[1] GALLOWAY B, HANCKE G P. Introduction to Industrial Control Networks[J]. IEEE Communications Surveys & Tutorials, 2013, 15(2): 860-880.
[2] TINDELL K, HANSSMON H, WELLINGS A J. Analysing Real-Time Communications: Controller Area Network (CAN)[C]//Proceedings of the 1994 IEEE Real-Time Systems Symposium. Piscataway, NJ: IEEE, 1994: 259-263.
[3] MAKOWITZ R, TEMPLE C. Flexray - A Communication Network for Automotive Control Systems[C]//Proceedings of the 2006 IEEE International Workshop on Factory Communication Systems. Piscataway, NJ: IEEE, 2006: 207-212.
[4] FELD J. PROFINET - Scalable Factory Communication for all Applications[C]//Proceedings of the 2004 IEEE International Workshop on Factory Communication Systems. Piscataway, NJ: IEEE, 2004: 33-38.
[5] LANGLOIS K, VAN DER HOEVEN T, RODRIGUEZ CIANCA D, et al. EtherCAT Tutorial: An Introduction for Real-Time Hardware Communication on Windows[J]. IEEE Robotics & Automation Magazine, 2018, 25(1): 22-122.
[6] CENA G, SENO L, VALENZANO A, et al. Performance Analysis of Ethernet Powerlink Networks for Distributed Control and Automation Systems[J]. Computer Standards & Interfaces, 2009, 31(3): 566-572.
[7] IEEE. IEEE Standard for Local and metropolitan area networks – Bridges and Bridged Networks - Amendment 25: Enhancements for Scheduled Traffic[S]. Piscataway,NJ: IEEE, 2016.
[8] IEEE. IEEE Standard for Local and metropolitan area networks – Bridges and Bridged Networks – Amendment 29: Cyclic Queuing and Forwarding[S]. Piscataway,NJ: IEEE, 2017.
[9] IEEE. IEEE Standard for Local and Metropolitan Area Networks – Bridges and Bridged Networks – Amendment 34:Asynchronous Traffic Shaping[S]. Piscataway,NJ: IEEE, 2020.
[10] NASRALLAH A, THYAGATURU A S, ALHARBI Z, et al. Ultra-Low Latency (ULL) Net works: The IEEE TSN and IETF DetNet Standards and Related 5G ULL Research[J]. IEEE Communications Surveys & Tutorials, 2019, 21(1): 88-145.
[11] IEEE. IEEE Standard for Local and Metropolitan Area Networks – Virtual Bridged Local Area Networks Amendment 12: Forwarding and Queuing Enhancements for Time-Sensitive Streams[S]. Piscataway,NJ: IEEE, 2010.
[12] IEEE. IEEE Standard for Local and Metropolitan Area Networks – Timing and Synchronization for Time-Sensitive Applications[S]. Piscataway,NJ: IEEE, 2020.
[13] SHI H, AIJAZ A, JIANG N. Evaluating the Performance of Over-the-Air Time Synchronization for 5G and TSN Integration[C]//Proceedings of the 2021 IEEE International Black Sea Conference on Communications and Networking. 2021: 1-6.
[14] HU H, LI Q, XIONG H, et al. The Delay Bound Analysis Based on Network Calculus for Asynchronous Traffic Shaping under Parameter Inconsistency[C]//Proceedings of the 2020 IEEE International Conference on Communication Technology. Piscataway, NJ: IEEE, 2020: 908-915.
[15] NAYAK N G, DURR F, ROTHERMEL K. Time-Sensitive Software-Defined Network (TSSDN) for Real-Time Applications[C]//Proceedings of the 24th IEEE International Conference on Real-Time Networks and Systems. 2016: 193–202.
[16] SPECHT J, SAMII S. Urgency-Based Scheduler for Time-Sensitive Switched Ethernet Networks[C]//Proceedings of the 2016 IEEE Euromicro Conference on Real-Time Systems. Piscataway, NJ: IEEE, 2016: 75-85.
[17] ZHOU Z, YAN Y, BERGER M, et al. Analysis and Modeling of Asynchronous Traffic Shaping in time sensitive networks[C]//Proceedings of the 2018 IEEE International Workshop on Factory Communication Systems. Piscataway, NJ: IEEE, 2018: 1-4.
[18] SPECHT J, SAMII S. Synthesis of Queue and Priority Assignment for Asynchronous Traffic Shaping in Switched Ethernet[C]//Proceedings of the 2017 IEEE Real-Time Systems Symposium. Piscataway, NJ: IEEE, 2017: 178-187.
[19] THOMAS L, BOUDEC J Y L, MIFDAOUI A. On Cyclic Dependencies and Regulators in Time-Sensitive Networks[C]//Proceedings of the 2019 IEEE Real-Time Systems Symposium. Piscataway, NJ: IEEE, 2019: 299-311.
[20] ZHAO L, POP P, STEINHORST S. Quantitative Performance Comparison of Various Traffic Shapers in Time-Sensitive Networking[J]. IEEE Transactions on Network and Service Management, 2022, 19(3): 2899-2928.
[21] NASRALLAH A, THYAGATURU A S, ALHARBI Z, et al. Performance Comparison of IEEE 802.1 TSN Time Aware Shaper (TAS) and Asynchronous Traffic Shaper (ATS)[J]. IEEE Access, 2019, 7(1): 44165-44181.
