[1] LEI L, DONG Q, GUNDOGDU K, et al. Metal halide perovskites for laser applications[J]. Advanced Functional Materials, 2021, 31: 2010144.
[2] PROTESESCU L, YAKUNIN S, BODNARCHUK M I, et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut[J]. Nano Letters, 2015, 15: 3692-3696.
[3] PATHAK S, SAKAI N, WISNIVESKY ROCCA RIVAROLA F, et al. Perovskite crystals for tunable white light emission[J]. Chemistry of Materials, 2015, 27: 8066-8075.
[4] RAVI V K, MARKAD G B, NAG A. Band edge energies and excitonic transition probabilities of colloidal CsPbX3 (X = Cl, Br, I) Perovskite Nanocrystals[J]. ACS Energy Letters, 2016, 1: 665-671.
[5] BARANOWSKI M, PLOCHOCKA P. Excitons in metal-halide perovskites[J]. Advanced Energy Materials, 2020, 10: 1903659.
[6] ZHAO F, REN A, LI P, et al. Toward continuous-wave pumped metal halide perovskite lasers: strategies and challenges[J]. ACS Nano, 2021, 16: 7116-7143.
[7] KANG J, WANG L W. High defect tolerance in lead halide perovskite CsPbBr3[J]. Journal of Physical Chemistry Letters, 2017, 8: 489-493.
[8] BRANDT R E, STEVANOVIĆ V, GINLEY D S, et al. Identifying defect-tolerant semiconductors with high minority-carrier lifetimes: beyond hybrid lead halide perovskites[J]. MRS Communications, 2015, 5: 265-275.
[9] YIN W J, SHI T, YAN Y. Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber[J]. Applied Physics Letters, 2014, 104: 063903.
[10] LU H, KRISHNA A, ZAKEERUDDIN S M, et al. Compositional and interface engineering of organic-inorganic lead halide perovskite solar cells[J]. iScience, 2020, 23: 101359.
[11] BARKER A J, SADHANALA A, DESCHLER F, et al. Defect-assisted photoinduced halide segregation in mixed-halide perovskite thin films[J]. ACS Energy Letters, 2017, 2: 1416-1424.
[12] HOKE E T, SLOTCAVAGE D J, DOHNER E R, et al. Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics[J]. Chemical Science, 2014, 6: 613-617.
[13] ARISTIDOU N, EAMES C, SANCHEZ-MOLINA I, et al. Fast oxygen diffusion and iodide defects mediate oxygen-induced degradation of perovskite solar cells[J]. Nature Communications, 2017, 8: 1-10.
[14] YUAN Y, HUANG J. Ion migration in organometal trihalide perovskite and its impact on photovoltaic efficiency and stability[J]. Accounts of Chemical Research, 2016, 49: 286-293.
[15] PELLET N, TEUSCHER J, MAIER J, et al. Transforming hybrid organic inorganic perovskites by rapid halide exchange[J]. Chemistry of Materials, 2015, 27: 2181-2188.
[16] BI E, SONG Z, LI C, et al. Mitigating ion migration in perovskite solar cells[J]. Trends in Chemistry, 2021, 3: 575-588.
[17] LI N, JIA Y, GUO Y, et al. Ion migration in perovskite light-emitting diodes: mechanism, characterizations, and material and device engineering[J]. Advanced Materials, 2022, 34: 2108102.
[18] DEQUILETTES D W, ZHANG W, BURLAKOV V M, et al. Photo-induced halide redistribution in organic-inorganic perovskite films[J]. Nature Communications, 2016, 7: 1-9.
[19] NEDELCU G, PROTESESCU L, YAKUNIN S, et al. Fast anion-exchange in highly luminescent nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I)[J]. Nano Letters, 2015, 15: 5635-5640.
[20] Best Research-Cell Efficiency Chart[EB/OL]. National Renewable Energy Laboratory,
[2023-02-17]. https://www.nrel.gov/pv/cell-efficiency.html.
[21] SO F, KONDAKOV D, SO F, et al. Degradation mechanisms in small-molecule and polymer organic light-emitting diodes[J]. Advanced Materials, 2010, 22: 3762-3777.
[22] WANG H, ZHANG X, WU Q, et al. Trifluoroacetate induced small-grained CsPbBr3 perovskite films result in efficient and stable light-emitting devices[J]. Nature Communications, 2019, 10: 1-10.
[23] ZHANG L, YUAN F, XI J, et al. Suppressing ion migration enables stable perovskite light-emitting diodes with all-inorganic strategy[J]. Advanced Functional Materials, 2020, 30: 2001834.
