[1] FLEMING W J. Overview of automotive sensors[J]. IEEE Sensors Journal, 2001, 1(4): 296-308.
[2] KANOUN O, TRANKLER H R. Sensor technology advances and future trends[J]. IEEE Transactions on Instrumentation and Measurement, 2004, 53(6): 1497-1501.
[3] SOLGAARD O, GODIL A A, HOWE R T, et al. Optical MEMS: From micromirrors to complex systems[J]. Journal of Microelectromechanical Systems, 2014, 23(3): 517-538.
[4] LEE B H, KIM Y H, PARK K S, et al. Interferometric fiber optic sensors[J]. Sensors, 2012,12(3): 2467-2486.
[5] ADHIKARY K, CHAUDHURI S. Gallium nitride: Synthesis and characterization[J]. Transactions of the Indian Ceramic Society, 2007, 66(1): 1-16.
[6] AVIT G, LEKHAL K, ANDRE Y, et al. Ultralong and defect-free GaN nanowires grown by the HVPE process[J]. Nano Letters, 2014, 14(2): 559-562.
[7] KANOUN M B, GOUMRI-SAID S, MERAD A E, et al. Zinc-blende AlN and GaN under pressure: structural, electronic, elastic and piezoelectric properties[J]. Semiconductor Science and Technology, 2004, 19(11): 1220-1231.
[8] MASHIKO H, OGURI K, YAMAGUCHI T, et al. Petahertz optical drive with wide-bandgap semiconductor[J]. Nature Physics, 2016, 12(8): 741-745.
[9] LI K H, LU H, FU W Y, et al. Intensity-Stabilized LEDs with monolithically integratedphotodetectors[J]. IEEE Transactions on Industrial Electronics, 2019, 66(9): 7426-7432.
[10] LUO Y, AN X, CHEN L, et al. Chip-scale optical airflow sensor[J]. Microsystems and Nanoengineering, 2022, 8(4): 1-8.
[11] YU B, LUO Y, CHEN L, et al. An optical humidity sensor: A compact photonic chip integrated with artificial opal[J]. Sensors and Actuators B: Chemical, 2021, 349(6):130763
[12] AN X, YANG H, LUO Y, et al. Ultrafast miniaturized GaN-based optoelectronic proximity sensor[J]. Photonics Research, 2022, 10(8): 1964-1970
[13] CHEN J, YIN J, AN X, et al. III-Nitride microchips for sugar concentration detection[J]. IEEE Sensors Journal, 2022, 22(3): 2078-2082.
[14] CHEN L, WU Y P, LI K H. Monolithic InGaN/GaN photonic chips for heart pulse monitoring[J]. Optics Letters, 2020, 45(18): 4992-4995.
[15] JOE H-E, YUN H, JO S-H, et al. A review on optical fiber sensors for environmental monitoring[J]. International Journal of Precision Engineering and Manufacturing-Green Technology, 2018, 5(1): 173-191.
[16] QIU H, MIN F, YANG Y. Fiber optic sensing technologies potentially applicable for hypersonic wind tunnel harsh environments[J]. Advances in Aerodynamics, 2020, 2(1): 10.
[17] FENG W, XU B, FAN Y-F, et al. Study on life evaluation technology of fiber optic gyroscope in space application[C]. Fiber Optic Sensing and Optical Communication, 2018, 10849: 1-7.
[18] TOSI D, POEGGEL S, IORDACHITA I, et al. Fiber optic sensors for biomedical applications[M]. Opto-Mechanical Fiber Optic Sensors, 2018: 301-333.
[19] PEVEC S, DONLAGIC D. High resolution, all-fiber, micro-machined sensor for simultaneous measurement of refractive index and temperature[J]. Optics Express, 2014, 22(13): 16241-16253.
[20] VOLKOV P V, GORYUNOV A V, LUK’YANOV A Y, et al. A fiber-optic temperature sensor[J]. Automation and Remote Control, 2013, 74(4): 690-696.
[21] HOU W, LIU G, HAN M. A novel, high-resolution, high-speed fiber-optic temperature sensor for oceanographic applications[C]. IEEE Oceanic Engineering Society, 2015, 1-4.
[22] AMARAL L M N, FRAZAO O, SANTOS J L, et al. Fiber-Optic inclinometer based on taper michelson interferometer[J]. IEEE Sensors Journal, 2011, 11(9): 1811-1814.
