[1] IEA(2021), Global energy review 2021[EB/OL], (2021-04)
[2023-03-10], Paris https://www.iea.org/reports/global-energy-review-2021
[2] IEA(2023), Energy technology perspectives 2023[EB/OL], (2023-01)
[2023-03-10], Paris https://www.iea.org/reports/energy-technology-perspectives-2023
[3] SALINAS J-F, MALDONADO J-L, RAMOS-ORTíZ G, et al. On the use of Woods' metal for fabricating and testing polymeric organic solar cells: An easy and fast method[J]. Solar Energy Materials and Solar Cells, 2011, 95(2): 595-601.
[4] TANG C W. Two-layer organic photovoltaic cell[J]. Applied Physics Letters, 1986, 48(2): 183-185.
[5] WEI Y, CHEN Z, LU G, et al. Binary organic solar cells breaking 19% via manipulating the vertical component distribution[J]. Advanced Materials, 2022, 34(33): 2204718.
[6] ZHU L, ZHANG M, XU J, et al. Single-junction organic solar cells with over 19% efficiency enabled by a refined double-fibril network morphology[J]. Nature Materials, 2022, 21(6): 656-663.
[7] WANG Y, WANG F, GAO J, et al. Organic photovoltaics with 300 nm thick ternary active layers exhibiting 15.6% efficiency[J]. Journal of Materials Chemistry C, 2021, 9(31): 9892-9898.
[8] PERKHUN P, KöNTGES W, POURCIN F, et al. High-efficiency digital inkjet-printed non-fullerene polymer blends using non-halogenatedsolvents[J]. Advanced Energy and Sustainability Research, 2021, 2(4): 2000086.
[9] ZHENG X, ZUO L, ZHAO F, et al. High-efficiency ITO-free organic photovoltaics with superior flexibility and upscalability[J]. Advanced Materials, 2022, 34(17): 2200044.
[10] CUI Y, YAO H, ZHANG T, et al. 1 cm2 organic photovoltaic cells for indoor application with over 20% efficiency[J]. Advanced Materials, 2019, 31(42): 1904512.
[11] NORRMAN K, GHANBARI-SIAHKALI A, LARSEN N. 6 Studies of spin-coated polymer films[J]. Annual Reports Section" C"(Physical Chemistry), 2005, 101: 174-201.
[12] WANG Q, XIE Y, SOLTANI-KORDSHULI F, et al. Progress in emerging solution-processed thin film solar cells - Part I: Polymer solar cells[J]. Renewable and Sustainable Energy Reviews, 2016, 56: 347-361.
[13] 黄维, 密保秀, 高志强. 有机电子学[M]. 科学出版社, 2011.
[14] KEPLER R. Charge carrier production and mobility in anthracene crystals[J]. Physical Review, 1960, 119(4): 1226.
[15] YU G, GAO J, HUMMELEN J C, et al. Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions[J]. Science, 1995, 270(5243): 1789-1791.
[16] GOMEZ E D, LOO Y-L. Engineering the organic semiconductor-electrode interface in polymer solar cells[J]. Journal of Materials Chemistry, 2010, 20(32): 6604-6611.
[17] PARK J H, LEE T W, CHIN B D, et al. Roles of interlayers in efficient organic photovoltaic devices[J]. Macromolecular rapid communications, 2010, 31(24): 2095-2108.
[18] CHENG Y-J, YANG S-H, HSU C-S. Synthesis of conjugated polymers for organic solar cell applications[J]. Chemical reviews, 2009, 109(11): 5868-5923.
[19] LIANG Y, YU L. A new class of semiconducting polymers for bulk heterojunction solar cells with exceptionally high performance[J]. Accounts of chemical research, 2010, 43(9): 1227-1236.
[20] JIANG J, PI J, CAI J. The advancing of zinc oxide nanoparticles for biomedical applications[J]. Bioinorganic chemistry and applications, 2018, 2018: 1062562.
[21] JHUO H-J, SHARMA S, CHEN H-L, et al. A nonvolatile morphology regulator for enhancing the molecular order in the active layer and power conversion efficiency of polymer solar cells[J]. Journal of Materials Chemistry A, 2018, 6(19): 8874-8879.
[22] AMERI T, LI N, BRABEC C J. Highly efficient organic tandem solar cells: a follow up review[J]. Energy & Environmental Science, 2013, 6(8): 2390-2413.
[23] NREL, Best research-cell efficiency chart[EB/OL], (2023-01-12)
[2023-03-10]. https://www.nrel.gov/pv/cell-efficiency.html
[24] LI Y, XU G, CUI C, et al. Flexible and semitransparent organic solar cells[J]. Advanced Energy Materials, 2018, 8(7): 1701791.
