研究热点之一。超疏水材料最初的设计理念来源于自然界,随着表面科学和纳米技术的发展,研究人员能够制备出各种具有超疏水性能的材料,在自清洁、减阻、防冰、防雾、抗细菌黏附等领域展现出良好的应用前景。但是,现有超疏水材料制备工艺还存在巨大挑战,例如制备工艺复杂、成本高、受外界环境影响材料疏水性能下降(即稳定性差)等,严重阻碍了超疏水材料的广泛应用。

为解决这些问题,本论文从以下两种思路开展研究,一是通过材料表面涂覆高分子或纳米材料涂层来增强超疏水织物的稳定性,二是直接制备具有表面可自修复功能的超疏水织物。我们分别通过浸渍法和水热法制备了超疏水织物,重点研究了纳米材料尺寸和添加剂添加量对超疏水稳定性能的影响,以及基于磷酸锆原位生长过程超疏水自修复机理,在此基础上探讨了超疏水织物的应用场景,主要研究结果如下:

为制备具有良好稳定性的超疏水织物,本论文通过两步浸渍法在织物表面涂覆了TiO2@PVDF-g-FAS,当TiO2纳米粒子为500 nm、TiO2/PVDF 质量比为0.01/1时,织物表现出优异的超疏水性能(接触角:161°,滚动角:1.7°),良好的热稳定性(180℃)、耐紫外性(可在紫外光照下600 h仍保持超疏水性能)、耐酸碱腐蚀性(在不同酸碱条件下浸泡48 h仍保持超疏水性能)和机械稳定性(砂纸摩擦600次)。涂覆TiO2@PVDF-g-FAS的超疏水织物还表现出很强的抗菌性能,对于革兰氏阴性菌(大肠杆菌)和革兰氏阳性菌(金葡萄球菌)的杀菌率分别达到84%和99%。此超疏水织物的制备方法简单,反应条件温和,可实现大批量生产,具有较好的实际应用前景。

为制备可自修复的超疏水织物,本论文设计了以氧氯化锆、磷酸、吐温-80为原料,通过原位生长法在织物表面生成了α-磷酸锆纳米片,并通过十八烷基胺(ODA)改性,制备了超疏水织物(接触角:163°,滚动角:3.7°)。使用Plasma辐照法验证了超疏水涂层的自修复性能,在氧Plasma处理1分钟后,织物的水接触角降为0°,通过100℃热处理4 h后,内部的ODA扩散至表面实现自修复,织物重新恢复超疏水性能。使用该超疏水织物进行油水分离,对于不同种类油的油水分离率皆可达到95% 以上,并可在多种应用条件下实现油水分离。织物循环25次油水分离后,性能仍可保持稳定。织物具有较高的膜通量及截留率,且当超疏水性能被破坏-修复后仍表现出良好的油水分离效果。

综上所述,本论文分别通过制备高分子/纳米复合材料涂层和具有自修复功能纳米涂层的方式来提升超疏水织物(表面)的稳定性,这些制备方法简单可行,可以扩展到其它材料或基底表面,为超疏水现象更广泛的实际应用提供了新的解决方案。

关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2023-06
参考文献列表

[1] BARTHLOTT W, NEINHUIS C. Purity of the sacred lotus, or escape from contamination in biological surfaces [J]. Planta, 1997, 202(1): 1-8.
[2] BARTHLOTT W, MAIL M, NEINHUIS C. Superhydrophobic hierarchically structured surfaces in biology: Evolution, structural principles and biomimetic applications [J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2016, 374(2073): 20160191.
[3] ELLINAS K, TSEREPI A, GOGOLIDES E. Durable superhydrophobic and superamphiphobic polymeric surfaces and their applications: A review [J]. Advances in Colloid and Interface Science, 2017, 250: 132-57.
[4] ZELINKA S L, ALTGEN M, EMMERICH L, et al. Review of wood modification and wood functionalization technologies [J/OL]. 2022, 13(7):10.3390/f13071004
[5] PANZARASA G, BURGERT I. Designing functional wood materials for novel engineering applications [J]. Holzforschung, 2022, 76(2): 211-22.
[6] YANG H, WANG J, ZHAO P, et al. UV-assisted multiscale superhydrophobic wood resisting surface contamination and failure [J]. ACS Omega, 2021, 6(40): 26732-40.
