中文版 | English
题名

全无机钙钛矿材料的激光诱导二次结晶及光学特性研究

其他题名
INVESTIGATION OF THE LASER-INDUCED SECONDARY CRYSTALLIZATION AND OPTICAL PROPERTIES OF ALL INORGANIC PEROVSKITE MATERIALS
姓名
姓名拼音
SHI Yueqing
学号
12032790
学位类型
硕士
学位专业
080901 物理电子学
学科门类/专业学位类别
08 工学
导师
陈锐
导师单位
电子与电气工程系
论文答辩日期
2023-05-12
论文提交日期
2023-06-29
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

全无机钙钛矿是一类新兴的半导体材料,拥有优异的光电性能,在太阳能电池等光电器件领域受到了广泛的关注。由于具有较高的光学增益系数,钙钛矿材料被认为具有实现光泵和电泵激光器的潜力。然而,目前对钙钛矿材料非线性光学性质的研究相对较少,甚至对其基本光物理过程的理解也相对欠缺。开展对钙钛矿材料光学特性的研究,不仅可以加深对材料自身性质的理解,也有利于制备出性能更好的材料和器件。与此同时,由于离子晶体的本质属性,钙钛矿材料暴露于自然环境中会发生降解,导致性能严重降低。因此,稳定性的提升是目前钙钛矿应用中急需解决的问题之一。本文提出了一种基于激光辐照的全无机钙钛矿薄膜处理方法,探讨了材料由于激光诱导发生的二次结晶现象。研究发现,钙钛矿薄膜的光学增益性质和稳定性在激光处理后得到大幅提高。本论文的具体研究内容如下:

以全无机铯铅溴(CsPbBr3)钙钛矿纳米晶体薄膜为研究对象,在激光持续辐照下,诱导薄膜发生了二次结晶现象。伴随着薄膜中晶粒尺寸的增大,薄膜的晶体质量和致密度得到较大改善。激光处理之后的样品不仅光学增益得到较大的提升,而且具有较好的热稳定性和发光稳定性。室温下观察到了放大自发辐射(ASE),阈值只有5.6 µJ/cm2,增益系数高达743 cm-1。此外,薄膜表现出良好的热稳定性,特征温度为134 K。同时样品的ASE强度受激光连续激发35小时仍没有下降,具有较好的发光稳定性。通过对薄膜的载流子动力学比较分析,发现激光处理后薄膜的缺陷密度降低,俄歇复合过程减少,同时激子-声子相互作用减弱,使得非辐射复合被大幅抑制,其光增益主要由激子-激子非弹性散射引起

研究表明,激光诱导二次结晶策略是一种有效的全无机钙钛矿薄膜后处理方法,能够减少非辐射复合中心,产生稳定和低阈值的光学增益介质薄膜。通过改变激光光束性质,可以实现任意形状的图形编码及大尺寸的钙钛矿薄膜制备,具有重要的应用前景。

其他摘要

All-inorganic perovskite is a new type of semiconductor material with excellent photoelectric properties that has attracted wide attention in the field of photovoltaic devices such as solar cells. Moreover, perovskite materials are considered to have the potential to realize optically and electrically pumped lasers due to their high optical gain coefficient. However, there are relatively few studies on the nonlinear optical properties of perovskite materials, and even an understanding of their basic photophysical processes is still lacking. Investigation of the optical property of perovskite materials can not only deepen the understanding of the material but also benefit the fabrication of advanced materials and devices. Meanwhile, due to the intrinsic properties of ionic crystals, perovskites will degrade when exposed to the natural environment, resulting in serious degradation of performance. Therefore, the improvement of stability is one of the urgent issues in perovskite applications at present. In this thesis, a treatment of all-inorganic perovskite film based on laser irradiation is proposed, and the laser-induced secondary crystallization phenomenon is discussed. It is found that the optical gain properties and stability of perovskite thin films are greatly improved after laser treatment. The research contents of this thesis are as follows:

All-inorganic cesium lead bromide (CsPbBr3) perovskite nanocrystal thin films are irradiated by continuous laser and laser-induced secondary crystallization has been observed. It is found that with the increase of the grain size, the crystal quality and density of the film have been greatly improved. The laser-treated sample not only has improved optical gain property but also has better thermal and optical stabilities. At room temperature, the laser-treated film demonstrates amplified spontaneous emission (ASE) with low threshold (5.6 µJ/cm2) and high optical gain coefficient (743 cm-1). Meanwhile, the film shows good thermal stability with a characteristic temperature of 134 K. At the same time, the ASE intensity of the sample maintains identical after 35 hours of laser excitation, which demonstrates good ASE stability. Through comparative analysis of the carrier dynamics of the films, it is found that the laser-treated film has a lower defect density, reduced Auger recombination process, and weakened exciton-phonon interaction, so that the non-radiative recombination is greatly suppressed. Further exploration revealed that the main mechanism of the improved optical gain is due to the strong inelastic scattering between excitons.