[23] BAE M-K, LIM J A, KIM S, et al. Ultra-highly sensitive optical gas sensors based on chemomechanical polymer-incorporated fiber interferometer[J]. Optics Express, 2013, 21(2): 2018-2023.
[24] UVA G, PORCO F, FIORE A, et al. Structural monitoring using fiber optic sensors of a pre-stressed concrete viaduct during construction phases[J]. Case Studies in Nondestructive Testing and Evaluation, 2014, 2: 27-37.
[25] MA L, KANG Z-X, QI Y, et al. Fiber-optic temperature sensor based on a thinner no-core fiber[J]. Optik, 2015, 126(9): 1044-1046.
[26] AU H Y, KHIJWANIA S K, FU H Y, et al. Temperature-insensitive Fiber Bragg Grating based tilt sensor with large dynamic range[J]. Journal of Lightwave Technology, 2011, 29(11): 1714-1720.
[27] LIU S, WANG Y, LIAO C, et al. High-sensitivity strain sensor based on in-fiber improved Fabry-Perot interferometer[J]. Optics Letters, 2014, 39(7): 2121-2124.
[28] CARLINO S, MIRABILE M, TROISE C, et al. Distributed-Temperature-Sensing using optical methods: A first application in the offshore area of Campi Flegrei Caldera (Southern Italy) for volcano monitoring[J]. Remote Sensing, 2016, 8(8): 674.
[29] GU G, JIANG J, WANG S, et al. Highly sensitive temperature sensor based on hollow microsphere for ocean application[J]. IEEE Photonics Journal, 2019, 11(6): 1-8.
[30] YANG M, ZHU Y, AN R. Underwater fiber-optic salinity and pressure sensor based on surface plasmon resonance and multimode interference[J]. Applied Optics, 2021, 60(30): 9352-9357.
[31] PEVEC S, DONLAGIC D. Miniature fiber-optic sensor for simultaneous measurement of pressure and refractive index[J]. Optics Letters, 2014, 39(21): 6221-6224.
[32] WANG S, YANG H, LIAO Y, et al. High-Sensitivity salinity and temperature sensing in seawater based on a microfiber directional coupler[J]. IEEE Photonics Journal, 2016, 8(4): 1-9.
[33] HU X, GIRARDI M, YE Z, et al. Si3N4 photonic integration platform at 1 µm for optical interconnects[J]. Optics Express, 2020, 28(9): 13019-13031.
[34] LI K H, FU W Y, CHOI H W. Chip-scale GaN integration[J]. Progress in Quantum Electronics, 2020, 70: 100247.
[35] LIU A Y, BOWERS J. Photonic Integration With Epitaxial III–V on Silicon[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24(6): 1-12.
[36] YAN J, PIAO J, WANG Y. An enhancement mode MOSFET based on GaN-on-Silicon platform for monolithic OEIC[J]. IEEE Electron Device Letters, 2020, 41(1): 76-79.
[37] ARNOLD B, WOHLRAB D, MEINECKE C, et al. Design, Manufacturing and test of a high-precision MEMS inclination sensor for navigation systems in robot-assisted surgery[C] International Journal of Biomedical Science and Engineering, 2018, 6(1): 1-6.
[38] PEI H-F, YIN J-H, JIN W. Development of novel optical fiber sensors for measuring tilts and displacements of geotechnical structures[J]. Measurement Science and Technology, 2013, 24(9): 095202.
[39] YOSHIDA T, OHATA K, UEBA M. Highly accurate inclinometer robust to ultralow-frequency acceleration disturbances and applications to autotracking antenna systems for vessels[J]. IEEE Transactions on Instrumentation and Measurement, 2009, 58(8): 2525-2534.
[40] ZHAO S, LI Y, ZHANG E, et al. Note: Differential amplified high-resolution tilt angle measurement system[J]. The Review of scientific instruments, 2014, 85(9): 096104.
[41] TANG L, ZHANG K R, CHEN S, et al. MEMS inclinometer based on a novel piezoresistor structure[J]. Microelectronics Journal, 2009, 40(1): 78-82.
[42] SU S, LI D, TAN N, et al. The study of a novel tilt sensor using magnetic fluid and its detection mechanism[J]. IEEE Sensors Journal, 2017, 17(15): 4708-4715.