[7] NORTHCOTT K A, BACUS J, TAYA N, et al. Synthesis and characterization of hydrophobic zeolite for the treatment of hydrocarbon contaminated ground water [J]. Journal of Hazardous Materials, 2010, 183(1): 434-40.
[8] JIN Z, WANG L, HU Q, et al. Hydrophobic zeolite containing titania particles as wettability-selective catalyst for formaldehyde removal [J]. ACS Catalysis, 2018, 8(6): 5250-4.
[9] LI J, CUI M, TIAN H, et al. Facile fabrication of anti-corrosive superhydrophobic diatomite coatings for removal oil from harsh environments [J]. Separation and Purification Technology, 2017, 189: 335-40.
[10] NGUYEN H H, TIEU A K, TRAN B H, et al. Porosity-induced mechanically robust superhydrophobicity by the sintering and silanization of hydrophilic porous diatomaceous earth [J]. Journal of Colloid and Interface Science, 2021, 589: 242-51.
[11] LIU H, YANG L, ZHAN Y, et al. A robust and antibacterial superhydrophobic cotton fabric with sunlight-driven self-cleaning performance for oil/water separation [J]. Cellulose, 2021, 28(3): 1715-29.
[12] ZHOU C, CHEN Z, YANG H, et al. Nature-inspired strategy toward superhydrophobic fabrics for versatile oil/water separation [J]. ACS Applied Materials & Interfaces, 2017, 9(10): 9184-94.
[13] DONG T, TIAN N, XU B, et al. Biomass poplar catkin fiber-based superhydrophobic aerogel with tubular-lamellar interweaved neurons-like structure [J]. Journal of Hazardous Materials, 2022, 429: 128290.
[14] ZHU Z, FU S, LUCIA L A. A fiber-aligned thermal-managed wood-based superhydrophobic aerogel for efficient oil recovery [J]. ACS Sustainable Chemistry & Engineering, 2019, 7(19): 16428-39.
[15] WANG Y, OU B, ZHU P, et al. High mechanical strength aluminum foam epoxy resin composite material with superhydrophobic, anticorrosive and wear-resistant surface [J]. Surfaces and Interfaces, 2022, 29: 101747.
[16] HU Y, ZHU Y, WANG H, et al. Facile preparation of superhydrophobic metal foam for durable and high efficient continuous oil-water separation [J]. Chemical Engineering Journal, 2017, 322: 157-66.
[17] YOUNG, T. An essay on the cohesion of fluids [J]. Proceedings of the Royal Society of London, 1800.
[18] BELL M S, BORHAN A. A volume-corrected Wenzel model [J]. ACS Omega, 2020, 5(15): 8875-84.
[19] CASSIE A B D, BAXTER S. Large contact angles of plant and animal surfaces [J]. Nature, 1945, 155(3923): 21-2.
[20] NGUYEN-TRI P, TRAN H N, PLAMONDON C O, et al. Recent progress in the preparation, properties and applications of superhydrophobic nano-based coatings and surfaces: A review [J]. Progress in Organic Coatings, 2019, 132: 235-56.
[21] QUAN Y-Y, CHEN Z, LAI Y, et al. Recent advances in fabricating durable superhydrophobic surfaces: A review in the aspects of structures and materials [J]. Materials Chemistry Frontiers, 2021, 5(4): 1655-82.
[22] ZHANG X, LIU Z, ZHANG X, et al. High-adhesive superhydrophobic litchi-like coatings fabricated by in-situ growth of nano-silica on polyethersulfone surface [J]. Chemical Engineering Journal, 2018, 343: 699-707.
[23] LI Z, LIU L, ZHENG H, et al. Superhydrophobic, corrosion resistance, and antibacterial coating with delayed release of ag ions [J]. Composites Communications, 2022, 31: 101134.
[24] LYU J, XING S, MENG Y, et al. Flexible superhydrophobic ZnO coating harvesting antibacterial and washable properties [J]. Materials Letters, 2022, 314: 131730.
[25] LIU T, LI X, WANG D, et al. Superhydrophobicity and regeneration of PVDF/SiO2 composite films [J]. Applied Surface Science, 2017, 396: 1443-9.
[26] MA Y, WEI J, CAI Y, et al. Facile fabrication of self-roughened surfaces for superhydrophobic coatings via polarity-induced phase separation strategy [J]. Journal of Colloid and Interface Science, 2022, 628: 777-87.