The results show that the laser-induced secondary crystallization strategy is an effective post-processing method for all-inorganic perovskite films, which can reduce the non-radiative recombination centers and produce stable optical gain films with low threshold. By changing the laser beam, arbitrary shape graphics coding and large-scale perovskite films can be realized, which shows an important application prospect.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2023-06
参考文献列表

[1] LEI L, DONG Q, GUNDOGDU K, et al. Metal halide perovskites for laser applications[J]. Advanced Functional Materials, 2021, 31: 2010144.
[2] PROTESESCU L, YAKUNIN S, BODNARCHUK M I, et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut[J]. Nano Letters, 2015, 15: 3692-3696.
[3] PATHAK S, SAKAI N, WISNIVESKY ROCCA RIVAROLA F, et al. Perovskite crystals for tunable white light emission[J]. Chemistry of Materials, 2015, 27: 8066-8075.
[4] RAVI V K, MARKAD G B, NAG A. Band edge energies and excitonic transition probabilities of colloidal CsPbX3 (X = Cl, Br, I) Perovskite Nanocrystals[J]. ACS Energy Letters, 2016, 1: 665-671.
[5] BARANOWSKI M, PLOCHOCKA P. Excitons in metal-halide perovskites[J]. Advanced Energy Materials, 2020, 10: 1903659.
[6] ZHAO F, REN A, LI P, et al. Toward continuous-wave pumped metal halide perovskite lasers: strategies and challenges[J]. ACS Nano, 2021, 16: 7116-7143.
[7] KANG J, WANG L W. High defect tolerance in lead halide perovskite CsPbBr3[J]. Journal of Physical Chemistry Letters, 2017, 8: 489-493.
[8] BRANDT R E, STEVANOVIĆ V, GINLEY D S, et al. Identifying defect-tolerant semiconductors with high minority-carrier lifetimes: beyond hybrid lead halide perovskites[J]. MRS Communications, 2015, 5: 265-275.
[9] YIN W J, SHI T, YAN Y. Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber[J]. Applied Physics Letters, 2014, 104: 063903.
[10] LU H, KRISHNA A, ZAKEERUDDIN S M, et al. Compositional and interface engineering of organic-inorganic lead halide perovskite solar cells[J]. iScience, 2020, 23: 101359.
[11] BARKER A J, SADHANALA A, DESCHLER F, et al. Defect-assisted photoinduced halide segregation in mixed-halide perovskite thin films[J]. ACS Energy Letters, 2017, 2: 1416-1424.
[12] HOKE E T, SLOTCAVAGE D J, DOHNER E R, et al. Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics[J]. Chemical Science, 2014, 6: 613-617.
[13] ARISTIDOU N, EAMES C, SANCHEZ-MOLINA I, et al. Fast oxygen diffusion and iodide defects mediate oxygen-induced degradation of perovskite solar cells[J]. Nature Communications, 2017, 8: 1-10.
[14] YUAN Y, HUANG J. Ion migration in organometal trihalide perovskite and its impact on photovoltaic efficiency and stability[J]. Accounts of Chemical Research, 2016, 49: 286-293.
[15] PELLET N, TEUSCHER J, MAIER J, et al. Transforming hybrid organic inorganic perovskites by rapid halide exchange[J]. Chemistry of Materials, 2015, 27: 2181-2188.
