[1] JIANG Y. China’s water scarcity[J]. Journal of Environmental Management, 2009, 90(11): 3185-3196.
[2] MA T, SUN S, FU G, et al. Pollution exacerbates China’s water scarcity and its regional inequality[J]. Nature Communications, 2020, 11: 650.
[3] DING X, SHEN Z, HONG Q, et al. Development and test of the Export Coefficient Model in the Upper Reach of the Yangtze River[J]. Journal of Hydrology, 2010, 383(3-4): 233-244.
[4] WANG Y, OUYANG W, ZHANG Y, et al. Quantify phosphorus transport distinction of different reaches to estuary under long-term anthropogenic perturbation[J]. Science of The Total Environment, 2021, 780: 146647.
[5] SUN B, ZHANG L, YANG L, et al. Agricultural Non-Point Source Pollution in China: Causes and Mitigation Measures[J]. AMBIO, 2012, 41(4): 370-379.
[6] MA J, CHEN X, HUANG B, et al. Utilizing water characteristics and sediment nitrogen isotopic features to identify non-point nitrogen pollution sources at watershed scale in Liaoning Province, China[J]. Environmental Science and Pollution Research, 2015, 22(4): 2699-2707.
[7] 杨朝晖, 温国玉. 南水北调实施后南四湖水资源管理问题与思考[J]. 治淮, 2015, 12: 32-33.
[8] 刘友春, 王忠华, 朱龙腾, 等. 南四湖在山东省水利体系建设中的战略地位[J]. 山东水利, 2013, 12: 21-22.
[9] 孙建华, 陈飞, 李林. 南水北调东线调水期间南四湖水环境面临的风险及对策初探[J]. 治淮, 2018, 12: 4-5.
[10] WANG W, LIU X, WANG Y, et al. Analysis of point source pollution and water environmental quality variation trends in the Nansi Lake basin from 2002 to 2012[J]. Environmental Science and Pollution Research, 2016, 23(5): 4886-4897.
[11] 李爽, 张祖陆, 孙媛媛. 南四湖沉积物对上覆水氮磷负荷的时空响应[J].环境科学学报, 2013, 33(1): 133-138.
[12] 林雪原, 荆延德. 山东省南四湖流域农业面源污染评价及分类控制[J]. 生态学杂志, 2014, 33(12): 3278-3285.
[13] 曾思育, 杜鹏飞, 陈吉宁. 流域污染负荷模型的比较研究[J]. 水科学进展, 2006, 1: 108-112.
[14] 刘国王辰, 陈磊, 李佳奇, 等. 流域尺度污染溯源模拟-优化防控方法:以铜陵市顺安河流域为例[J/OL]. 环境科学, 2022. https://doi.org/10.13227/j.hjkx.20227102.
[15] 娄和震, 吴习锦, 郝芳华, 等. 近三十年中国非点源污染研究现状与未来发展方向探讨[J]. 环境科学学报, 2020, 40(5): 1535-1549.
[16] ZOU L. Assessment and analysis of agricultural non-point source pollution loads in China: 1978–2017[J]. Journal of Environmental Management, 2020, 263: 110400.
[17] WANG G, LI J, SUN W, et al. Non-point source pollution risks in a drinking water protection zone based on remote sensing data embedded within a nutrient budget model[J]. Water Research, 2019, 157: 238-246.
[18] XUE B, ZHANG H, WANG Y, et al. Modeling water quantity and quality for a typical agricultural plain basin of northern China by a coupled model[J]. Science of The Total Environment, 2021, 790: 148139.
[19] XUE J, WANG Q, ZHANG M. A review of non-point source water pollution modeling for the urban–rural transitional areas of China: Research status and prospect[J]. Science of The Total Environment, 2022, 826: 154146.
[20] 李政道, 刘鸿雁, 姜畅, 等. 基于输出系数模型的红枫湖保护区非点源污染负荷研究[J]. 水土保持通报, 2020, 40(2): 193-198+325.
[21] 胡正, 敖天其, 李孟芮, 等. 改进的输出系数模型在缺资料地区面源综合评价[J]. 灌溉排水学报, 2019, 38(2): 108-114.
[22] DUAN M, DU X, PENG W, et al. Quantitative assessment of background pollutants using a modified method in data-poor regions[J]. Environmental Monitoring and Assessment, 2020, 192(3): 160.