[27] CENGIZ U, Z. AVCI M, ERBIL H Y, et al. Superhydrophobic terpolymer nanofibers containing perfluoroethyl alkyl methacrylate by electrospinning [J]. Applied Surface Science, 2012, 258(15): 5815-21.
[28] MENGA N, DI MUNDO R, CARBONE G. Soft blasting of fluorinated polymers: The easy way to superhydrophobicity [J]. Materials & Design, 2017, 121: 414-20.
[29] TUO Y, ZHANG H, RONG W, et al. Drag reduction of anisotropic superhydrophobic surfaces prepared by laser etching [J]. Langmuir, 2019, 35(34): 11016-22.
[30] DIMITRAKELLIS P, PATSIDIS A C, SMYRNAKIS A, et al. Atmospheric plasma nanotexturing of organic–inorganic nanocomposite coatings for multifunctional surface fabrication [J]. ACS Applied Nano Materials, 2019, 2(5): 2969-78.
[31] WANG S, FENG L, JIANG L. One-step solution-immersion process for the fabrication of stable bionic superhydrophobic surfaces [J]. Advanced Materials, 2006, 18(6): 767-70.
[32] CAO Y, LU Y, LIU N, et al. Multi-applicable, durable superhydrophobic anti-icing coating through template-method and chemical vapor deposition [J]. Surfaces and Interfaces, 2022, 32: 102100.
[33] SHIRGHOLAMI M A, SHATERI KHALIL-ABAD M, KHAJAVI R, et al. Fabrication of superhydrophobic polymethylsilsesquioxane nanostructures on cotton textiles by a solution–immersion process [J]. Journal of Colloid and Interface Science, 2011, 359(2): 530-5.
[34] HE Q, XU Z, LI A, et al. Study on hydrophobic properties of fluororubber prepared by template method under high temperature conditions [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 612: 125837.
[35] CHENG Y, ZHU T, LI S, et al. A novel strategy for fabricating robust superhydrophobic fabrics by environmentally-friendly enzyme etching [J]. Chemical Engineering Journal, 2019, 355: 290-8.
[36] OUYANG S, WANG T, YU Y, et al. From trans to cis conformation: Further understanding the surface properties of poly(m-phenylene isophthalamide) [J]. ACS Omega, 2017, 2(1): 290-8.
[37] SHI Y, WANG Y, FENG X, et al. Fabrication of superhydrophobicity on cotton fabric by sol–gel [J]. Applied Surface Science, 2012, 258(20): 8134-8.
[38] LIU X, SHAO Q, CAO J, et al. Superamphiphobic and flame-resistant cotton fabrics for protective clothing [J]. Cellulose, 2022, 29(1): 619-32.
[39] XUE X, YANG Z, LI Y, et al. Superhydrophobic self-cleaning solar reflective orange-gray paint coating [J]. Solar Energy Materials and Solar Cells, 2018, 174: 292-9.
[40] WANG B, YU P, YANG Q, et al. Upcycling of biomass waste into photothermal superhydrophobic coating for efficient anti-icing and deicing [J]. Materials Today Physics, 2022, 24: 100683.
[41] KREDER M J, ALVARENGA J, KIM P, et al. Design of anti-icing surfaces: Smooth, textured or slippery? [J]. Nature Reviews Materials, 2016, 1(1): 15003.
[42] VARANASI K K, DENG T, SMITH J D, et al. Frost formation and ice adhesion on superhydrophobic surfaces [J]. Applied Physics Letters, 2010, 97(23): 234102.
[43] WANG B, LIANG W, GUO Z, et al. Biomimetic super-lyophobic and super-lyophilic materials applied for oil/water separation: A new strategy beyond nature [J]. Chemical Society Reviews, 2015, 44(1): 336-61.
[44] HAO W, XU J, LI R, et al. Developing superhydrophobic rock wool for high-viscosity oil/water separation [J]. Chemical Engineering Journal, 2019, 368: 837-46.
[45] ZHOU X, ZHANG Z, XU X, et al. Robust and durable superhydrophobic cotton fabrics for oil/water separation [J]. ACS Applied Materials & Interfaces, 2013, 5(15): 7208-14.
[46] LIU X, LI H, ZHANG J, et al. Durable superhydrophobic engineered mesh with self-healing and anti-corrosive capabilities for efficient oil/water separation [J]. Journal of Environmental Chemical Engineering, 2022, 10(6): 108823.