[24] LIU M, WAN Q, WANG H, et al. Suppression of temperature quenching in perovskite nanocrystals for efficient and thermally stable light-emitting diodes[J]. Nature Photonics, 2021, 15: 379-385.
[25] KIM H S, PARK N G. Importance of tailoring lattice strain in halide perovskite crystals[J]. NPG Asia Materials, 2020, 12: 1-14.
[26] TAN Z K, MOGHADDAM R S, LAI M L, et al. Bright light-emitting diodes based on organometal halide perovskite[J]. Nature Nanotechnology, 2014, 9: 687-692.
[27] CHO H, JEONG S H, PARK M H, et al. Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes[J]. Science, 2015, 350: 1222-1225.
[28] WANG N, CHENG L, GE R, et al. Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells[J]. Nature Photonics, 2016, 10: 699-704.
[29] ZHANG L, YANG X, JIANG Q, et al. Ultra-bright and highly efficient inorganic based perovskite light-emitting diodes[J]. Nature Communications, 2017, 8: 1-8.
[30] WANG Q, REN J, PENG X F, et al. Efficient sky-blue perovskite light-emitting devices based on ethylammonium bromide induced layered perovskites[J]. ACS Applied Materials and Interfaces, 2017, 9: 29901-29906.
[31] ZHAO B, BAI S, KIM V, et al. High-efficiency perovskite–polymer bulk heterostructure light-emitting diodes[J]. Nature Photonics, 2018, 12: 783-789.
[32] CAO Y, WANG N, TIAN H, et al. Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures[J]. Nature, 2018, 562: 249-253.
[33] WANG Y, ZOU R, CHANG J, et al. Tin-based multiple quantum well perovskites for light-emitting diodes with improved stability[J]. Journal of Physical Chemistry Letters, 2019, 10: 453-459.
[34] ZHAO X, TAN Z K. Large-area near-infrared perovskite light-emitting diodes[J]. Nature Photonics, 2020, 14: 215-218.
[35] KIM Y H, KIM S, KAKEKHANI A, et al. Comprehensive defect suppression in perovskite nanocrystals for high-efficiency light-emitting diodes[J]. Nature Photonics, 2021, 15: 148-155.
[36] ZHU Z, WU Y, SHEN Y, et al. Highly efficient sky-blue perovskite light-emitting diode via suppressing nonradiative energy loss[J]. Chemistry of Materials, 2021, 33: 4154-4162.
[37] DESCHLER F, PRICE M, PATHAK S, et al. High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors[J]. Journal of Physical Chemistry Letters, 2014, 5: 1421-1426.
[38] CHEN S, ROH K, LEE J, et al. A photonic crystal laser from solution based organo-lead iodide perovskite thin films[J]. ACS Nano, 2016, 10: 3959-3967.
[39] ZHANG Q, HA S T, LIU X, et al. Room-temperature near-infrared high-Q perovskite whispering-gallery planar nanolasers[J]. Nano Letters, 2014, 14: 5995-6001.
[40] WU Z, CHEN J, MI Y, et al. All-inorganic CsPbBr3 nanowire based plasmonic lasers[J]. Advanced Optical Materials, 2018, 6: 1800674.
[41] TIGUNTSEVA E, KOSHELEV K, FURASOVA A, et al. Room-temperature lasing from mie-resonant nonplasmonic nanoparticles[J]. ACS Nano, 2020, 14: 8149-8156.
[42] SU R, GHOSH S, WANG J, et al. Observation of exciton polariton condensation in a perovskite lattice at room temperature[J]. Nature Physics, 2020, 16: 301-306.
[43] SU R, DIEDERICHS C, WANG J, et al. Room-temperature polariton lasing in all-inorganic perovskite nanoplatelets[J]. Nano Letters, 2017, 17: 3982-3988.
[44] HUANG C, ZHANG C, XIAO S, et al. Ultrafast control of vortex microlasers[J]. Science, 2020, 367: 1018-1021.
[45] ZHANG Q, SHANG Q, SU R, et al. Halide perovskite semiconductor lasers: materials, cavity design, and low threshold[J]. Nano Letters, 2021, 21: 1903-1914.
[46] YIN W J, SHI T, YAN Y. Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber[J]. Applied Physics Letters, 2014, 104: 063903.
[47] JI D, FENG S Z, WANG L, et al. Regulatory tolerance and octahedral factors by using vacancy in APbI3 perovskites[J]. Vacuum, 2019, 164: 186-193.
