中文版 | English
题名

基于刮涂合金顶电极的全印刷有机光伏电池

其他题名
BLADE COATING OF ALLOY AS TOP ELECTRODES FOR ALL-PRINTED ORGANIC PHOTOVOLTAICS
姓名
姓名拼音
LIU Linna
学号
12032907
学位类型
硕士
学位专业
0801 力学
学科门类/专业学位类别
08 工学
导师
赵新彦
导师单位
前沿与交叉科学研究院
论文答辩日期
2023-05-16
论文提交日期
2023-06-29
学位授予单位
南方科技大学
学位授予地点
深圳
摘要
有机光伏电池作为一种新型光伏技术,具有质量轻、柔性,以及与卷对卷工艺兼容的优点。光电转换效率的不断提升促进了对于成本低廉且大面积的全印刷有机太阳能电池的需求。然而,现有的制备技术仍难以满足产业化生产的要求,尤其是顶电极真空蒸镀的制备方式,已成为限制有机光伏器件全印刷制备的瓶颈。因此,研究新型电极材料和制备工艺,对顶电极进行打印,进而实现全印刷制备,对于实现低成本、高产出、大面积的有机光伏电池制造具有重要意义。
本文研究了一种新型有机光伏器件顶电极,采用低温合金作为顶电极材料,采用刮涂工艺进行印刷制备。所用的低温合金为熔点 62 ℃的菲尔德合金,能够在不破坏活性层的温度下进行印刷,柔性刮片保证了刮涂过程不会损伤活性层。探究了刮涂参数和电极性能的关系,优化了刮涂条件。
基于刮涂菲尔德合金顶电极制备的有机光伏器件,光电转换效率达 17.28%,与蒸镀银电极器件相当,而且稳定性比蒸镀银电极器件更高。 基于低温合金刮涂顶电极,制备了全印刷有机光伏器件,有机功能层均采用柔性微梳刷涂制备。全印刷器件光电转换效率达到 16.07%,是目前文献报道的全印刷有机光伏器件最高效率。表明刮涂低温合金作为一种简便、快速、低成本的顶电极制备,可替代真空蒸镀金属顶电极,制备出高效率的全印刷光伏器件。有机光伏电池作为一种新型光伏技术,具有质量轻、柔性,以及与卷对卷工艺兼容的优点。光电转换效率的不断提升促进了对于成本低廉且大面积的全印刷有机太阳能电池的需求。然而,现有的制备技术仍难以满足产业化生产的要求,尤其是顶电极真空蒸镀的制备方式,已成为限制有机光伏器件全印刷制备的瓶颈。因此,研究新型电极材料和制备工艺,对顶电极进行打印,进而实现全印刷制备,对于实现低成本、高产出、大面积
的有机光伏电池制造具有重要意义。
本文研究了一种新型有机光伏器件顶电极,采用低温合金作为顶电极材料,采用刮涂工艺进行印刷制备。所用的低温合金为熔点 62 ℃的菲尔德合金,能够在不破坏活性层的温度下进行印刷,柔性刮片保证了刮涂过程不会损伤活性层。探究了刮涂参数和电极性能的关系,优化了刮涂条件。基于刮涂菲尔德合金顶电极制备的有机光伏器件,光电转换效率达 17.28%,与蒸镀银电极器件相当,而且稳定性比蒸镀银电极器件更高。基于低温合金刮涂顶电极,制备了全印刷有机光伏器件,有机功能层均采用柔性微梳刷涂制备。全印刷器件光电转换效率达到 16.07%,是目前文献报道的全印刷有机光伏器件最高效率。表明刮涂低温合金作为一种简
便、快速、低成本的顶电极制备,可替代真空蒸镀金属顶电极,制备出高 效率的全印刷光伏器件。
其他摘要
As a novel photovoltaic technology, organic photovoltaics (OPVs) offer
several advantageous features including lightweight, flexibility, and
compatibility with roll-to-roll processing. Increasing power conversion
efficiency promotes the demands for inexpensive and scalable techniques for all printed organic solar cells. However, the existing processes face significant challenges in achieving commercial production, particularly the vacuum
deposition of top electrodes, which obstructs the realization of all-printed OPVs. Therefore, the development of new materials and printing techniques for the top electrode is highly desirable for achieving cost-effective, high-throughput, and large-area manufacturing of all-printed OPVs.