[43] YAO J, LIU S, LI Z, et al. A novel ferrofluid inclinometer exploiting a hall element[J]. IEEE Sensors Journal, 2016, 16(22): 7986-7991.
[44] ZOU X, THIRUVENKATANATHAN P, SESHIA A A. A high-resolution micro-electro-mechanical resonant tilt sensor[J]. Sensors and Actuators A: Physical, 2014, 220: 168-177.
[45] COURTEAUD J, COMBETTE P, CRESPY N, et al. Thermal simulation and experimental results of a micromachined thermal inclinometer[J]. Sensors and Actuators A: Physical, 2008, 141(2): 307-313.
[46] DINH T D, BUI T T, QUOC T V, et al. Two-axis tilt angle detection based on dielectric liquid capacitive sensor[J]. 2016 IEEE SENSORS, 2016, 1-3.
[47] UEDA H, UENO H, ITOIGAWA K, et al. Micro capacitive inclination sensor utilizing dielectric nano-particles[J]. IEEE International Conference on Micro Electro Mechanical Systems, 2006, 706-709.
[48] OLARU R N, DRAGOI D D. Inductive tilt sensor with magnets and magnetic fluid[J]. Sensors and Actuators A-physical, 2005, 120(2): 424-428.
[49] BAJIĆ J S, STUPAR D Z, MANOJLOVIC L M, et al. A simple, low-cost, high-sensitivity fiber-optic tilt sensor[J]. Sensors and Actuators A-physical, 2012, 185: 33-38.
[50] BAJIĆ J S, STUPAR D Z, JOŽA A, et al. A simple fibre optic inclination sensor based on the refraction of light[J]. Physica Scripta, 2012, 2012(T149): 014024.
[51] AISH A A A, REHMAN M. Development of a low cost optical tilt sensor[C]. International Conference on Autonomous Robots and Agents, 2000, 290-293.
[52] BAO H, DONG X, SHAO L-Y, et al. Temperature-insensitive 2-d pendulum clinometer using two fiber bragg gratings[J]. IEEE Photonics Technology Letters, 2010, 22(12): 863-865.
[53] BAO H, DONG X, GONG H, et al. Temperature-insensitive FBG tilt sensor with a large measurement range[J]. Optics Communications, 2010, 283(6): 968-970
[54] DENG M, ZHAO Y, YIN F, et al. Interferometric fiber-optic tilt sensor exploiting taper and lateral-offset fusing splicing[J]. IEEE Photonics Technology Letters, 2016, 28(20): 2225-2228.
[55] LEE C-L, SHIH W-C, HSU J-M, et al. Asymmetrical dual tapered fiber Mach-Zehnder interferometer for fiber-optic directional tilt sensor[J]. Optics express, 2014, 22(20): 24646-24654.
[56] DAS S, BADAL C. A liquid pendulum based optical tilt sensor[J]. Sensors and Actuators A: Physical, 2019, 285: 543-549
[57] YANG Y, GAO X, YUAN J, et al. On-chip integration operating under the extraordinary light detection mode of an InGaN/GaN diode[J]. IEEE Photonics Technology Letters, 2017, 29(5): 446-449.
[58] ABBAS K A, ABDULKARIM S M, SALEH A M, et al. Suitability of viscosity measurement methods for liquid food variety and applicability in food industry - A review[J]. Journal of Food Agriculture and Environment, 2010, 8(3): 100-107.
[59] JAKOBY B, BEIGELBECK R, KEPLINGER F, et al. Miniaturized sensors for the viscosity and density of liquids-performance and issues[J]. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 2010, 57(1): 111-120.
[60] MA C, SUN W, XU L, et al. A minireview of viscosity-sensitive fluorescent probes: design and biological applications[J]. Journal of materials chemistry B, 2020, 8(42): 9642-9651.
[61] YUNUS M, ARIFIN A. Design of oil viscosity sensor based on plastic optical fiber[J]. Journal of Physics: Conference Series, 2018, 979(1): 012083
[62] HAIDEKKER M A, AKERS W J, FISCHER D A, et al. Optical fiber-based fluorescent viscosity sensor[J]. Optics letters, 2006, 31(17): 2529-2531.
[63] CHANG C L, PéREZ A, KUVER R, et al. Optical viscosity sensor using bend loss of fiber[C]. Health Monitoring of Structural and Biological Systems, 2008, 6935(1): 1-11.