[48] SYZGANTSEVA O A, SALIBA M, GRÄTZEL M, et al. Stabilization of the perovskite phase of formamidinium lead triiodide by methylammonium, Cs, and/or Rb doping[J]. Journal of Physical Chemistry Letters, 2017, 8: 1191-1196.
[49] NOH J H, IM S H, HEO J H, et al. Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells[J]. Nano Letters, 2013, 13: 1764-1769.
[50] JUAREZ-PEREZ E J, HAWASH Z, RAGA S R, et al. Thermal degradation of CH3NH3PbI3 perovskite into NH3 and CH3I gases observed by coupled thermogravimetry-mass spectrometry analysis[J]. Energy & Environmental Science, 2016, 9: 3406-3410.
[51] CONINGS B, DRIJKONINGEN J, GAUQUELIN N, et al. Intrinsic thermal instability of methylammonium lead trihalide perovskite[J]. Advanced Energy Materials, 2015, 5: 1500477.
[52] WANG M, VASUDEVAN V, LIN S, et al. Molecular mechanisms of thermal instability in hybrid perovskite light absorbers for photovoltaic solar cells[J]. Journal of Materials Chemistry A, 2020, 8: 17765-17779.
[53] FAN Z, XIAO H, WANG Y, et al. Layer-by-layer degradation of methylammonium lead tri-iodide perovskite microplates[J]. Joule, 2017, 1: 548-562.
[54] LI R, LI B, FANG X, et al. Self-structural healing of encapsulated perovskite microcrystals for improved optical and thermal stability[J]. Advanced Materials, 2021, 33: 2100466.
[55] YUN J S, KIM J, YOUNG T, et al. Humidity-induced degradation via grain boundaries of HC(NH2)2PbI3 planar perovskite solar cells[J]. Advanced Functional Materials, 2018, 28: 1705363.
[56] CHRISTIANS J A, MIRANDA HERRERA P A, KAMAT P. Transformation of the excited state and photovoltaic efficiency of CH3NH3PbI3 perovskite upon controlled exposure to humidified air[J]. Journal of the American Chemical Society, 2015, 137: 1530-1538.
[57] XING J, WANG Q, DONG Q, et al. Ultrafast ion migration in hybrid perovskite polycrystalline thin films under light and suppression in single crystals[J]. Physical Chemistry Chemical Physics, 2016, 18: 30484-30490.
[58] LAFALCE E, ZHANG C, ZHAI Y, et al. Enhanced emissive and lasing characteristics of nano-crystalline MAPbBr3 films grown via anti-solvent precipitation[J]. Journal of Applied Physics, 2016, 120: 143101.
[59] LUISA DE GIORGI M, PERULLI A, YANTARA N, et al. Amplified spontaneous emission properties of solution processed CsPbBr3 perovskite thin films[J]. Journal of Physical Chemistry C, 2017, 121: 14772-14778.
[60] LI J, SI J, GAN L, et al. Simple approach to improving the amplified spontaneous emission properties of perovskite films[J]. ACS Applied Materials and Interfaces, 2016, 8: 32978-32983.
[61] BAI Y, QIN J, SHI L, et al. Amplified spontaneous emission realized by cogrowing large/small grains with self-passivating defects and aligning transition dipoles[J]. Advanced Optical Materials, 2019, 7: 1900345.
[62] XIONG Q, HUANG S, DU J, et al. Surface ligand engineering for CsPbBr3 quantum dots aiming at aggregation suppression and amplified spontaneous emission improvement[J]. Advanced Optical Materials, 2020, 8: 2000977.
[63] LI Y, LUO X, DING T, et al. Size- and halide-dependent auger recombination in lead halide perovskite nanocrystals[J]. Angewandte Chemie International Edition, 2020, 132: 14398-14401.
[64] MIYATA K, MEGGIOLARO D, TUAN TRINH M, et al. Large polarons in lead halide perovskites[J]. Science Advances, 2017, 3: 1701217.
[65] ZHU X Y, PODZOROV V. Charge carriers in hybrid organic-inorganic lead halide perovskites might be protected as large polarons[J]. Journal of Physical Chemistry Letters, 2015, 6: 4758-4761.
[66] GHOSH D, WELCH E, NEUKIRCH A J, et al. Polarons in halide perovskites: A perspective[J]. Journal of Physical Chemistry Letters, 2020, 11: 3271-3286.