[25] HECHT D S, HU L, IRVIN G. Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures[J]. Advanced Materials, 2011, 23(13): 1482-1513.
[26] WEI W, DONG X, ZHOU X, et al. Optimizing conducting polymer top electrodes for nonfullerene organic solar cells[J]. Advanced Materials Interfaces, 2022, 9(30): 2201427.
[27] KANG M H, CHEON T, KIM H. Fully vacuum-free large-area organic solar cell fabrication from polymer top electrode[J]. Solid-State Electronics, 2021, 186: 8192.
[28] PARK H, LEE J H, LEE S, et al. Retarding ion exchange between conducting polymers and ionic liquids for printable top electrodes in semitransparent organic solar cells[J]. ACS Appl Mater Interfaces, 2020, 12(2): 2276-2284.
[29] FAN X, WEN R, XIA Y, et al. Vacuum-free, all-solution, and all-air processed organic photovoltaics with over 11% efficiency and promoted stability using layer-by-layer codoped polymeric electrodes[J]. Solar RRL, 2020, 4(6): 1900543.
[30] WANG Y, JIA B, QIN F, et al. Semitransparent, non-fullerene and flexible all-plastic solar cells[J]. Polymer, 2016, 107: 108-112.
[31] OOKUBO T T T, AWANO H. Magnetic processing of polymer composite films including vapor-grown carbon fibers[J]. TANSO, 2006, 2006(223): 169-175.
[32] JEON I, DELACOU C, KASKELA A, et al. Metal-electrode-free window-like organic solar cells with p-doped carbon nanotube thin-film electrodes[J]. Scientific Reports, 2016, 6(1): 1-9.
[33] ZHANG Y, HE X, BABU D, et al. Efficient semi-transparent organic solar cells with high color rendering index enabled by self-assembled and knitted AgNPs/MWCNTs transparent top electrode via solution process[J]. Advanced Optical Materials, 2021, 9(8): 2002108.
[34] BI Y G, LIU Y F, ZHANG X L, et al. Ultrathin metal films as the transparent electrode in ITO-free organic optoelectronic devices[J]. Advanced Optical Materials, 2019, 7(6): 1800778.
[35] SHIN D, CHOI S-H. Recent studies of semitransparent solar cells[J]. Coatings, 2018, 8(10): 329-358.
[36] LIU Z, LAU S P, YAN F. Functionalized graphene and other two-dimensional materials for photovoltaic devices: device design and processing[J]. Chemical Society Reviews, 2015, 44(15): 5638-5679.
[37] TAI Q, YAN F. Emerging semitransparent solar cells: materials and device design[J]. Advanced Materials, 2017, 29(34): 1700192.
[38] LIU Z, YOU P, LIU S, et al. Neutral-color semitransparent organic solar cells with all-graphene electrodes[J]. ACS Nano, 2015, 9(12): 12026-12034.
[39] HU L, WU H, CUI Y. Metal nanogrids, nanowires, and nanofibers for transparent electrodes[J]. MRS Bulletin, 2011, 36(10): 760-765.
[40] SINGH M, RANA T R, KIM S, et al. Silver nanowires binding with sputtered ZnO to fabricate highly conductive and thermally stable transparent electrode for solar cell applications[J]. ACS Appl Mater Interfaces, 2016, 8(20): 12764-12771.
[41] JIANG Y, DONG X, SUN L, et al. An alcohol-dispersed conducting polymer complex for fully printable organic solar cells with improved stability[J]. Nature Energy, 2022, 7(4): 352-359.
[42] XIE C, LIU Y, WEI W, et al. Large-area flexible organic solar cells with a robust silver nanowire-polymer composite as transparent top electrode[J]. Advanced Functional Materials, 2023, 33(1): 2210675.
[43] HE X, WANG Y, ZHANG L, et al. Evaporation-free organic solar cells with high efficiency enabled by dry and nonimmersive sintering strategy[J]. Advanced Functional Materials, 2021, 31(19): 2010764.
[44] KREBS F C, GEVORGYAN S A, ALSTRUP J. A roll-to-roll process to flexible polymer solar cells: model studies, manufacture and operational stability studies[J]. Journal of Materials Chemistry, 2009, 19(30): 5442-5451.
[45] BERNARDO G, LOPES T, LIDZEY D G, et al. Progress in upscaling organic photovoltaic devices[J]. Advanced Energy Materials, 2021, 11(23): 2100342.
[46] IM H G, JIN J, KO J H, et al. Flexible transparent conducting composite films using a monolithically embedded AgNW electrode with robust performance stability[J]. Nanoscale, 2014, 6(2): 711-715.
[47] KUMAR R, KUMAR J, BAG M. Fusible low work function top electrode for vacuum-free perovskite light-emitting diode application: Role of OH-terminated Sn atoms at the alloy surface[J]. ACS Applied Electronic Materials, 2021, 3(6): 2757-2765.