[23] COHN T A, CAULDER D L, GILROY E J, et al. The validity of a simple statistical model for estimating fluvial constituent loads: An Empirical study involving nutrient loads entering Chesapeake Bay[J]. Water Resources Research, 1992, 28(9): 2353-2363.
[24] HIRSCH R M, MOYER D L, ARCHFIELD S A. Weighted Regressions on Time, Discharge, and Season (WRTDS), with an Application to Chesapeake Bay River Inputs1: Weighted Regressions on Time, Discharge, and Season (WRTDS), With an Application to Chesapeake Bay River Inputs[J]. Journal of the American Water Resources Association, 2010, 46(5): 857-880.
[25] LIU R, XU F, ZHANG P, et al. Identifying non-point source critical source areas based on multi-factors at a basin scale with SWAT[J]. Journal of Hydrology, 2016, 533: 379-388.
[26] R. A. YOUNG, C. A. ONSTAD, D. D. BOSCH, et al. AGNPS: A nonpoint-source pollution model for evaluating agricultural watersheds[J]. Journal of Soil and Water Conservation, 1989, 44(2): 168.
[27] JIANG K, LI Z, LUO C, et al. The reduction effects of riparian reforestation on runoff and nutrient export based on AnnAGNPS model in a small typical watershed, China[J]. Environmental Science and Pollution Research, 2019, 26(6): 5934-5943.
[28] ZHANG J, LI S, DONG R, et al. Influences of land use metrics at multi-spatial scales on seasonal water quality: A case study of river systems in the Three Gorges Reservoir Area, China[J]. Journal of Cleaner Production, 2019, 206: 76-85.
[29] LIYING L, LITANG Q, GUANGSHENG P, et al. Non-point source pollution and long-term effects of best management measures simulated in the Qifeng River Basin in the karst area of Southwest China[J]. Water Supply, 2021, 21(1): 262-275.
[30] 洪华生, 曹文志, 张玉珍, 等. 九龙江典型流域氮磷流失的模拟研究[J]. 厦门大学学报, 2004(1): 243-248.
[31] KARKI R, TAGERT M L M, PAZ J O, et al. Application of AnnAGNPS to model an agricultural watershed in East-Central Mississippi for the evaluation of an on-farm water storage (OFWS) system[J]. Agricultural Water Management, 2017, 192: 103-114.
[32] NIAZI M, NIETCH C, MAGHREBI M, et al. Storm Water Management Model: Performance Review and Gap Analysis[J]. Journal of Sustainable Water in the Built Environment, 2017, 3(2): 04017002.
[33] TUOMELA C, SILLANPÄÄ N, KOIVUSALO H. Assessment of stormwater pollutant loads and source area contributions with storm water management model (SWMM)[J]. Journal of Environmental Management, 2019, 233: 719-727.
[34] ZHANG K, CHUI T F M, YANG Y. Simulating the hydrological performance of low impact development in shallow groundwater via a modified SWMM[J]. Journal of Hydrology, 2018, 566: 313-331.
[35] HUONG H T L, PATHIRANA A. Urbanization and climate change impacts on future urban flooding in Can Tho city, Vietnam[J]. Hydrology and Earth System Sciences, 2013, 17(1): 379-394.
[36] BAI X, SHEN W, WANG P, et al. Response of Non-point Source Pollution Loads to Land Use Change under Different Precipitation Scenarios from a Future Perspective[J]. Water Resources Management, 2020, 34(13): 3987-4002.
[37] XIE H, DONG J, SHEN Z, et al. Intra- and inter-event characteristics and controlling factors of agricultural nonpoint source pollution under different types of rainfall-runoff events[J]. Catena, 2019, 182: 104105.
[38] SALAUDEEN A, SHAHID S, ISMAIL A, et al. Adaptation measures under the impacts of climate and land-use/land-cover changes using HSPF model simulation: Application to Gongola river basin, Nigeria[J]. Science of The Total Environment, 2023, 858: 159874.
[39] ALBEK M. Hydrological modeling of Seydi Suyu watershed (Turkey) with HSPF[J]. Journal of Hydrology, 2004, 285(1): 260-271.
[40] FUKUNAGA D C, CECÍLIO R A, ZANETTI S S, et al. Application of the SWAT hydrologic model to a tropical watershed at Brazil[J]. Catena, 2015, 125: 206-213.