[67] NIE W, BLANCON J C, NEUKIRCH A J, et al. Light-activated photocurrent degradation and self-healing in perovskite solar cells[J]. Nature Communications, 2016, 7: 1-9.
[68] ACHERMANN M, BARTKO A P, HOLLINGSWORTH J A, et al. The effect of Auger heating on intraband carrier relaxation in semiconductor quantum rods[J]. Nature Physics, 2006, 2: 557-561.
[69] IARU C M, BRODU A, VAN HOOF N J J, et al. Fröhlich interaction dominated by a single phonon mode in CsPbBr3[J]. Nature Communications, 2021, 12: 1-8.
[70] COHN A W, SCHIMPF A M, GUNTHARDT C E, et al. Size-dependent trap-assisted auger recombination in semiconductor nanocrystals[J]. Nano Letters, 2013, 13: 1810-1815.
[71] AGARWAL R, BARRELET C J, LIEBER C M. Lasing in single cadmium sulfide nanowire optical cavities[J]. Nano Letters, 2005, 5: 917-920.
[72] MATSUZAKI R, SOMA H, FUKUOKA K, et al. Purely excitonic lasing in ZnO microcrystals: Temperature-induced transition between exciton-exciton and exciton-electron scattering[J]. Physical Review B, 2017, 96: 125306.
[73] SCHLAUS A P, SPENCER M S, MIYATA K, et al. How lasing happens in CsPbBr3 perovskite nanowires[J]. Nature Communications, 2019, 10: 1-8.
[74] KONDO S, SUZUKI K, SAITO T, et al. Photoluminescence and stimulated emission from microcrystalline CsPbCl3 films prepared by amorphous-to-crystalline transformation[J]. Physical Review B, 2004, 70: 205322.
[75] KONDO S, SUZUKI K, SAITO T, et al. Confinement-enhanced stimulated emission in microcrystalline CsPbCl3 films grown from the amorphous phase[J]. Journal of Crystal Growth, 2005, 282: 94-104.
[76] KONDO S, OHSAWA H, SAITO T, et al. Room-temperature stimulated emission from microcrystalline CsPbCl3 films[J]. Applied Physics Letters, 2005, 87: 131912.
[77] KONDO S, TAKAHASHI K, NAKANISH T, et al. High intensity photoluminescence of microcrystalline CsPbBr3 films: Evidence for enhanced stimulated emission at room temperature[J]. Current Applied Physics, 2007, 7: 1-5.
[78] XING G, MATHEWS N, LIM S S, et al. Low-temperature solution-processed wavelength-tunable perovskites for lasing[J]. Nature Materials, 2014, 13: 476-480.
[79] YAKUNIN S, PROTESESCU L, KRIEG F, et al. Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites[J]. Nature Communications, 2015, 6: 1-9.
[80] WANG Y, LI X, SONG J, et al. All-inorganic colloidal perovskite quantum dots: a new class of lasing materials with favorable characteristics[J]. Advanced Materials, 2015, 27: 7101-7108.
[81] YAN D, SHI T, ZANG Z, et al. Ultrastable CsPbBr3 perovskite quantum dot and their enhanced amplified spontaneous emission by surface ligand modification[J]. Small, 2019, 15: 1901173.
[82] STRANKS S D, WOOD S M, WOJCIECHOWSKI K, et al. Enhanced amplified spontaneous emission in perovskites using a flexible cholesteric liquid crystal reflector[J]. Nano Letters, 2015, 15: 4935-4941.
[83] LI J, SI J, GAN L, et al. Simple approach to improving the amplified spontaneous emission properties of perovskite films[J]. ACS Applied Materials and Interfaces, 2016, 8: 32978-32983.
[84] QIN L, LV L, NING Y, et al. Enhanced amplified spontaneous emission from morphology-controlled organic–inorganic halide perovskite films[J]. RSC Advances, 2015, 5: 103674-103679.
[85] TUYEN NGO T, SUAREZ I, ANTONICELLI G, et al. Enhancement of the performance of perovskite solar cells, LEDs, and optical amplifiers by anti-solvent additive deposition[J]. Advanced Materials, 2017, 29: 1604056.
[86] VYBORNYI O, YAKUNIN S, KOVALENKO M. Polar-solvent-free colloidal synthesis of highly luminescent alkylammonium lead halide perovskite nanocrystals[J]. Nanoscale, 2016, 8: 6278-6283.
[87] VELDHUIS S A, TAY Y K E, BRUNO A, et al. Benzyl alcohol-treated CH3NH3PbBr3 nanocrystals exhibiting high luminescence, stability, and ultralow amplified spontaneous emission thresholds[J]. Nano Letters, 2017, 17: 7424-7432.