In this thesis, we investigate a new printing process for top electrodes in
OPVs. A low-melting-point alloy (Field’s metal, FM) is employed via flexible blade coating to print the top electrodes. The FM with the melting point of 62°C could be printed under moderate temperatures that do not harm the active layers. The flexible blade used in the blade coating process does not damage the active layer. We elucidate the correlations between the processing parameters and properties of the blade-coated electrodes. Based on the optimized process conditions, OPVs with blade-coated FM electrodes achieve a highest power
conversion efficiency of 17.28%, which is on par with devices with vacuum evaporated Ag electrodes. Additionally, OPVs with FM electrodes demonstrate much higher stability than that of the Ag-electrode devices.
Furthermore, we demonstrate the feasibility of producing all-printed OPVs using blade-coated FM electrodes and flexible micro-comb printing for the other layers. The all-printed OPVs with FM electrodes exhibit an efficiency of 16.07%, which represents a record for evaporation-free and all-printed OPVs. The results suggest that printing FM as OPV electrodes is a simple, time-saving and cost effective strategy to substitute the vacuum-evaporated metals, as well as a
feasible route toward high-performance all printed OPVs.
关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2023-06
参考文献列表

[1] IEA(2021), Global energy review 2021[EB/OL], (2021-04)
[2023-03-10], Paris https://www.iea.org/reports/global-energy-review-2021
[2] IEA(2023), Energy technology perspectives 2023[EB/OL], (2023-01)
[2023-03-10], Paris https://www.iea.org/reports/energy-technology-perspectives-2023
[3] SALINAS J-F, MALDONADO J-L, RAMOS-ORTíZ G, et al. On the use of Woods' metal for fabricating and testing polymeric organic solar cells: An easy and fast method[J]. Solar Energy Materials and Solar Cells, 2011, 95(2): 595-601.
[4] TANG C W. Two-layer organic photovoltaic cell[J]. Applied Physics Letters, 1986, 48(2): 183-185.
[5] WEI Y, CHEN Z, LU G, et al. Binary organic solar cells breaking 19% via manipulating the vertical component distribution[J]. Advanced Materials, 2022, 34(33): 2204718.
[6] ZHU L, ZHANG M, XU J, et al. Single-junction organic solar cells with over 19% efficiency enabled by a refined double-fibril network morphology[J]. Nature Materials, 2022, 21(6): 656-663.
[7] WANG Y, WANG F, GAO J, et al. Organic photovoltaics with 300 nm thick ternary active layers exhibiting 15.6% efficiency[J]. Journal of Materials Chemistry C, 2021, 9(31): 9892-9898.
[8] PERKHUN P, KöNTGES W, POURCIN F, et al. High-efficiency digital inkjet-printed non-fullerene polymer blends using non-halogenatedsolvents[J]. Advanced Energy and Sustainability Research, 2021, 2(4): 2000086.
[9] ZHENG X, ZUO L, ZHAO F, et al. High-efficiency ITO-free organic photovoltaics with superior flexibility and upscalability[J]. Advanced Materials, 2022, 34(17): 2200044.
[10] CUI Y, YAO H, ZHANG T, et al. 1 cm2 organic photovoltaic cells for indoor application with over 20% efficiency[J]. Advanced Materials, 2019, 31(42): 1904512.
[11] NORRMAN K, GHANBARI-SIAHKALI A, LARSEN N. 6 Studies of spin-coated polymer films[J]. Annual Reports Section" C"(Physical Chemistry), 2005, 101: 174-201.
[12] WANG Q, XIE Y, SOLTANI-KORDSHULI F, et al. Progress in emerging solution-processed thin film solar cells - Part I: Polymer solar cells[J]. Renewable and Sustainable Energy Reviews, 2016, 56: 347-361.
[13] 黄维, 密保秀, 高志强. 有机电子学[M]. 科学出版社, 2011.
[14] KEPLER R. Charge carrier production and mobility in anthracene crystals[J]. Physical Review, 1960, 119(4): 1226.