[16] BI E, SONG Z, LI C, et al. Mitigating ion migration in perovskite solar cells[J]. Trends in Chemistry, 2021, 3: 575-588.
[17] LI N, JIA Y, GUO Y, et al. Ion migration in perovskite light-emitting diodes: mechanism, characterizations, and material and device engineering[J]. Advanced Materials, 2022, 34: 2108102.
[18] DEQUILETTES D W, ZHANG W, BURLAKOV V M, et al. Photo-induced halide redistribution in organic-inorganic perovskite films[J]. Nature Communications, 2016, 7: 1-9.
[19] NEDELCU G, PROTESESCU L, YAKUNIN S, et al. Fast anion-exchange in highly luminescent nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I)[J]. Nano Letters, 2015, 15: 5635-5640.
[20] Best Research-Cell Efficiency Chart[EB/OL]. National Renewable Energy Laboratory,
[2023-02-17]. https://www.nrel.gov/pv/cell-efficiency.html.
[21] SO F, KONDAKOV D, SO F, et al. Degradation mechanisms in small-molecule and polymer organic light-emitting diodes[J]. Advanced Materials, 2010, 22: 3762-3777.
[22] WANG H, ZHANG X, WU Q, et al. Trifluoroacetate induced small-grained CsPbBr3 perovskite films result in efficient and stable light-emitting devices[J]. Nature Communications, 2019, 10: 1-10.
[23] ZHANG L, YUAN F, XI J, et al. Suppressing ion migration enables stable perovskite light-emitting diodes with all-inorganic strategy[J]. Advanced Functional Materials, 2020, 30: 2001834.
[24] LIU M, WAN Q, WANG H, et al. Suppression of temperature quenching in perovskite nanocrystals for efficient and thermally stable light-emitting diodes[J]. Nature Photonics, 2021, 15: 379-385.
[25] KIM H S, PARK N G. Importance of tailoring lattice strain in halide perovskite crystals[J]. NPG Asia Materials, 2020, 12: 1-14.
[26] TAN Z K, MOGHADDAM R S, LAI M L, et al. Bright light-emitting diodes based on organometal halide perovskite[J]. Nature Nanotechnology, 2014, 9: 687-692.
[27] CHO H, JEONG S H, PARK M H, et al. Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes[J]. Science, 2015, 350: 1222-1225.
[28] WANG N, CHENG L, GE R, et al. Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells[J]. Nature Photonics, 2016, 10: 699-704.
[29] ZHANG L, YANG X, JIANG Q, et al. Ultra-bright and highly efficient inorganic based perovskite light-emitting diodes[J]. Nature Communications, 2017, 8: 1-8.
[30] WANG Q, REN J, PENG X F, et al. Efficient sky-blue perovskite light-emitting devices based on ethylammonium bromide induced layered perovskites[J]. ACS Applied Materials and Interfaces, 2017, 9: 29901-29906.
[31] ZHAO B, BAI S, KIM V, et al. High-efficiency perovskite–polymer bulk heterostructure light-emitting diodes[J]. Nature Photonics, 2018, 12: 783-789.
[32] CAO Y, WANG N, TIAN H, et al. Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures[J]. Nature, 2018, 562: 249-253.
[33] WANG Y, ZOU R, CHANG J, et al. Tin-based multiple quantum well perovskites for light-emitting diodes with improved stability[J]. Journal of Physical Chemistry Letters, 2019, 10: 453-459.
[34] ZHAO X, TAN Z K. Large-area near-infrared perovskite light-emitting diodes[J]. Nature Photonics, 2020, 14: 215-218.
[35] KIM Y H, KIM S, KAKEKHANI A, et al. Comprehensive defect suppression in perovskite nanocrystals for high-efficiency light-emitting diodes[J]. Nature Photonics, 2021, 15: 148-155.
[36] ZHU Z, WU Y, SHEN Y, et al. Highly efficient sky-blue perovskite light-emitting diode via suppressing nonradiative energy loss[J]. Chemistry of Materials, 2021, 33: 4154-4162.