[88] WANG S, YU J, ZHANG M, et al. Stable, strongly emitting cesium lead bromide perovskite nanorods with high optical gain enabled by an intermediate monomer reservoir synthetic strategy[J]. Nano Letters, 2019, 19: 6315-6322.
[89] WU X, JIANG X F, HU X, et al. Highly stable enhanced near-infrared amplified spontaneous emission in solution-processed perovskite films by employing polymer and gold nanorods[J]. Nanoscale, 2019, 11: 1959-1967.
[90] CHO C, PALATNIK A, SUDZIUS M, et al. Controlling and optimizing amplified spontaneous emission in perovskites[J]. ACS Applied Materials and Interfaces, 2020, 12: 35242-35249.
[91] WANG Z, LUO M, LIU Y, et al. Air-processed MAPbBr3 perovskite thin film with ultrastability and enhanced amplified spontaneous emission[J]. Small, 2021, 17: 2101107.
[92] MAO Y, LIANG C, WANG G, et al. Enhanced amplified spontaneous emission from all-inorganic perovskite thin films by composition engineering[J]. Advanced Optical Materials, 2022, 10: 2201845.
[93] LUISA DE GIORGI M, PERULLI A, YANTARA N, et al. Amplified spontaneous emission properties of solution processed CsPbBr3 perovskite thin films[J]. Journal of Physical Chemistry C, 2017, 121: 14772-14778.
[94] ZHANG L, YUAN F, DONG H, et al. One-step co-evaporation of all-inorganic perovskite thin films with room-temperature ultralow amplified spontaneous emission threshold and air stability[J]. ACS Applied Materials and Interfaces, 2018, 10: 40661-40671.
[95] LIANG Y, SHANG Q, LI M, et al. Solvent recrystallization-enabled green amplified spontaneous emissions with an ultra-low threshold from pinhole-free perovskite films[J]. Advanced Functional Materials, 2021, 31: 2106108.
[96] HUANG J, SHAO Y, DONG Q. Organometal trihalide perovskite single crystals: a next wave of materials for 25% efficiency photovoltaics and applications beyond?[J]. Journal of Physical Chemistry Letters, 2015, 6: 3218-3227.
[97] ZHOU Q, JIN Z, LI H, et al. Enhancing performance and uniformity of CH3NH3PbI3−xClx perovskite solar cells by air-heated-oven assisted annealing under various humidities[J]. Scientific Reports, 2016, 6: 1-8.
[98] WANG Z, LIU X, LIN Y, et al. Hot-substrate deposition of all-inorganic perovskite films for low-temperature processed high-efficiency solar cells[J]. Journal of Materials Chemistry A, 2019, 7: 2773-2779.
[99] XIAO Z, DONG Q, BI C, et al. Solvent annealing of perovskite-induced crystal growth for photovoltaic-device efficiency enhancement[J]. Advanced Materials, 2014, 26: 6503-6509.
[100]WANG F, GENG W, ZHOU Y, et al. Phenylalkylamine passivation of organolead halide perovskites enabling high-efficiency and air-stable photovoltaic cells[J]. Advanced Materials, 2016, 28: 9986-9992.
[101]XIE F X, ZHANG D, SU H, et al. Vacuum-assisted thermal annealing of CH3NH3PbI3 for highly stable and efficient perovskite solar cells[J]. ACS Nano, 2015, 9: 639-646.
[102]XING K, CAO S, YUAN X, et al. Thermal and photo stability of all inorganic lead halide perovskite nanocrystals[J]. Physical Chemistry Chemical Physics, 2021, 23: 17113-17128.
[103]HOLZWARTH U, GIBSON N. The scherrer equation versus the “Debye-Scherrer equation”[J]. Nature Nanotechnology, 2011, 6: 534-534.
[104]BUTKUS J, VASHISHTHA P, CHEN K, et al. The evolution of quantum confinement in CsPbBr3 perovskite nanocrystals[J]. Chemistry of Materials, 2017, 29: 3644-3652.
[105]HA S T, SU R, XING J, et al. Metal halide perovskite nanomaterials: synthesis and applications[J]. Chemical Science, 2017, 8: 2522-2536.
[106]QIN L, LV L, NING Y, et al. Enhanced amplified spontaneous emission from morphology-controlled organic–inorganic halide perovskite films[J]. RSC Advances, 2015, 5: 103674-103679.