[15] YU G, GAO J, HUMMELEN J C, et al. Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions[J]. Science, 1995, 270(5243): 1789-1791.
[16] GOMEZ E D, LOO Y-L. Engineering the organic semiconductor-electrode interface in polymer solar cells[J]. Journal of Materials Chemistry, 2010, 20(32): 6604-6611.
[17] PARK J H, LEE T W, CHIN B D, et al. Roles of interlayers in efficient organic photovoltaic devices[J]. Macromolecular rapid communications, 2010, 31(24): 2095-2108.
[18] CHENG Y-J, YANG S-H, HSU C-S. Synthesis of conjugated polymers for organic solar cell applications[J]. Chemical reviews, 2009, 109(11): 5868-5923.
[19] LIANG Y, YU L. A new class of semiconducting polymers for bulk heterojunction solar cells with exceptionally high performance[J]. Accounts of chemical research, 2010, 43(9): 1227-1236.
[20] JIANG J, PI J, CAI J. The advancing of zinc oxide nanoparticles for biomedical applications[J]. Bioinorganic chemistry and applications, 2018, 2018: 1062562.
[21] JHUO H-J, SHARMA S, CHEN H-L, et al. A nonvolatile morphology regulator for enhancing the molecular order in the active layer and power conversion efficiency of polymer solar cells[J]. Journal of Materials Chemistry A, 2018, 6(19): 8874-8879.
[22] AMERI T, LI N, BRABEC C J. Highly efficient organic tandem solar cells: a follow up review[J]. Energy & Environmental Science, 2013, 6(8): 2390-2413.
[23] NREL, Best research-cell efficiency chart[EB/OL], (2023-01-12)
[2023-03-10]. https://www.nrel.gov/pv/cell-efficiency.html
[24] LI Y, XU G, CUI C, et al. Flexible and semitransparent organic solar cells[J]. Advanced Energy Materials, 2018, 8(7): 1701791.
[25] HECHT D S, HU L, IRVIN G. Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures[J]. Advanced Materials, 2011, 23(13): 1482-1513.
[26] WEI W, DONG X, ZHOU X, et al. Optimizing conducting polymer top electrodes for nonfullerene organic solar cells[J]. Advanced Materials Interfaces, 2022, 9(30): 2201427.
[27] KANG M H, CHEON T, KIM H. Fully vacuum-free large-area organic solar cell fabrication from polymer top electrode[J]. Solid-State Electronics, 2021, 186: 8192.
[28] PARK H, LEE J H, LEE S, et al. Retarding ion exchange between conducting polymers and ionic liquids for printable top electrodes in semitransparent organic solar cells[J]. ACS Appl Mater Interfaces, 2020, 12(2): 2276-2284.
[29] FAN X, WEN R, XIA Y, et al. Vacuum-free, all-solution, and all-air processed organic photovoltaics with over 11% efficiency and promoted stability using layer-by-layer codoped polymeric electrodes[J]. Solar RRL, 2020, 4(6): 1900543.
[30] WANG Y, JIA B, QIN F, et al. Semitransparent, non-fullerene and flexible all-plastic solar cells[J]. Polymer, 2016, 107: 108-112.
[31] OOKUBO T T T, AWANO H. Magnetic processing of polymer composite films including vapor-grown carbon fibers[J]. TANSO, 2006, 2006(223): 169-175.
[32] JEON I, DELACOU C, KASKELA A, et al. Metal-electrode-free window-like organic solar cells with p-doped carbon nanotube thin-film electrodes[J]. Scientific Reports, 2016, 6(1): 1-9.
[33] ZHANG Y, HE X, BABU D, et al. Efficient semi-transparent organic solar cells with high color rendering index enabled by self-assembled and knitted AgNPs/MWCNTs transparent top electrode via solution process[J]. Advanced Optical Materials, 2021, 9(8): 2002108.
[34] BI Y G, LIU Y F, ZHANG X L, et al. Ultrathin metal films as the transparent electrode in ITO-free organic optoelectronic devices[J]. Advanced Optical Materials, 2019, 7(6): 1800778.
[35] SHIN D, CHOI S-H. Recent studies of semitransparent solar cells[J]. Coatings, 2018, 8(10): 329-358.