[37] DESCHLER F, PRICE M, PATHAK S, et al. High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors[J]. Journal of Physical Chemistry Letters, 2014, 5: 1421-1426.
[38] CHEN S, ROH K, LEE J, et al. A photonic crystal laser from solution based organo-lead iodide perovskite thin films[J]. ACS Nano, 2016, 10: 3959-3967.
[39] ZHANG Q, HA S T, LIU X, et al. Room-temperature near-infrared high-Q perovskite whispering-gallery planar nanolasers[J]. Nano Letters, 2014, 14: 5995-6001.
[40] WU Z, CHEN J, MI Y, et al. All-inorganic CsPbBr3 nanowire based plasmonic lasers[J]. Advanced Optical Materials, 2018, 6: 1800674.
[41] TIGUNTSEVA E, KOSHELEV K, FURASOVA A, et al. Room-temperature lasing from mie-resonant nonplasmonic nanoparticles[J]. ACS Nano, 2020, 14: 8149-8156.
[42] SU R, GHOSH S, WANG J, et al. Observation of exciton polariton condensation in a perovskite lattice at room temperature[J]. Nature Physics, 2020, 16: 301-306.
[43] SU R, DIEDERICHS C, WANG J, et al. Room-temperature polariton lasing in all-inorganic perovskite nanoplatelets[J]. Nano Letters, 2017, 17: 3982-3988.
[44] HUANG C, ZHANG C, XIAO S, et al. Ultrafast control of vortex microlasers[J]. Science, 2020, 367: 1018-1021.
[45] ZHANG Q, SHANG Q, SU R, et al. Halide perovskite semiconductor lasers: materials, cavity design, and low threshold[J]. Nano Letters, 2021, 21: 1903-1914.
[46] YIN W J, SHI T, YAN Y. Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber[J]. Applied Physics Letters, 2014, 104: 063903.
[47] JI D, FENG S Z, WANG L, et al. Regulatory tolerance and octahedral factors by using vacancy in APbI3 perovskites[J]. Vacuum, 2019, 164: 186-193.
[48] SYZGANTSEVA O A, SALIBA M, GRÄTZEL M, et al. Stabilization of the perovskite phase of formamidinium lead triiodide by methylammonium, Cs, and/or Rb doping[J]. Journal of Physical Chemistry Letters, 2017, 8: 1191-1196.
[49] NOH J H, IM S H, HEO J H, et al. Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells[J]. Nano Letters, 2013, 13: 1764-1769.
[50] JUAREZ-PEREZ E J, HAWASH Z, RAGA S R, et al. Thermal degradation of CH3NH3PbI3 perovskite into NH3 and CH3I gases observed by coupled thermogravimetry-mass spectrometry analysis[J]. Energy & Environmental Science, 2016, 9: 3406-3410.
[51] CONINGS B, DRIJKONINGEN J, GAUQUELIN N, et al. Intrinsic thermal instability of methylammonium lead trihalide perovskite[J]. Advanced Energy Materials, 2015, 5: 1500477.
[52] WANG M, VASUDEVAN V, LIN S, et al. Molecular mechanisms of thermal instability in hybrid perovskite light absorbers for photovoltaic solar cells[J]. Journal of Materials Chemistry A, 2020, 8: 17765-17779.
[53] FAN Z, XIAO H, WANG Y, et al. Layer-by-layer degradation of methylammonium lead tri-iodide perovskite microplates[J]. Joule, 2017, 1: 548-562.
[54] LI R, LI B, FANG X, et al. Self-structural healing of encapsulated perovskite microcrystals for improved optical and thermal stability[J]. Advanced Materials, 2021, 33: 2100466.
[55] YUN J S, KIM J, YOUNG T, et al. Humidity-induced degradation via grain boundaries of HC(NH2)2PbI3 planar perovskite solar cells[J]. Advanced Functional Materials, 2018, 28: 1705363.
[56] CHRISTIANS J A, MIRANDA HERRERA P A, KAMAT P. Transformation of the excited state and photovoltaic efficiency of CH3NH3PbI3 perovskite upon controlled exposure to humidified air[J]. Journal of the American Chemical Society, 2015, 137: 1530-1538.