[107]WANG Y, YUAN J, ZHANG X, et al. Surface ligand management aided by a secondary amine enables increased synthesis yield of CsPbI3 perovskite quantum dots and high photovoltaic performance[J]. Advanced Materials, 2020, 32: 2000449.
[108]LIU J, SONG K, SHIN Y, et al. Light-induced self-assembly of cubic CsPbBr3 perovskite nanocrystals into nanowires[J]. Chemistry of Materials, 2019, 31: 6642-6649.
[109]XUE J, WANG R, WANG K L, et al. Crystalline liquid-like behavior: surface-induced secondary grain growth of photovoltaic perovskite thin film[J]. Journal of the American Chemical Society, 2019, 141: 13948-13953.
[110]SUNDARAM S K, MAZUR E. Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses[J]. Nature Materials, 2002, 1: 217-224.
[111]NAKAJIMA T, TSUCHIYA T, KUMAGAI T. Crystal growth of phosphor perovskite titanate thin films under excimer laser irradiation[J]. Applied Physics A, 2008, 93: 51-55.
[112]HAEGER T, WILMES M, HEIDERHOFF R, et al. Simultaneous mapping of thermal conductivity, thermal diffusivity, and volumetric heat capacity of halide perovskite thin films: a novel nanoscopic thermal measurement technique[J]. Journal of Physical Chemistry Letters, 2019, 10: 3019-3023.
[113]MAES J, BALCAEN L, DRIJVERS E, et al. Light absorption coefficient of CsPbBr3 perovskite nanocrystals[J]. Journal of Physical Chemistry Letters, 2018, 9: 3093-3097.
[114]YOU J, HONG Z, SONG T bin, et al. Moisture assisted perovskite film growth for high performance solar cells[J]. Applied Physics Letters, 2014, 105: 183902.
[115]HUANG S, LI Z, WANG B, et al. Morphology evolution and degradation of CsPbBr3 nanocrystals under blue light-emitting diode illumination[J]. ACS Applied Materials and Interfaces, 2017, 9: 7249-7258.
[116]WANG C, YANG J, DU J, et al. Mode selection and high-quality upconversion lasing from perovskite CsPb2Br5 microplates[J]. Photonics Research, 2020, 8: A31-A38.
[117]LIU Z, YANG J, DU J, et al. Robust subwavelength single-mode perovskite nanocuboid laser[J]. ACS Nano, 2018, 12: 5923-5931.
[118]BRENNER P, BAR-ON O, JAKOBY M, et al. Continuous wave amplified spontaneous emission in phase-stable lead halide perovskites[J]. Nature Communications, 2019, 10: 1-7.
[119]LIANG Y, SHANG Q, WEI Q, et al. Lasing from mechanically exfoliated 2D homologous ruddlesden–popper perovskite engineered by inorganic layer thickness[J]. Advanced Materials, 2019, 31: 1903030.
[120]LIU B, CHEN R, XU X L, et al. Exciton-related photoluminescence and lasing in CdS nanobelts[J]. Journal of Physical Chemistry C, 2011, 115: 12826-12830.
[121]QIN J, LIU X K, YIN C, et al. Carrier dynamics and evaluation of lasing actions in halide perovskites[J]. Trends in Chemistry, 2021, 3: 34-46.
[122]REGALADO-PÉREZ E, DÍAZ-CRUZ E B, LANDA-BAUTISTA J, et al. Impact of vertical inhomogeneity on the charge extraction in perovskite solar cells: a study by depth-dependent photoluminescence[J]. ACS Applied Materials and Interfaces, 2021, 13: 11833-11844.
[123]SONG J, CUI Q, LI J, et al. Ultralarge all-inorganic perovskite bulk single crystal for high-performance visible–infrared dual-modal photodetectors[J]. Advanced Optical Materials, 2017, 5: 1700157.
[124]WRIGHT A D, VERDI C, MILOT R L, et al. Electron-phonon coupling in hybrid lead halide perovskites[J]. Nature Communications, 2016, 7: 11755.
[125]HUANG X, CHEN L, ZHANG C, et al. Inhomogeneous biexciton binding in perovskite semiconductor nanocrystals measured with two-dimensional spectroscopy[J]. Journal of Physical Chemistry Letters, 2020, 11: 10173-10181.
[126]CHENG S, CHANG Q, WANG Z, et al. Observation of net stimulated emission in CsPbBr3 thin films prepared by pulsed laser deposition[J]. Advanced Optical Materials, 2021, 9: 2100564.
修改评论