[47] WANG Z, LIU X, JI J, et al. Underwater drag reduction and buoyancy enhancement on biomimetic antiabrasive superhydrophobic coatings [J]. ACS Applied Materials & Interfaces, 2021, 13(40): 48270-80.
[48] FENNEMA E, RIVRON N, ROUWKEMA J, et al. Spheroid culture as a tool for creating 3d complex tissues [J]. Trends in Biotechnology, 2013, 31(2): 108-15.
[49] LEIBNER E S, BARNTHIP N, CHEN W, et al. Superhydrophobic effect on the adsorption of human serum albumin [J]. Acta Biomaterialia, 2009, 5(5): 1389-98.
[50] ZHANG J, LI G, MAN J, et al. Mechanism of anti-proteins adsorption behavior on superhydrophobic titanium surface [J]. Surface and Coatings Technology, 2021, 421: 127421.
[51] BALLESTER-BELTRáN J, RICO P, MORATAL D, et al. Role of superhydrophobicity in the biological activity of fibronectin at the cell–material interface [J]. Soft Matter, 2011, 7(22): 10803-11.
[52] DI MUNDO R, NARDULLI M, MILELLA A, et al. Cell adhesion on nanotextured slippery superhydrophobic substrates [J]. Langmuir, 2011, 27(8): 4914-21.
[53] LIU G, XIANG J, XIA Q, et al. Superhydrophobic cotton gauze with durably antibacterial activity as skin wound dressing [J]. Cellulose, 2019, 26(2): 1383-97.
[54] ZHAO S, YANG X, XU Y, et al. A sprayable superhydrophobic dental protectant with photo-responsive anti-bacterial, acid-resistant, and anti-fouling functions [J]. Nano Research, 2022, 15(6): 5245-55.
[55] LIU H, GUO L, HU S, et al. Scalable fabrication of highly breathable cotton textiles with stable fluorescent, antibacterial, hydrophobic, and uv-blocking performance [J]. ACS Applied Materials & Interfaces, 2022, 14(29): 34049-58.
[56] NAWAZ R, NAQVI S T R, FATIMA B, et al. Cost-effective fabrication, antibacterial application and cell viability studies of modified nonwoven cotton fabric [J]. Scientific Reports, 2022, 12(1): 2493.
[57] SHABAN M, MOHAMED F, ABDALLAH S. Production and characterization of superhydrophobic and antibacterial coated fabrics utilizing zno nanocatalyst [J]. Scientific Reports, 2018, 8(1): 3925.
[58] GAO D, LI X, LI Y, et al. Long-acting antibacterial activity on the cotton fabric [J]. Cellulose, 2021, 28(3): 1221-40.
[59] OU J, WANG Z, WANG F, et al. Washable and antibacterial superhydrophbic fabric [J]. Applied Surface Science, 2016, 364: 81-5.
[60] SUNADA K, WATANABE T, HASHIMOTO K. Bactericidal activity of copper-deposited tio2 thin film under weak uv light illumination [J]. Environmental Science & Technology, 2003, 37(20): 4785-9.
[61] LI R, JIN T Z, LIU Z, et al. Antimicrobial double-layer coating prepared from pure or doped-titanium dioxide and binders [J/OL]. 2018, 8(1):10.3390/coatings8010041
[62] WANG M, ZHANG M, PANG L, et al. Fabrication of highly durable polysiloxane-zinc oxide (ZnO) coated polyethylene terephthalate (PET) fabric with improved ultraviolet resistance, hydrophobicity, and thermal resistance [J]. Journal of Colloid and Interface Science, 2019, 537: 91-100.
[63] ZAHID M, PAPADOPOULOU E L, SUARATO G, et al. Fabrication of visible light-induced antibacterial and self-cleaning cotton fabrics using manganese doped TiO2 nanoparticles [J]. ACS Applied Bio Materials, 2018, 1(4): 1154-64.
[64] LI S, ZHU Q, SUN Y, et al. Fabrication of ag nanosheet@TiO2 antibacterial membranes for inulin purification [J]. Industrial & Engineering Chemistry Research, 2020, 59(16): 7797-804.
[65] PARVATE S, DIXIT P, CHATTOPADHYAY S. Superhydrophobic surfaces: Insights from theory and experiment [J]. The Journal of Physical Chemistry B, 2020, 124(8): 1323-60.