[57] XING J, WANG Q, DONG Q, et al. Ultrafast ion migration in hybrid perovskite polycrystalline thin films under light and suppression in single crystals[J]. Physical Chemistry Chemical Physics, 2016, 18: 30484-30490.
[58] LAFALCE E, ZHANG C, ZHAI Y, et al. Enhanced emissive and lasing characteristics of nano-crystalline MAPbBr3 films grown via anti-solvent precipitation[J]. Journal of Applied Physics, 2016, 120: 143101.
[59] LUISA DE GIORGI M, PERULLI A, YANTARA N, et al. Amplified spontaneous emission properties of solution processed CsPbBr3 perovskite thin films[J]. Journal of Physical Chemistry C, 2017, 121: 14772-14778.
[60] LI J, SI J, GAN L, et al. Simple approach to improving the amplified spontaneous emission properties of perovskite films[J]. ACS Applied Materials and Interfaces, 2016, 8: 32978-32983.
[61] BAI Y, QIN J, SHI L, et al. Amplified spontaneous emission realized by cogrowing large/small grains with self-passivating defects and aligning transition dipoles[J]. Advanced Optical Materials, 2019, 7: 1900345.
[62] XIONG Q, HUANG S, DU J, et al. Surface ligand engineering for CsPbBr3 quantum dots aiming at aggregation suppression and amplified spontaneous emission improvement[J]. Advanced Optical Materials, 2020, 8: 2000977.
[63] LI Y, LUO X, DING T, et al. Size- and halide-dependent auger recombination in lead halide perovskite nanocrystals[J]. Angewandte Chemie International Edition, 2020, 132: 14398-14401.
[64] MIYATA K, MEGGIOLARO D, TUAN TRINH M, et al. Large polarons in lead halide perovskites[J]. Science Advances, 2017, 3: 1701217.
[65] ZHU X Y, PODZOROV V. Charge carriers in hybrid organic-inorganic lead halide perovskites might be protected as large polarons[J]. Journal of Physical Chemistry Letters, 2015, 6: 4758-4761.
[66] GHOSH D, WELCH E, NEUKIRCH A J, et al. Polarons in halide perovskites: A perspective[J]. Journal of Physical Chemistry Letters, 2020, 11: 3271-3286.
[67] NIE W, BLANCON J C, NEUKIRCH A J, et al. Light-activated photocurrent degradation and self-healing in perovskite solar cells[J]. Nature Communications, 2016, 7: 1-9.
[68] ACHERMANN M, BARTKO A P, HOLLINGSWORTH J A, et al. The effect of Auger heating on intraband carrier relaxation in semiconductor quantum rods[J]. Nature Physics, 2006, 2: 557-561.
[69] IARU C M, BRODU A, VAN HOOF N J J, et al. Fröhlich interaction dominated by a single phonon mode in CsPbBr3[J]. Nature Communications, 2021, 12: 1-8.
[70] COHN A W, SCHIMPF A M, GUNTHARDT C E, et al. Size-dependent trap-assisted auger recombination in semiconductor nanocrystals[J]. Nano Letters, 2013, 13: 1810-1815.
[71] AGARWAL R, BARRELET C J, LIEBER C M. Lasing in single cadmium sulfide nanowire optical cavities[J]. Nano Letters, 2005, 5: 917-920.
[72] MATSUZAKI R, SOMA H, FUKUOKA K, et al. Purely excitonic lasing in ZnO microcrystals: Temperature-induced transition between exciton-exciton and exciton-electron scattering[J]. Physical Review B, 2017, 96: 125306.
[73] SCHLAUS A P, SPENCER M S, MIYATA K, et al. How lasing happens in CsPbBr3 perovskite nanowires[J]. Nature Communications, 2019, 10: 1-8.
[74] KONDO S, SUZUKI K, SAITO T, et al. Photoluminescence and stimulated emission from microcrystalline CsPbCl3 films prepared by amorphous-to-crystalline transformation[J]. Physical Review B, 2004, 70: 205322.