[48] XIA F, CHEN S. Laminated low-melting-point-alloy electrodes for vacuum-free-processed quantum-dot light-emitting-diodes[J]. Applied Physics Letters, 2020, 117(6): 063302.
[49] JIANG Y, SU S, PENG H, et al. Selective wetting/dewetting for controllable patterning of liquid metal electrodes for all-printed device application[J]. Journal of Materials Chemistry C, 2017, 5(47): 12378-12383.
[50] ROMERO-BORJA D, MALDONADO J-L, BARBOSA-GARCíA O, et al. Polymer solar cells based on P3HT:PC71BM doped at different concentrations of isocyanate-treated graphene[J]. Synthetic Metals, 2015, 200: 91-98.
[51] ROMERO-BORJA D, MALDONADO J-L, BARBOSA-GARCíA O, et al. Organic solar cells based on graphene derivatives and eutectic alloys vacuum-free deposited as top electrodes[J]. Carbon, 2018, 134: 301-309.
[52] PEREZ-GUTIERREZ E, BARREIRO-ARGUELLES D, MALDONADO J L, et al. Semiconductor polymer/top electrode interface generated by two deposition methods and it's influence on organic solar cell performance[J]. ACS Applied Materials & Interfaces, 2016, 8(42): 28763-28770.
[53] SALTO C, SALINAS J-F, MALDONADO J-L, et al. Performance of OPVs cells with the eutectic alloy Wood's metal used as cathode and P3HT:PC61BM blend as active layer[J]. Synthetic Metals, 2011, 161(21-22): 2412-2416.
[54] BARREIRO-ARGUELLES D, RAMOS-ORTIZ G, MALDONADO J-L, et al. PTB7:PC71BM-based solar cells fabricated with the eutectic alloy Field's metal as an alternative cathode and the influence of an electron extraction layer[J]. IEEE Journal of Photovoltaics, 2017, 7(1): 191-198.
[55] ONGUL F, YUKSEL S A, BOZAR S, et al. Vacuum-free processed bulk heterojunction solar cells with E-GaIn cathode as an alternative to Al electrode[J]. Journal of Physics D: Applied Physics, 2015, 48(17): 175102.
[56] NOH J, KIM G-U, HAN S, et al. Intrinsically stretchable organic solar cells with efficiencies of over 11%[J]. ACS Energy Letters, 2021, 6(7): 2512-2518.
[57] KUMAR P. Organic solar cells: device physics, processing, degradation, and prevention[M]. CRC press, 2016.
[58] ZHAO X, DENG W. Printing photovoltaics by electrospray[J]. Opto-Electronic Advances, 2020, 3(6): 190038-190038.
[59] CHEN X, HUANG R, HAN Y, et al. Balancing the molecular aggregation and vertical phase separation in the polymer: nonfullerene blend films enables 13.09% efficiency of organic solar cells with inkjet‐printed active Layer[J]. Advanced Energy Materials, 2022, 12(12): 2200044.
[60] KREBS F C. Fabrication and processing of polymer solar cells: A review of printing and coating techniques[J]. Solar Energy Materials and Solar Cells, 2009, 93(4): 394-412.
[61] BURGUéS-CEBALLOS I, STELLA M, LACHARMOISE P, et al. Towards industrialization of polymer solar cells: material processing for upscaling[J]. Journal of Materials Chemistry A, 2014, 2(42): 17711-17722.
[62] YANG P, ZHAI T, YU B, et al. Toward all aerosol printing of high-efficiency organic solar cells using environmentally friendly solvents in ambient air[J]. Journal of Materials Chemistry A, 2021, 9(32): 17198-17210.
[63] CHANG K, LI Y, XIA H, et al. Organic photovoltaics printed via sheet electrospray enabled by quadrupole electrodes[J]. ACS Applied Materials & Interfaces, 2021, 13(47): 56375-56384.
[64] LI Y, CHANG K, CHANG J, et al. Printed kirigami organic photovoltaics for efficient solar tracking[J]. Advanced Functional Materials, 2022, 32(34): 2204004.
[65] STEIRER K X, REESE M O, RUPERT B L, et al. Ultrasonic spray deposition for production of organic solar cells[J]. Solar Energy Materials and Solar Cells, 2009, 93(4): 447-453.
[66] LEWIS J E, LAFALCE E, TOGLIA P, et al. Over 30% transparency large area inverted organic solar array by spray[J]. Solar Energy Materials and Solar Cells, 2011, 95(10): 2816-2822.
[67] SHEN Y F, ZHANG H, ZHANG J, et al. In-situ absorption characterization guided slot-die-coated high-performance large-area flexible organic solar cells and modules[J]. Advanced Materials, 2022: 2209030.