[66] WANG D, SUN Q, HOKKANEN M J, et al. Design of robust superhydrophobic surfaces [J]. Nature, 2020, 582(7810): 55-9.
[67] DAS S, KUMAR S, SAMAL S K, et al. A review on superhydrophobic polymer nanocoatings: Recent development and applications [J]. Industrial & Engineering Chemistry Research, 2018, 57(8): 2727-45.
[68] CHEN S, LI X, LI Y, et al. Intumescent flame-retardant and self-healing superhydrophobic coatings on cotton fabric [J]. ACS Nano, 2015, 9(4): 4070-6.
[69] CHEN T, LIU Z, ZHANG K, et al. Mussel-inspired AgNPs immobilized on melamine sponge for reduction of 4-nitrophenol, antibacterial applications and its superhydrophobic derivative for oil–water separation [J]. ACS Applied Materials & Interfaces, 2021, 13(42): 50539-51.
[70] XIANG H, WANG B, ZHONG M, et al. Sustainable and versatile superhydrophobic cellulose nanocrystals [J]. ACS Sustainable Chemistry & Engineering, 2022, 10(18): 5939-48.
[71] YE Z, LI S, ZHAO S, et al. Textile coatings configured by double-nanoparticles to optimally couple superhydrophobic and antibacterial properties [J]. Chemical Engineering Journal, 2021, 420: 127680.
[72] WU M, MA B, PAN T, et al. Silver-nanoparticle-colored cotton fabrics with tunable colors and durable antibacterial and self-healing superhydrophobic properties [J]. Advanced Functional Materials, 2016, 26(4): 569-76.
[73] SHAO J, SHENG W, WANG C, et al. Solvent-free fabrication of tough self-crosslinkable short-fluorinated copolymer nanocoatings for ultradurable superhydrophobic fabrics [J]. Chemical Engineering Journal, 2021, 416: 128043.
[74] SHATERI KHALIL-ABAD M, YAZDANSHENAS M E. Superhydrophobic antibacterial cotton textiles [J]. Journal of Colloid and Interface Science, 2010, 351(1): 293-8.
[75] BROWN A, BOZMAN M, HICKMAN T, et al. Superhydrophobic functionalization of cotton fabric via reactive dye chemistry and a thiol–ene click reaction [J]. Industrial & Engineering Chemistry Research, 2019, 58(50): 22534-40.
[76] RAHMAN M A, YUN C, PARK C H. Development of a superhydrophobic cellulose fabric via enzyme treatment and surface hydrophobization [J]. Textile Research Journal, 2020, 91(1-2): 40-50.
[77] SCHLAICH C, CUELLAR CAMACHO L, YU L, et al. Surface-independent hierarchical coatings with superamphiphobic properties [J]. ACS Applied Materials & Interfaces, 2016, 8(42): 29117-27.
[78] WATSON G S, GREEN D W, CRIBB B W, et al. Insect analogue to the lotus leaf: A planthopper wing membrane incorporating a low-adhesion, nonwetting, superhydrophobic, bactericidal, and biocompatible surface [J]. ACS Applied Materials & Interfaces, 2017, 9(28): 24381-92.
[79] XU L, YANG L, YANG S, et al. Earthworm-inspired ultradurable superhydrophobic fabrics from adaptive wrinkled skin [J]. ACS Applied Materials & Interfaces, 2021, 13(5): 6758-66.
[80] DIMITRAKELLIS P, GOGOLIDES E. Hydrophobic and superhydrophobic surfaces fabricated using atmospheric pressure cold plasma technology: A review [J]. Advances in Colloid and Interface Science, 2018, 254: 1-21.
[81] ELLINAS K, PUJARI S P, DRAGATOGIANNIS D A, et al. Plasma micro-nanotextured, scratch, water and hexadecane resistant, superhydrophobic, and superamphiphobic polymeric surfaces with perfluorinated monolayers [J]. ACS Applied Materials & Interfaces, 2014, 6(9): 6510-24.
[82] YUNG C S, TOMLIN N A, HEUERMAN K, et al. Plasma modification of vertically aligned carbon nanotubes: Superhydrophobic surfaces with ultra-low reflectance [J]. Carbon, 2018, 127: 195-201.