[64] WANG J-N, TANG J-L. An optical fiber viscometer based on long-period fiber grating technology and capillary tube mechanism[J]. Sensors, 2010, 10(12): 11174 - 11188.
[65] TAGUCHI Y, NAGAMACHI R, NAGASAKA Y. Micro optical viscosity sensor for in situ measurement based on a laser-induced capillary wave[J]. Journal of Thermal Science and Technology, 2009, 4(1): 98-108.
[66] GUPTA S, WANG W S-Y, VANAPALLI S A. Microfluidic viscometers for shear rheology of complex fluids and biofluids[J]. Biomicrofluidics, 2016, 10(4): 043402.
[67] SINGH P, SHARMA A, PUCHADES V, et al. A comprehensive review on mems-based viscometers[J]. Sensors and Actuators A: Physical, 2022, 338, 113456
[68] VOGLHUBER-BRUNNMAIER T, JAKOBY B. Electromechanical resonators for sensing fluid density and viscosity—a review[J]. Measurement Science and Technology, 2021, 33(1): 012001.
[69] BASUMATARY T, CHETIA D, SINGH H K, et al. Fiber optic viscometer based on sliding of liquid drop under gravity on inclined flow channel[J]. IEEE Transactions on Instrumentation and Measurement, 2016, 65(4): 930-938.
[70] SARMA P, SINGH H K, BEZBORUAH T. Fiber optic capillary flow viscometer[J]. IEEE Sensors Letters, 2019, 3(2): 1-4.
[71] GAO X, LIU P, YIN Q, et al. Wireless light energy harvesting and communication in a waterproof GaN optoelectronic system[J]. Communications Engineering, 2022, 1(16): 1-7.
[72] HOSPODKOVá A, NIKL M, PACHEROVA O, et al. InGaN/GaN multiple quantum well for fast scintillation application: radioluminescence and photoluminescence study[J]. Nanotechnology, 2014, 25(45): 455501.
[73] YU C-L, CHUANG R W, CHANG S-J, et al. InGaN–GaN MQW metal–semiconductor–metal photodiodes with semi-insulating Mg-doped GaN cap layers[J]. IEEE Photonics Technology Letters, 2007, 19(11): 846-848.
[74] KHATIR B, GOLOVIN K. Ultrasmall volume single-droplet viscometry: monitoring cornering instabilities on omniphobic polydimethylsiloxane brushes[J]. Langmuir, 2021, 37(44): 12812-12818.
[75] PODGORSKI T, FLESSELLES J M, LIMAT L. Corners, cusps, and pearls in running drops[J]. Physical Review Letters, 2001, 87(3): 036102.
[76] ALMANASSRA I W, ZAKARIA Y, KOCHKODAN V, et al. XPS and material properties of raw and oxidized carbide-derived carbon and their application in antifreeze thermal fluids/nanofluids[J]. Journal of Thermal Analysis and Calorimetry, 2022, 147(21): 1-17.
[77] LEHN A, BAUMER A, LEFTWICH M C. An experimental approach to a simplified model of human birth[J]. Journal of biomechanics, 2016, 49(11): 2313-2317.
[78] ABD-RAZAK N H, CHEW Y M J, BIRD M R. Membrane fouling during the fractionation of phytosterols isolated from orange juice[J]. Food and Bioproducts Processing, 2019, 113: 10-21.
[79] PALA Ç U, TOKLUCU A K. Microbial, Physicochemical and sensory properties of UV-C processed orange juice and its microbial stability during refrigerated storage[J]. Lwt - Food Science and Technology, 2013, 50(2): 426-431.
[80] MAKTOUF S, NEIFAR M, DRIRA S J, et al. Lemon juice clarification using fungal pectinolytic enzymes coupled to membrane ultrafiltration[J]. Food and Bioproducts Processing, 2014, 92(1): 14-19.
[81] SARAVACOS G D. Effect of temperature on viscosity of fruit juices and purees[J]. Journal of Food Science, 1970, 35(2): 122-125.
[82] WANG W C, LIU C S. Liquid viscosity sensing using nonlinear vibration of a fiberoptic sensor[J]. Rev Sci Instrum, 2013, 84(7): 075007.
[83] OLIVEIRA R A, CANNING J, COOK K T, et al. Compact dip-style viscometer based on the acousto-optic effect in a long period fiber grating[J]. Sensors and Actuators B-chemical, 2011, 157(2): 621-626.
修改评论