[75] KONDO S, SUZUKI K, SAITO T, et al. Confinement-enhanced stimulated emission in microcrystalline CsPbCl3 films grown from the amorphous phase[J]. Journal of Crystal Growth, 2005, 282: 94-104.
[76] KONDO S, OHSAWA H, SAITO T, et al. Room-temperature stimulated emission from microcrystalline CsPbCl3 films[J]. Applied Physics Letters, 2005, 87: 131912.
[77] KONDO S, TAKAHASHI K, NAKANISH T, et al. High intensity photoluminescence of microcrystalline CsPbBr3 films: Evidence for enhanced stimulated emission at room temperature[J]. Current Applied Physics, 2007, 7: 1-5.
[78] XING G, MATHEWS N, LIM S S, et al. Low-temperature solution-processed wavelength-tunable perovskites for lasing[J]. Nature Materials, 2014, 13: 476-480.
[79] YAKUNIN S, PROTESESCU L, KRIEG F, et al. Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites[J]. Nature Communications, 2015, 6: 1-9.
[80] WANG Y, LI X, SONG J, et al. All-inorganic colloidal perovskite quantum dots: a new class of lasing materials with favorable characteristics[J]. Advanced Materials, 2015, 27: 7101-7108.
[81] YAN D, SHI T, ZANG Z, et al. Ultrastable CsPbBr3 perovskite quantum dot and their enhanced amplified spontaneous emission by surface ligand modification[J]. Small, 2019, 15: 1901173.
[82] STRANKS S D, WOOD S M, WOJCIECHOWSKI K, et al. Enhanced amplified spontaneous emission in perovskites using a flexible cholesteric liquid crystal reflector[J]. Nano Letters, 2015, 15: 4935-4941.
[83] LI J, SI J, GAN L, et al. Simple approach to improving the amplified spontaneous emission properties of perovskite films[J]. ACS Applied Materials and Interfaces, 2016, 8: 32978-32983.
[84] QIN L, LV L, NING Y, et al. Enhanced amplified spontaneous emission from morphology-controlled organic–inorganic halide perovskite films[J]. RSC Advances, 2015, 5: 103674-103679.
[85] TUYEN NGO T, SUAREZ I, ANTONICELLI G, et al. Enhancement of the performance of perovskite solar cells, LEDs, and optical amplifiers by anti-solvent additive deposition[J]. Advanced Materials, 2017, 29: 1604056.
[86] VYBORNYI O, YAKUNIN S, KOVALENKO M. Polar-solvent-free colloidal synthesis of highly luminescent alkylammonium lead halide perovskite nanocrystals[J]. Nanoscale, 2016, 8: 6278-6283.
[87] VELDHUIS S A, TAY Y K E, BRUNO A, et al. Benzyl alcohol-treated CH3NH3PbBr3 nanocrystals exhibiting high luminescence, stability, and ultralow amplified spontaneous emission thresholds[J]. Nano Letters, 2017, 17: 7424-7432.
[88] WANG S, YU J, ZHANG M, et al. Stable, strongly emitting cesium lead bromide perovskite nanorods with high optical gain enabled by an intermediate monomer reservoir synthetic strategy[J]. Nano Letters, 2019, 19: 6315-6322.
[89] WU X, JIANG X F, HU X, et al. Highly stable enhanced near-infrared amplified spontaneous emission in solution-processed perovskite films by employing polymer and gold nanorods[J]. Nanoscale, 2019, 11: 1959-1967.
[90] CHO C, PALATNIK A, SUDZIUS M, et al. Controlling and optimizing amplified spontaneous emission in perovskites[J]. ACS Applied Materials and Interfaces, 2020, 12: 35242-35249.
[91] WANG Z, LUO M, LIU Y, et al. Air-processed MAPbBr3 perovskite thin film with ultrastability and enhanced amplified spontaneous emission[J]. Small, 2021, 17: 2101107.
[92] MAO Y, LIANG C, WANG G, et al. Enhanced amplified spontaneous emission from all-inorganic perovskite thin films by composition engineering[J]. Advanced Optical Materials, 2022, 10: 2201845.