[41] WANG Q, LIU R, MEN C, et al. Application of genetic algorithm to land use optimization for non-point source pollution control based on CLUE-S and SWAT[J]. Journal of Hydrology, 2018, 560: 86-96.
[42] MESHESHA T W. Modelling groundwater quality of the Athabasca River Basin in the subarctic region using a modified SWAT model[J]. Scientific Reports, 2021, 11(1): 1-12.
[43] DUTTA S, SEN D. Application of SWAT model for predicting soil erosion and sediment yield[J]. Sustainable Water Resources Management, 2018, 4(3): 447-468.
[44] STEHR A, DEBELS P, ROMERO F, et al. Hydrological modelling with SWAT under conditions of limited data availability: evaluation of results from a Chilean case study[J]. Hydrological Sciences Journal, 2008, 53(3): 588-601.
[45] SULLIVAN T P, GAO Y. Assessment of nitrogen inputs and yields in the Cibolo and Dry Comal Creek watersheds using the SWAT model, Texas, USA 1996–2010[J]. Environmental Earth Sciences, 2016, 75(9): 725.
[46] NASR A, BRUEN M, JORDAN P, et al. A comparison of SWAT, HSPF and SHETRAN/GOPC for modelling phosphorus export from three catchments in Ireland[J]. Water Research, 2007, 41(5): 1065-1073.
[47] XIE H, LIAN Y. Uncertainty-based evaluation and comparison of SWAT and HSPF applications to the Illinois River Basin[J]. Journal of Hydrology, 2013, 481: 119-131.
[48] NAYEB YAZDI M, KETABCHY M, SAMPLE D J, et al. An evaluation of HSPF and SWMM for simulating streamflow regimes in an urban watershed[J]. Environmental Modelling & Software, 2019, 118: 211-225.
[49] CHEN Y, XU C Y, CHEN X, et al. Uncertainty in simulation of land-use change impacts on catchment runoff with multi-timescales based on the comparison of the HSPF and SWAT models[J]. Journal of Hydrology, 2019, 573: 486-500.
[50] 窦俊伟, 孙鹏, 张笛. 关于南四湖流域水污染防治工作的建议[J]. 山东水利, 2018, 10: 45-46.
[51] 程云轩, 高秋生, 李捷, 等. 淮河流域南四湖可挥发性有机物污染特征及风险评价[J]. 环境科学, 2021, 42(4): 1820-1829.
[52] 冯娜, 武周虎, 郭琦, 等. 南四湖入湖河流水质综合评价与改善效果分析[J]. 绿色科技, 2018, 10: 55-59+62.
[53] WU J, SHI D, WANG S, et al. Derivation of Water Quality Criteria for Carbamazepine and Ecological Risk Assessment in the Nansi Lake Basin[J]. International Journal of Environmental Research and Public Health, 2022, 19(17): 10875.
[54] 李宝, 申秋实, 孙春意, 等. 风浪扰动下南四湖南阳湖区底泥Hg的动态迁移规律模拟[J]. 环境化学, 2022, 41(4): 1356-1366.
[55] CAO Q, SONG Y, ZHANG Y, et al. Risk analysis on heavy metal contamination in sediments of rivers flowing into Nansi Lake[J]. Environmental Science and Pollution Research, 2017, 24(35): 26910-26918.
[56] GUO S, ZHANG Y, XIAO J, et al. Assessment of heavy metal content, distribution, and sources in Nansi Lake sediments, China[J]. Environmental Science and Pollution Research, 2021, 28(24): 30929-30942.
[57] JIN Z, JI F, HE Y, et al. Evaluating the efficiency of carbon utilisation via bioenergetics between biological aerobic and denitrifying phosphorus removal systems[J]. PLoS ONE, 2017, 12(10): e0187007.
[58] ZHANG S, AN W, LI X. Research on phosphorus loads and characteristics of adsorption and release in surface sediments of Nanyang Lake and Weishan Lake in China[J]. Environmental Monitoring and Assessment, 2015, 187(1): 4103.
[59] XU S, CUI Y, YANG C, et al. The fuzzy comprehensive evaluation (FCE) and the principal component analysis (PCA) model simulation and its applications in water quality assessment of Nansi Lake Basin, China[J]. Environmental Engineering Research, 2021, 26(2): 200022.