[36] LIU Z, LAU S P, YAN F. Functionalized graphene and other two-dimensional materials for photovoltaic devices: device design and processing[J]. Chemical Society Reviews, 2015, 44(15): 5638-5679.
[37] TAI Q, YAN F. Emerging semitransparent solar cells: materials and device design[J]. Advanced Materials, 2017, 29(34): 1700192.
[38] LIU Z, YOU P, LIU S, et al. Neutral-color semitransparent organic solar cells with all-graphene electrodes[J]. ACS Nano, 2015, 9(12): 12026-12034.
[39] HU L, WU H, CUI Y. Metal nanogrids, nanowires, and nanofibers for transparent electrodes[J]. MRS Bulletin, 2011, 36(10): 760-765.
[40] SINGH M, RANA T R, KIM S, et al. Silver nanowires binding with sputtered ZnO to fabricate highly conductive and thermally stable transparent electrode for solar cell applications[J]. ACS Appl Mater Interfaces, 2016, 8(20): 12764-12771.
[41] JIANG Y, DONG X, SUN L, et al. An alcohol-dispersed conducting polymer complex for fully printable organic solar cells with improved stability[J]. Nature Energy, 2022, 7(4): 352-359.
[42] XIE C, LIU Y, WEI W, et al. Large-area flexible organic solar cells with a robust silver nanowire-polymer composite as transparent top electrode[J]. Advanced Functional Materials, 2023, 33(1): 2210675.
[43] HE X, WANG Y, ZHANG L, et al. Evaporation-free organic solar cells with high efficiency enabled by dry and nonimmersive sintering strategy[J]. Advanced Functional Materials, 2021, 31(19): 2010764.
[44] KREBS F C, GEVORGYAN S A, ALSTRUP J. A roll-to-roll process to flexible polymer solar cells: model studies, manufacture and operational stability studies[J]. Journal of Materials Chemistry, 2009, 19(30): 5442-5451.
[45] BERNARDO G, LOPES T, LIDZEY D G, et al. Progress in upscaling organic photovoltaic devices[J]. Advanced Energy Materials, 2021, 11(23): 2100342.
[46] IM H G, JIN J, KO J H, et al. Flexible transparent conducting composite films using a monolithically embedded AgNW electrode with robust performance stability[J]. Nanoscale, 2014, 6(2): 711-715.
[47] KUMAR R, KUMAR J, BAG M. Fusible low work function top electrode for vacuum-free perovskite light-emitting diode application: Role of OH-terminated Sn atoms at the alloy surface[J]. ACS Applied Electronic Materials, 2021, 3(6): 2757-2765.
[48] XIA F, CHEN S. Laminated low-melting-point-alloy electrodes for vacuum-free-processed quantum-dot light-emitting-diodes[J]. Applied Physics Letters, 2020, 117(6): 063302.
[49] JIANG Y, SU S, PENG H, et al. Selective wetting/dewetting for controllable patterning of liquid metal electrodes for all-printed device application[J]. Journal of Materials Chemistry C, 2017, 5(47): 12378-12383.
[50] ROMERO-BORJA D, MALDONADO J-L, BARBOSA-GARCíA O, et al. Polymer solar cells based on P3HT:PC71BM doped at different concentrations of isocyanate-treated graphene[J]. Synthetic Metals, 2015, 200: 91-98.
[51] ROMERO-BORJA D, MALDONADO J-L, BARBOSA-GARCíA O, et al. Organic solar cells based on graphene derivatives and eutectic alloys vacuum-free deposited as top electrodes[J]. Carbon, 2018, 134: 301-309.
[52] PEREZ-GUTIERREZ E, BARREIRO-ARGUELLES D, MALDONADO J L, et al. Semiconductor polymer/top electrode interface generated by two deposition methods and it's influence on organic solar cell performance[J]. ACS Applied Materials & Interfaces, 2016, 8(42): 28763-28770.
[53] SALTO C, SALINAS J-F, MALDONADO J-L, et al. Performance of OPVs cells with the eutectic alloy Wood's metal used as cathode and P3HT:PC61BM blend as active layer[J]. Synthetic Metals, 2011, 161(21-22): 2412-2416.