[68] ZHAO H, LIN B, XUE J, et al. Kinetics manipulation enables high-performance thick ternary organic solar cells via R2R-compatible slot-die coating[J]. Advanced Materials, 2022, 34(7): 2105114.
[69] DU G, WANG Z, ZHAI T, et al. Flow-enhanced flexible microcomb printing of organic solar cells[J]. ACS Applied Materials & Interfaces, 2022, 14(11): 13572-13583.
[70] DIAO Y, ZHOU Y, KUROSAWA T, et al. Flow-enhanced solution printing of all-polymer solar cells[J]. Nature communications, 2015, 6(1): 7955.
[71] ZHANG Y, LIU K, HUANG J, et al. Graded bulk-heterojunction enables 17% binary organic solar cells via nonhalogenated open air coating[J]. Nature communications, 2021, 12(1): 4815.
[72] GUO F, KUBIS P, PRZYBILLA T, et al. Nanowire interconnects for printed large-area semitransparent organic photovoltaic modules[J]. Advanced Energy Materials, 2015, 5(12): 1401779.
[73] STROHM S, MACHUI F, LANGNER S, et al. P3HT: non-fullerene acceptor based large area, semi-transparent PV modules with power conversion efficiencies of 5%, processed by industrially scalable methods[J]. Energy & Environmental Science, 2018, 11(8): 2225-2234.
[74] CHATURVEDI N, GASPARINI N, CORZO D, et al. All slot-die coated non-fullerene organic solar cells with PCE 11%[J]. Advanced Functional Materials, 2021, 31(14): 2009996.
[75] LA NOTTE L, CATALDI P, CESERACCIU L, et al. Fully-sprayed flexible polymer solar cells with a cellulose-graphene electrode[J]. Materials Today Energy, 2018, 7: 105-112.
[76] HAN Y W, JEON S J, LEE H S, et al. Evaporation-free nonfullerene flexible organic solar cell modules manufactured by an all-solution process[J]. Advanced Energy Materials, 2019, 9(42): 1902065.
[77] CORZO D, BIHAR E, ALEXANDRE E B, et al. Ink engineering of transport layers for 9.5% efficient all-printed semitransparent nonfullerene solar cells[J]. Advanced Functional Materials, 2021, 31(7): 2005763.
[78] SUN L, GUO Z, ZHAO X, et al. A new low-temperature solder assembly technique to replace eutectic Sn-Bi solder assembly[J]. Micromachines, 2022, 13(6): 867.
[79] 关自强. 一种低温等离子体清洗机的研制[J]. 真空, 2014, 51(5): 25-31.
[80] CADEMARTIRI L, THUO M M, NIJHUIS C A, et al. Electrical resistance of AgTS–S (CH2)n−1CH3//Ga2O3/EGaIn tunneling junctions[J]. The Journal of Physical Chemistry C, 2012, 116(20): 10848-10860.
[81] FARRELL Z J, TABOR C. Control of gallium oxide growth on liquid metal eutectic gallium/indium nanoparticles via thiolation[J]. Langmuir, 2018, 34(1): 234-240.
[82] TOSTMANN H, DIMASI E, PERSHAN P S, et al. Surface structure of liquid metals and the effect of capillary waves: X-ray studies on liquid indium[J]. Physical Review B, 1999, 59(2): 783.
[83] LIU T, SUN L, DONG X, et al. Low-work-function PEDOT formula as a stable interlayer and cathode for organic solar cells[J]. Advanced Functional Materials, 2021, 31(51): 2107250.
[84] ASTM G173-03(2020), Standard tables for reference solar spectral irradiances: direct normal and hemispherical on 37° tilted surface[S],
[85] ENLITECH, Solar simulator- basic knowledge and working principles[EB/OL], (2023-01-10)
[2023-03-10], https://enlitechnology.com/zh-hant/blog-zh-hant/pv-zh-hant/ss-x-solar-simulatior-zh-hant/solar-simulator-01/
[86] 胥开芳, 张登高. 基于空间电荷限制对有机材料空穴迁移率的测定[J]. 机电工程技术, 2014(9): 44-48.
[87] REID O G, MUNECHIKA K, GINGER D S. Space charge limited current measurements on conjugated polymer films using conductive atomic force microscopy[J]. Nano Letters, 2008, 8(6): 1602-1609.
[88] L. LANDAU, B L. Dragging of a liquid by a moving plate[J]. Dynamics of Curved Fronts, 1988: 141-153.
[89] HUANG F, LI Z, SONG G, et al. Atomic optimization on pyran‐fused nonfullerene acceptor enables organic solar cells with an efficiency approaching 16% and reduced energy loss[J]. Advanced Functional Materials, 2023, 33(4): 2211140.
修改评论