[83] MILNE A J B, AMIRFAZLI A. The Cassie Equation: How it is meant to be used [J]. Advances in Colloid and Interface Science, 2012, 170(1): 48-55.
[84] ERBIL H Y, CANSOY C E. Range of applicability of the Wenzel and Cassie−Baxter Equations for superhydrophobic surfaces [J]. Langmuir, 2009, 25(24): 14135-45.
[85] ZHANG W, SHI Z, ZHANG F, et al. Superhydrophobic and superoleophilic pvdf membranes for effective separation of water-in-oil emulsions with high flux [J]. Advanced Materials, 2013, 25(14): 2071-6.
[86] WU J, LI J, WANG Z, et al. Designing breathable superhydrophobic cotton fabrics [J]. RSC Advances, 2015, 5(35): 27752-8.
[87] DALVI V H, ROSSKY P J. Molecular origins of fluorocarbon hydrophobicity [J]. Proceedings of the National Academy of Sciences, 2010, 107(31): 13603-7.
[88] KRIEG E, WEISSMAN H, SHIMONI E, et al. Understanding the effect of fluorocarbons in aqueous supramolecular polymerization: Ultrastrong noncovalent binding and cooperativity [J]. Journal of the American Chemical Society, 2014, 136(26): 9443-52.
[89] LIU M, HOU Y, LI J, et al. An all-water-based system for robust superhydrophobic surfaces [J]. Journal of Colloid and Interface Science, 2018, 519: 130-6.
[90] WU X, ZHAO B, WANG L, et al. Superhydrophobic PVDF membrane induced by hydrophobic sio2 nanoparticles and its use for CO2 absorption [J]. Separation and Purification Technology, 2018, 190: 108-16.
[91] ZHANG B, ZENG Y, WANG J, et al. Superamphiphobic aluminum alloy with low sliding angles and acid-alkali liquids repellency [J]. Materials & Design, 2020, 188: 108479.
[92] XU L, LIU Y, YUAN X, et al. One-pot preparation of robust, ultraviolet-proof superhydrophobic cotton fabrics for self-cleaning and oil/water separation [J]. Cellulose, 2020, 27(15): 9005-26.
[93] XU W, YI P, GAO J, et al. Large-area stable superhydrophobic poly(dimethylsiloxane) films fabricated by thermal curing via a chemically etched template [J]. ACS Applied Materials & Interfaces, 2020, 12(2): 3042-50.
[94] MASOOD M T, HEREDIA-GUERRERO J A, CESERACCIU L, et al. Superhydrophobic high impact polystyrene (HIPs) nanocomposites with wear abrasion resistance [J]. Chemical Engineering Journal, 2017, 322: 10-21.
[95] CUNLIFFE A J, ASKEW P D, STEPHAN I, et al. How do we determine the efficacy of an antibacterial surface? A review of standardised antibacterial material testing methods [J/OL]. 2021, 10(9):10.3390/antibiotics10091069
[96] REN T, YANG M, WANG K, et al. CuO nanoparticles-containing highly transparent and superhydrophobic coatings with extremely low bacterial adhesion and excellent bactericidal property [J]. ACS Applied Materials & Interfaces, 2018, 10(30): 25717-25.
[97] AGBE H, SARKAR D K, CHEN X G, et al. Silver–polymethylhydrosiloxane nanocomposite coating on anodized aluminum with superhydrophobic and antibacterial properties [J]. ACS Applied Bio Materials, 2020, 3(7): 4062-73.
[98] ATTIA N F, MOUSSA M, SHETA A M F, et al. Effect of different nanoparticles based coating on the performance of textile properties [J]. Progress in Organic Coatings, 2017, 104: 72-80.
[99] YE Z, RONG H, LI S, et al. A facile strategy to fabricate silver-functionalized superhydrophobic cotton fabrics with long-term antibacterial properties [J]. Cellulose, 2022, 29(2): 1163-74.
[100] SURYAPRABHA T, SETHURAMAN M G. Fabrication of copper-based superhydrophobic self-cleaning antibacterial coating over cotton fabric [J]. Cellulose, 2017, 24(1): 395-407.
[101] GAUTAM S, SHARMA B, JAIN P. Green natural protein isolate based composites and nanocomposites: A review [J]. Polymer Testing, 2021, 99: 106626.