[54] BARREIRO-ARGUELLES D, RAMOS-ORTIZ G, MALDONADO J-L, et al. PTB7:PC71BM-based solar cells fabricated with the eutectic alloy Field's metal as an alternative cathode and the influence of an electron extraction layer[J]. IEEE Journal of Photovoltaics, 2017, 7(1): 191-198.
[55] ONGUL F, YUKSEL S A, BOZAR S, et al. Vacuum-free processed bulk heterojunction solar cells with E-GaIn cathode as an alternative to Al electrode[J]. Journal of Physics D: Applied Physics, 2015, 48(17): 175102.
[56] NOH J, KIM G-U, HAN S, et al. Intrinsically stretchable organic solar cells with efficiencies of over 11%[J]. ACS Energy Letters, 2021, 6(7): 2512-2518.
[57] KUMAR P. Organic solar cells: device physics, processing, degradation, and prevention[M]. CRC press, 2016.
[58] ZHAO X, DENG W. Printing photovoltaics by electrospray[J]. Opto-Electronic Advances, 2020, 3(6): 190038-190038.
[59] CHEN X, HUANG R, HAN Y, et al. Balancing the molecular aggregation and vertical phase separation in the polymer: nonfullerene blend films enables 13.09% efficiency of organic solar cells with inkjet‐printed active Layer[J]. Advanced Energy Materials, 2022, 12(12): 2200044.
[60] KREBS F C. Fabrication and processing of polymer solar cells: A review of printing and coating techniques[J]. Solar Energy Materials and Solar Cells, 2009, 93(4): 394-412.
[61] BURGUéS-CEBALLOS I, STELLA M, LACHARMOISE P, et al. Towards industrialization of polymer solar cells: material processing for upscaling[J]. Journal of Materials Chemistry A, 2014, 2(42): 17711-17722.
[62] YANG P, ZHAI T, YU B, et al. Toward all aerosol printing of high-efficiency organic solar cells using environmentally friendly solvents in ambient air[J]. Journal of Materials Chemistry A, 2021, 9(32): 17198-17210.
[63] CHANG K, LI Y, XIA H, et al. Organic photovoltaics printed via sheet electrospray enabled by quadrupole electrodes[J]. ACS Applied Materials & Interfaces, 2021, 13(47): 56375-56384.
[64] LI Y, CHANG K, CHANG J, et al. Printed kirigami organic photovoltaics for efficient solar tracking[J]. Advanced Functional Materials, 2022, 32(34): 2204004.
[65] STEIRER K X, REESE M O, RUPERT B L, et al. Ultrasonic spray deposition for production of organic solar cells[J]. Solar Energy Materials and Solar Cells, 2009, 93(4): 447-453.
[66] LEWIS J E, LAFALCE E, TOGLIA P, et al. Over 30% transparency large area inverted organic solar array by spray[J]. Solar Energy Materials and Solar Cells, 2011, 95(10): 2816-2822.
[67] SHEN Y F, ZHANG H, ZHANG J, et al. In-situ absorption characterization guided slot-die-coated high-performance large-area flexible organic solar cells and modules[J]. Advanced Materials, 2022: 2209030.
[68] ZHAO H, LIN B, XUE J, et al. Kinetics manipulation enables high-performance thick ternary organic solar cells via R2R-compatible slot-die coating[J]. Advanced Materials, 2022, 34(7): 2105114.
[69] DU G, WANG Z, ZHAI T, et al. Flow-enhanced flexible microcomb printing of organic solar cells[J]. ACS Applied Materials & Interfaces, 2022, 14(11): 13572-13583.
[70] DIAO Y, ZHOU Y, KUROSAWA T, et al. Flow-enhanced solution printing of all-polymer solar cells[J]. Nature communications, 2015, 6(1): 7955.
[71] ZHANG Y, LIU K, HUANG J, et al. Graded bulk-heterojunction enables 17% binary organic solar cells via nonhalogenated open air coating[J]. Nature communications, 2021, 12(1): 4815.
[72] GUO F, KUBIS P, PRZYBILLA T, et al. Nanowire interconnects for printed large-area semitransparent organic photovoltaic modules[J]. Advanced Energy Materials, 2015, 5(12): 1401779.