[60] QU X, CHEN Y, LIU H, et al. A holistic assessment of water quality condition and spatiotemporal patterns in impounded lakes along the eastern route of China’s South-to-North water diversion project[J]. Water Research, 2020, 185: 116-275.
[61] 马景. 南四湖湖区水质综合分析与水质预测研究[D]. 青岛: 青岛理工大学, 2021.
[62] 刘莹, 董文平, 刘鹏, 等. 南四湖主要入湖河流水环境质量状况及风险评估[J]. 科技导报, 2017, 35(9): 56-61.
[63] 叶敦雨. 南四湖入湖河流水环境质量状况及其对流域土地利用空间格局的响应[D].曲阜: 曲阜师范大学, 2022.
[64] 崔伯豪. 南四湖流域非点源氮磷污染来源解析与调控模拟研究[D]. 济南: 山东师范大学, 2019.
[65] 李爽. 基于SWAT模型的南四湖流域非点源氮磷污染模拟及湖泊沉积的响应研究[D]. 济南: 山东师范大学, 2012.
[66] 倪晓. 南四湖流域水污染物总量控制及水质综合改善方案研究[D]. 济南: 山东师范大学, 2013.
[67] 林雪原, 荆延德. 山东省南四湖流域农业面源污染评价及分类控制[J]. 生态学杂志, 2014, 33(12): 3278-3285.
[68] 路凤. 南四湖种植业面源污染负荷来源解析研究[D]. 济南: 山东建筑大学, 2012.
[69] ZHANG B L, CUI B H, ZHANG S M, et al. Source apportionment of nitrogen and phosphorus from non-point source pollution in Nansi Lake Basin, China[J]. Environmental Science and Pollution Research, 2018, 25(19): 19101-19113.
[70] 成杰民, 宋涛, 李彦. 基于GIS的南四湖沿岸农业面源氮磷负荷估算研究[J]. 水土保持研究, 2012, 19(3): 284-288.
[71] 孙笑笑. 南四湖流域非点源污染负荷估算及其对土地利用变化的响应研究[D]. 曲阜: 曲阜师范大学, 2017.
[72] LIU H, JIANG Y, MISA R, et al. Ecological environment changes of mining areas around Nansi lake with remote sensing monitoring[J]. Environmental Science and Pollution Research, 2021, 28(32): 44152-44164.
[73] HAN F, ZHENG Y, TIAN Y, et al. Accounting for field-scale heterogeneity in the ecohydrological modeling of large arid river basins: Strategies and relevance[J]. Journal of Hydrology, 2021, 595: 126045.
[74] JOO J, TIAN Y. Impact of Stream-Groundwater Interactions on Peak Streamflow in the Floods[J]. Hydrology, 2021, 8(3): 141.
[75] XIONG R, ZHENG Y, HAN F, et al. Improving the Scientific Understanding of the Paradox of Irrigation Efficiency: An Integrated Modeling Approach to Assessing Basin‐Scale Irrigation Efficiency[J]. Water Resources Research, 2021, 57(11): e2020WR029397.
[76] 于晓雯. 半干旱区流域植被生态过程及其与水文的响应机制研究[D]. 呼和浩特: 内蒙古大学, 2022.
[77] TIAN Y, ZHENG Y, WU B, et al. Modeling surface water-groundwater interaction in arid and semi-arid regions with intensive agriculture[J]. Environmental Modelling & Software, 2015, 63: 170-184.
[78] SUN Z, ZHENG Y, LI X, et al. The Nexus of Water, Ecosystems, and Agriculture in Endorheic River Basins: A System Analysis Based on Integrated Ecohydrological Modeling[J]. Water Resources Research, 2018, 54(10): 7534-7556.
[79] TIAN Y, ZHENG Y, HAN F, et al. A comprehensive graphical modeling platform designed for integrated hydrological simulation[J]. Environmental Modelling & Software, 2018, 108: 154-173.
[80] 郑一, 韩峰, 田勇. 黑河流域生态水文耦合模拟的方法与应用[M]. 科学出版社, 2021.
[81] ARNOLD J. SWAT-soil and water assessment tool[M]. USDA NAL, 1994.
[82] WOOL T, AMBROSE JR R B, MARTIN J L, et al. WASP 8: The next generation in the 50-year evolution of USEPA’s water quality model[J]. Water, 2020, 12(5): 1398.
修改评论