[22] GRIGORJEW A, METZGER F, HOßFELD T, et al. Constant Delay Switching: Asynchronous Traffic Shaping with Jitter Control[C]//Proceedings of the 2022 IFIP International Federation for Information Processing Networking Conference. Piscataway, NJ: IEEE, 2022: 1-9.
[23] ECKERT T, CLEMM A, BRYANT S. gLBF: Per-Flow Stateless Packet Forwarding with Guaranteed Latency and Near-Synchronous Jitter[C]//Proceedings of the 2021 IEEE International Conference on Network and Service Management. Piscataway, NJ: IEEE, 2021: 578-584.
[24] GRIGORJEW A, METZGER F, HOßFELD T, et al. Constant Delay Switching: Asynchronous Traffic Shaping with Jitter Control[C]//Proceedings of the 2022 IFIP Networking Conference. 2022: 1-9.
[25] BOUDEC J Y L. A Theory of Traffic Regulators for Deterministic Networks with Application to Interleaved Regulators[J]. IEEE/ACM Transactions on Networking (TON), 2018, 26(6): 2721-2733.
[26] MOHAMMADPOUR E, STAI E, MOHIUDDIN M, et al. Latency and Backlog Bounds in Time-Sensitive Networking with Credit Based Shapers and Asynchronous Traffic Shaping[C]//Proceedings of the 2018 IEEE International Teletraffic Congress. Piscataway, NJ: IEEE, 2018: 1-6.
[27] IEEE. IEEE Standard for Local and metropolitan area networks – Bridges and Bridged Networks – Amendment 26: Frame Preemption[S]. Piscataway,NJ: IEEE, 2016.
[28] SIMON C, MALIOSZ M, MATE M. Design Aspects of Low-Latency Services with Time Sensitive Networking[J]. IEEE Communications Standards Magazine, 2018, 2(2): 48-54.
[29] PEDREIRAS P, GAI P, ALMEIDA L, et al. FTT-Ethernet: A Flexible Real-Time Communication Protocol That Supports Dynamic QoS Management on Ethernet-Based Systems[J]. IEEE Transactions on Industrial Informatics, 2005, 1(3): 162-172.
[30] 孙广东. 时间敏感网络中时钟同步与调度算法的研究与仿真[D]. 北京: 北京邮电大学, 2018.
[31] STEINER W. An Evaluation of SMT-based Schedule Synthesis for Time-Triggered Multi-hop Networks[C]//Proceedings of the 2010 IEEE Real-Time Systems Symposium. Piscataway, NJ: IEEE, 2010: 375-384.
[32] CRACIUNAS S S, OLIVER R S, CHMELK M, et al. Scheduling Real-Time Communica tion in IEEE 802.1Qbv Time Sensitive Networks[C]//Proceedings of the 2016 IEEE Real-Time Systems Symposium. Piscataway, NJ: IEEE, 2016: 183-192.
[33] CRACIUNAS S S, OLIVER R S. Combined Task- and Network-level Scheduling for Distributed Time-Triggered Systems[J]. Real-Time Systems, 2016, 52(2): 161-200.
[34] HANZáLEK Z, BURGET P, ŠůCHA P. Profinet IO IRT Message Scheduling with Temporal Constraints[J]. IEEE Transactions on Industrial Informatics, 2010, 6(3): 369-380.
[35] DURR F, NAYAK N G. No-wait Packet Scheduling for IEEE Time-Sensitive Networks (TSN)[C]//Proceedings of the 24th ACM International Conference on Real-Time Networks and Systems. New York, NY, USA: ACM, 2016: 203-212.
[36] 王朴野. 时间敏感网络中调度算法的研究与仿真[D]. 北京: 北京邮电大学, 2018.
[37] YAN J, QUAN W, JIANG X, et al. Injection Time Planning: Making CQF Practical in Time Sensitive Networking[C]//Proceedings of the 2020 IEEE INFOCOM. 2020: 616-625.
[38] QUAN W, YAN J, JIANG X, et al. On-line Traffic Scheduling optimization in IEEE 802.1Qch based Time-Sensitive Networks[C]//Proceedings of the 2020 IEEE International Conference on High Performance Computing and Communications. 2020: 369-376.
[39] ZHOU Z, BERGER M S, RUEPP S, et al. Insight into the IEEE 802.1 Qcr Asynchronous Traffic Shaping in Time Sensitive Network[J]. Advances in Science, Technology and Engineering Systems, 2019, 4(1): 292-301.
[40] BOUDEC J Y L, THIRAN P. Network Calculus : A Theory of Deterministic Queuing Systems for the Internet[M]. Springer, 2001.
[41] ZHAO L, POP P, ZHENG Z, et al. Timing Analysis of AVB Traffic in TSN Networks Using Network Calculus[C]//Proceedings of the 2018 IEEE Real-Time and Embedded Technology and Applications Symposium. Piscataway, NJ: IEEE, 2018: 25-36.
[42] IEEE. IEEE Standard for Local and Metropolitan Area Network – Bridges and Bridged Networks[S]. Piscataway,NJ: IEEE, 2018.
[43] 杜静. 时间敏感网络关键技术仿真研究[D]. 西安电子科技大学, 2019.
[44] IMPUTATO P, AVALLONE S. Design and Implementation of the Traffic Control Module in ns-3[C]//Proceedings of the 2016 ACM Workshop on Ns-3. New York, NY, USA: ACM, 2016:1-8.
修改评论