[73] STROHM S, MACHUI F, LANGNER S, et al. P3HT: non-fullerene acceptor based large area, semi-transparent PV modules with power conversion efficiencies of 5%, processed by industrially scalable methods[J]. Energy & Environmental Science, 2018, 11(8): 2225-2234.
[74] CHATURVEDI N, GASPARINI N, CORZO D, et al. All slot-die coated non-fullerene organic solar cells with PCE 11%[J]. Advanced Functional Materials, 2021, 31(14): 2009996.
[75] LA NOTTE L, CATALDI P, CESERACCIU L, et al. Fully-sprayed flexible polymer solar cells with a cellulose-graphene electrode[J]. Materials Today Energy, 2018, 7: 105-112.
[76] HAN Y W, JEON S J, LEE H S, et al. Evaporation-free nonfullerene flexible organic solar cell modules manufactured by an all-solution process[J]. Advanced Energy Materials, 2019, 9(42): 1902065.
[77] CORZO D, BIHAR E, ALEXANDRE E B, et al. Ink engineering of transport layers for 9.5% efficient all-printed semitransparent nonfullerene solar cells[J]. Advanced Functional Materials, 2021, 31(7): 2005763.
[78] SUN L, GUO Z, ZHAO X, et al. A new low-temperature solder assembly technique to replace eutectic Sn-Bi solder assembly[J]. Micromachines, 2022, 13(6): 867.
[79] 关自强. 一种低温等离子体清洗机的研制[J]. 真空, 2014, 51(5): 25-31.
[80] CADEMARTIRI L, THUO M M, NIJHUIS C A, et al. Electrical resistance of AgTS–S (CH2)n−1CH3//Ga2O3/EGaIn tunneling junctions[J]. The Journal of Physical Chemistry C, 2012, 116(20): 10848-10860.
[81] FARRELL Z J, TABOR C. Control of gallium oxide growth on liquid metal eutectic gallium/indium nanoparticles via thiolation[J]. Langmuir, 2018, 34(1): 234-240.
[82] TOSTMANN H, DIMASI E, PERSHAN P S, et al. Surface structure of liquid metals and the effect of capillary waves: X-ray studies on liquid indium[J]. Physical Review B, 1999, 59(2): 783.
[83] LIU T, SUN L, DONG X, et al. Low-work-function PEDOT formula as a stable interlayer and cathode for organic solar cells[J]. Advanced Functional Materials, 2021, 31(51): 2107250.
[84] ASTM G173-03(2020), Standard tables for reference solar spectral irradiances: direct normal and hemispherical on 37° tilted surface[S],
[85] ENLITECH, Solar simulator- basic knowledge and working principles[EB/OL], (2023-01-10)
[2023-03-10], https://enlitechnology.com/zh-hant/blog-zh-hant/pv-zh-hant/ss-x-solar-simulatior-zh-hant/solar-simulator-01/
[86] 胥开芳, 张登高. 基于空间电荷限制对有机材料空穴迁移率的测定[J]. 机电工程技术, 2014(9): 44-48.
[87] REID O G, MUNECHIKA K, GINGER D S. Space charge limited current measurements on conjugated polymer films using conductive atomic force microscopy[J]. Nano Letters, 2008, 8(6): 1602-1609.
[88] L. LANDAU, B L. Dragging of a liquid by a moving plate[J]. Dynamics of Curved Fronts, 1988: 141-153.
[89] HUANG F, LI Z, SONG G, et al. Atomic optimization on pyran‐fused nonfullerene acceptor enables organic solar cells with an efficiency approaching 16% and reduced energy loss[J]. Advanced Functional Materials, 2023, 33(4): 2211140.

所在学位评定分委会
力学
国内图书分类号
TN03
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/544623
专题工学院_力学与航空航天工程系
推荐引用方式
GB/T 7714
刘霖娜. 基于刮涂合金顶电极的全印刷有机光伏电池[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032907-刘霖娜-力学与航空航天(7108KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[刘霖娜]的文章
百度学术
百度学术中相似的文章
[刘霖娜]的文章
必应学术
必应学术中相似的文章
[刘霖娜]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。