[102] SU B, TIAN Y, JIANG L. Bioinspired interfaces with superwettability: From materials to chemistry [J]. Journal of the American Chemical Society, 2016, 138(6): 1727-48.
[103] CHEN J, ZHOU Y, ZHOU C, et al. A durable underwater superoleophobic and underoil superhydrophobic fabric for versatile oil/water separation [J]. Chemical Engineering Journal, 2019, 370: 1218-27.
[104] ATTIA H, ALEXANDER S, WRIGHT C J, et al. Superhydrophobic electrospun membrane for heavy metals removal by air gap membrane distillation (AGMD) [J]. Desalination, 2017, 420: 318-29.
[105] SHENG Y, LIN K, BINKS B P, et al. Ultra-stable aqueous foams induced by interfacial co-assembly of highly hydrophobic particles and hydrophilic polymer [J]. Journal of Colloid and Interface Science, 2020, 579: 628-36.
[106] STOJANOVIC A, ARTUS G R J, SEEGER S. Micropatterning of superhydrophobic silicone nanofilaments by a near-ultraviolet ND:Yag laser [J]. Nano Research, 2010, 3(12): 889-94.
[107] YI B, WONG Y-L, HOU C, et al. Coordination-driven assembly of metal–organic framework coating for catalytically active superhydrophobic surface [J]. Advanced Materials Interfaces, 2021, 8(2): 2001202.
[108] IRZHAK V I, UFLYAND I E, DZHARDIMALIEVA G I. Self-healing of polymers and polymer composites [J/OL]. 2022, 14(24):10.3390/polym14245404
[109] MPHAHLELE K, RAY S S, KOLESNIKOV A. Self-healing polymeric composite material design, failure analysis and future outlook: A review [J/OL]. 2017, 9(10):10.3390/polym9100535
[110] NIE W, BLANCON J-C, NEUKIRCH A J, et al. Light-activated photocurrent degradation and self-healing in perovskite solar cells [J]. Nature Communications, 2016, 7(1): 11574.
[111] NORRIS C J, BOND I P, TRASK R S. Healing of low-velocity impact damage in vascularised composites [J]. Composites Part A: Applied Science and Manufacturing, 2013, 44: 78-85.
[112] JIA Y, ZHANG L, QIN M, et al. Highly efficient self-healable and robust fluorinated polyurethane elastomer for wearable electronics [J]. Chemical Engineering Journal, 2022, 430: 133081.
[113] ZHOU H, WANG H, NIU H, et al. Superamphiphobic fabrics: Superstrong, chemically stable, superamphiphobic fabrics from particle-free polymer coatings [J]. Advanced Materials Interfaces, 2015, 2(6).
[114] REN Y, LIN Z, MAO X, et al. Superhydrophobic, surfactant-doped, conducting polymers for electrochemically reversible adsorption of organic contaminants [J]. Advanced Functional Materials, 2018, 28(32): 1801466.
[115] CHEN L, JIAO Z, YIN X, et al. Highly efficient removal of strontium from contaminated wastewater by a porous zirconium phosphate material [J]. Journal of Environmental Management, 2022, 319: 115718.
[116] 杜以波, 李峰, 何静, et al. 层状化合物α-磷酸锆的制备和表征 [J]. 无机化学学报, 1998, (01): 79-83.
[117] YAN X, ZHU X, RUAN Y, et al. Biomimetic, dopamine-modified superhydrophobic cotton fabric for oil–water separation [J]. Cellulose, 2020, 27(13): 7873-85.
[118] KHARRAZ J A, AN A K. Patterned superhydrophobic polyvinylidene fluoride (PVDF) membranes for membrane distillation: Enhanced flux with improved fouling and wetting resistance [J]. Journal of Membrane Science, 2020, 595: 117596.
[119] SUN Q, YANG Z, HU C, et al. Facile preparation of superhydrophobic pvdf microporous membranes with excellent anti-fouling ability for vacuum membrane distillation [J]. Journal of Membrane Science, 2020, 605: 118106.

所在学位评定分委会
化学
国内图书分类号
O63
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/544620
专题工学院_材料科学与工程系
推荐引用方式
GB/T 7714
刘一. 功能化超疏水织物的设计、制备及应用研究[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032252-刘一-材料科学与工程系(12972KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[刘一]的文章
百度学术
百度学术中相似的文章
[刘一]的文章
必应学术
必应学术中相似的文章
[刘一]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。