[93] LUISA DE GIORGI M, PERULLI A, YANTARA N, et al. Amplified spontaneous emission properties of solution processed CsPbBr3 perovskite thin films[J]. Journal of Physical Chemistry C, 2017, 121: 14772-14778.
[94] ZHANG L, YUAN F, DONG H, et al. One-step co-evaporation of all-inorganic perovskite thin films with room-temperature ultralow amplified spontaneous emission threshold and air stability[J]. ACS Applied Materials and Interfaces, 2018, 10: 40661-40671.
[95] LIANG Y, SHANG Q, LI M, et al. Solvent recrystallization-enabled green amplified spontaneous emissions with an ultra-low threshold from pinhole-free perovskite films[J]. Advanced Functional Materials, 2021, 31: 2106108.
[96] HUANG J, SHAO Y, DONG Q. Organometal trihalide perovskite single crystals: a next wave of materials for 25% efficiency photovoltaics and applications beyond?[J]. Journal of Physical Chemistry Letters, 2015, 6: 3218-3227.
[97] ZHOU Q, JIN Z, LI H, et al. Enhancing performance and uniformity of CH3NH3PbI3−xClx perovskite solar cells by air-heated-oven assisted annealing under various humidities[J]. Scientific Reports, 2016, 6: 1-8.
[98] WANG Z, LIU X, LIN Y, et al. Hot-substrate deposition of all-inorganic perovskite films for low-temperature processed high-efficiency solar cells[J]. Journal of Materials Chemistry A, 2019, 7: 2773-2779.
[99] XIAO Z, DONG Q, BI C, et al. Solvent annealing of perovskite-induced crystal growth for photovoltaic-device efficiency enhancement[J]. Advanced Materials, 2014, 26: 6503-6509.
[100]WANG F, GENG W, ZHOU Y, et al. Phenylalkylamine passivation of organolead halide perovskites enabling high-efficiency and air-stable photovoltaic cells[J]. Advanced Materials, 2016, 28: 9986-9992.
[101]XIE F X, ZHANG D, SU H, et al. Vacuum-assisted thermal annealing of CH3NH3PbI3 for highly stable and efficient perovskite solar cells[J]. ACS Nano, 2015, 9: 639-646.
[102]XING K, CAO S, YUAN X, et al. Thermal and photo stability of all inorganic lead halide perovskite nanocrystals[J]. Physical Chemistry Chemical Physics, 2021, 23: 17113-17128.
[103]HOLZWARTH U, GIBSON N. The scherrer equation versus the “Debye-Scherrer equation”[J]. Nature Nanotechnology, 2011, 6: 534-534.
[104]BUTKUS J, VASHISHTHA P, CHEN K, et al. The evolution of quantum confinement in CsPbBr3 perovskite nanocrystals[J]. Chemistry of Materials, 2017, 29: 3644-3652.
[105]HA S T, SU R, XING J, et al. Metal halide perovskite nanomaterials: synthesis and applications[J]. Chemical Science, 2017, 8: 2522-2536.
[106]QIN L, LV L, NING Y, et al. Enhanced amplified spontaneous emission from morphology-controlled organic–inorganic halide perovskite films[J]. RSC Advances, 2015, 5: 103674-103679.
[107]WANG Y, YUAN J, ZHANG X, et al. Surface ligand management aided by a secondary amine enables increased synthesis yield of CsPbI3 perovskite quantum dots and high photovoltaic performance[J]. Advanced Materials, 2020, 32: 2000449.
[108]LIU J, SONG K, SHIN Y, et al. Light-induced self-assembly of cubic CsPbBr3 perovskite nanocrystals into nanowires[J]. Chemistry of Materials, 2019, 31: 6642-6649.
[109]XUE J, WANG R, WANG K L, et al. Crystalline liquid-like behavior: surface-induced secondary grain growth of photovoltaic perovskite thin film[J]. Journal of the American Chemical Society, 2019, 141: 13948-13953.
[110]SUNDARAM S K, MAZUR E. Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses[J]. Nature Materials, 2002, 1: 217-224.
[111]NAKAJIMA T, TSUCHIYA T, KUMAGAI T. Crystal growth of phosphor perovskite titanate thin films under excimer laser irradiation[J]. Applied Physics A, 2008, 93: 51-55.
[112]HAEGER T, WILMES M, HEIDERHOFF R, et al. Simultaneous mapping of thermal conductivity, thermal diffusivity, and volumetric heat capacity of halide perovskite thin films: a novel nanoscopic thermal measurement technique[J]. Journal of Physical Chemistry Letters, 2019, 10: 3019-3023.
[113]MAES J, BALCAEN L, DRIJVERS E, et al. Light absorption coefficient of CsPbBr3 perovskite nanocrystals[J]. Journal of Physical Chemistry Letters, 2018, 9: 3093-3097.
[114]YOU J, HONG Z, SONG T bin, et al. Moisture assisted perovskite film growth for high performance solar cells[J]. Applied Physics Letters, 2014, 105: 183902.
[115]HUANG S, LI Z, WANG B, et al. Morphology evolution and degradation of CsPbBr3 nanocrystals under blue light-emitting diode illumination[J]. ACS Applied Materials and Interfaces, 2017, 9: 7249-7258.
[116]WANG C, YANG J, DU J, et al. Mode selection and high-quality upconversion lasing from perovskite CsPb2Br5 microplates[J]. Photonics Research, 2020, 8: A31-A38.
[117]LIU Z, YANG J, DU J, et al. Robust subwavelength single-mode perovskite nanocuboid laser[J]. ACS Nano, 2018, 12: 5923-5931.
[118]BRENNER P, BAR-ON O, JAKOBY M, et al. Continuous wave amplified spontaneous emission in phase-stable lead halide perovskites[J]. Nature Communications, 2019, 10: 1-7.
[119]LIANG Y, SHANG Q, WEI Q, et al. Lasing from mechanically exfoliated 2D homologous ruddlesden–popper perovskite engineered by inorganic layer thickness[J]. Advanced Materials, 2019, 31: 1903030.
[120]LIU B, CHEN R, XU X L, et al. Exciton-related photoluminescence and lasing in CdS nanobelts[J]. Journal of Physical Chemistry C, 2011, 115: 12826-12830.
[121]QIN J, LIU X K, YIN C, et al. Carrier dynamics and evaluation of lasing actions in halide perovskites[J]. Trends in Chemistry, 2021, 3: 34-46.
[122]REGALADO-PÉREZ E, DÍAZ-CRUZ E B, LANDA-BAUTISTA J, et al. Impact of vertical inhomogeneity on the charge extraction in perovskite solar cells: a study by depth-dependent photoluminescence[J]. ACS Applied Materials and Interfaces, 2021, 13: 11833-11844.
[123]SONG J, CUI Q, LI J, et al. Ultralarge all-inorganic perovskite bulk single crystal for high-performance visible–infrared dual-modal photodetectors[J]. Advanced Optical Materials, 2017, 5: 1700157.
[124]WRIGHT A D, VERDI C, MILOT R L, et al. Electron-phonon coupling in hybrid lead halide perovskites[J]. Nature Communications, 2016, 7: 11755.
[125]HUANG X, CHEN L, ZHANG C, et al. Inhomogeneous biexciton binding in perovskite semiconductor nanocrystals measured with two-dimensional spectroscopy[J]. Journal of Physical Chemistry Letters, 2020, 11: 10173-10181.
[126]CHENG S, CHANG Q, WANG Z, et al. Observation of net stimulated emission in CsPbBr3 thin films prepared by pulsed laser deposition[J]. Advanced Optical Materials, 2021, 9: 2100564.

所在学位评定分委会
电子科学与技术
国内图书分类号
O433.4
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/544628
专题工学院_电子与电气工程系
推荐引用方式
GB/T 7714
时月晴. 全无机钙钛矿材料的激光诱导二次结晶及光学特性研究[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032790-时月晴-电子与电气工程(5383KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[时月晴]的文章
百度学术
百度学术中相似的文章
[时月晴]的文章
必应学术
必应学术中相似的文章
[时月晴]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。