中文版 | English
题名

GaN集成器件对液滴的动态响应及其应用研究

其他题名
DYNAMIC RESPONSE OF THE GALLIUM NITRIDE INTEGRATED DEVICE TO LIQUID DROPLETS AND APPLICATIONS
姓名
姓名拼音
YANG Hongying
学号
12032645
学位类型
硕士
学位专业
080903 微电子学与固体电子学
学科门类/专业学位类别
08 工学
导师
李携曦
导师单位
深港微电子学院
外机构导师单位
南方科技大学深港微电子学院
论文答辩日期
2023-05-15
论文提交日期
2023-06-29
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

作为第三代半导体材料,氮化镓(Gallium NitrideGaN)具有很多独特优势,包括禁带宽度大、热导率高、抗辐射、耐高温、耐酸碱、强度高和硬度高等。GaN光电器件可以将发光二极管(LED)和光电检测器(PD)制造在同一个衬底上,实现片上集成。不仅可减少复杂光耦合,还能缩小传感系统体积,提高装置微型化程度,克服传统光电传感系统体积大的问题。

本文提出氮化镓LEDPD集成方案的设想,将LEDPD制备在同一个衬底上,形成结构紧凑的倒装集成器件,同时实现发光和收光功能,为实现传感器的一体化提供基础。

通过将单片倒装GaN LED-PD器件与液体钟摆及空腔结合,依据光在不同界面发生全反射的临界角不同,提出一种高分辨率、高稳定性、低成本的微型光学角度传感装置。对其进行实验验证以及性能优化后,该角度检测装置可测范围为-75°~+75°,分辨率为0.003°,器件大小仅为0.5×0.5×0.5 cm3

此外,基于集成GaN器件开发可用于实际测量的液体粘度传感器,能够有效地测量不同粘度的液滴在倾斜表面上滑动的时间,提出一种简单且成本低的粘度测量方法。该装置可在55 s内分辨2600 mPa.s的液体粘度,且测量过程中样本体积仅需55 μL

其他摘要

As the third-generation semiconductor material, Gallium Nitride (GaN) has a lot of unique advantages, such as large forbidden band width, high thermal conductivity, high temperature resistance, radiation resistance, acid and alkali resistance, high strength and high hardness, etc. GaN optoelectronic devices can manufacture light-emitting diodes (LEDs) and photodetectors (PDs) on the same substrate to achieve on-chip integration. Not only can complex optical coupling be reduced, but the size of the sensing system can also be reduced, increasing the miniaturisation of the device and overcoming the problem of the large size of conventional optoelectronic sensing systems.

This paper presents the idea of the integrated GaN LED and PD solution, in which the LED and PD are prepared on the same device to form a compact monolithic flip-flop integrated device that simultaneously emits and receives light, providing the basis for the implementation of integrated sensor functions.

By combining the monolithic flip-chip GaN LED-PD device with a liquid pendulum and a cavity, a high-resolution, high-stability, low-cost miniature optical angle sensing device is proposed based on the different critical angles of total reflection of light at different interfaces. After experimental validation and performance optimisation, the angle detection device can measure from -75° to +75° with a resolution of 0.003°, and the device size is only 0.5×0.5×0.5 cm3.

In addition, the development of a viscosity sensor based on a monolithic integrated GaN device that can be used for practical measurements has resulted in a simple and low-cost method of measuring viscosity by taking advantage of the difference in the time it takes for droplets of different viscosity to slide on an inclined surface. The device is able to resolve the viscosity of liquids from 2 to 600 mPa.s in 55 s and the sample volume is only 55 µl during the measurement.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2023-06
参考文献列表

[1] FLEMING W J. Overview of automotive sensors[J]. IEEE Sensors Journal, 2001, 1(4): 296-308.
[2] KANOUN O, TRANKLER H R. Sensor technology advances and future trends[J]. IEEE Transactions on Instrumentation and Measurement, 2004, 53(6): 1497-1501.
[3] SOLGAARD O, GODIL A A, HOWE R T, et al. Optical MEMS: From micromirrors to complex systems[J]. Journal of Microelectromechanical Systems, 2014, 23(3): 517-538.
[4] LEE B H, KIM Y H, PARK K S, et al. Interferometric fiber optic sensors[J]. Sensors, 2012,12(3): 2467-2486.
[5] ADHIKARY K, CHAUDHURI S. Gallium nitride: Synthesis and characterization[J]. Transactions of the Indian Ceramic Society, 2007, 66(1): 1-16.
[6] AVIT G, LEKHAL K, ANDRE Y, et al. Ultralong and defect-free GaN nanowires grown by the HVPE process[J]. Nano Letters, 2014, 14(2): 559-562.
[7] KANOUN M B, GOUMRI-SAID S, MERAD A E, et al. Zinc-blende AlN and GaN under pressure: structural, electronic, elastic and piezoelectric properties[J]. Semiconductor Science and Technology, 2004, 19(11): 1220-1231.
[8] MASHIKO H, OGURI K, YAMAGUCHI T, et al. Petahertz optical drive with wide-bandgap semiconductor[J]. Nature Physics, 2016, 12(8): 741-745.
[9] LI K H, LU H, FU W Y, et al. Intensity-Stabilized LEDs with monolithically integratedphotodetectors[J]. IEEE Transactions on Industrial Electronics, 2019, 66(9): 7426-7432.
[10] LUO Y, AN X, CHEN L, et al. Chip-scale optical airflow sensor[J]. Microsystems and Nanoengineering, 2022, 8(4): 1-8.
[11] YU B, LUO Y, CHEN L, et al. An optical humidity sensor: A compact photonic chip integrated with artificial opal[J]. Sensors and Actuators B: Chemical, 2021, 349(6):130763
[12] AN X, YANG H, LUO Y, et al. Ultrafast miniaturized GaN-based optoelectronic proximity sensor[J]. Photonics Research, 2022, 10(8): 1964-1970
[13] CHEN J, YIN J, AN X, et al. III-Nitride microchips for sugar concentration detection[J]. IEEE Sensors Journal, 2022, 22(3): 2078-2082.
[14] CHEN L, WU Y P, LI K H. Monolithic InGaN/GaN photonic chips for heart pulse monitoring[J]. Optics Letters, 2020, 45(18): 4992-4995.
[15] JOE H-E, YUN H, JO S-H, et al. A review on optical fiber sensors for environmental monitoring[J]. International Journal of Precision Engineering and Manufacturing-Green Technology, 2018, 5(1): 173-191.
[16] QIU H, MIN F, YANG Y. Fiber optic sensing technologies potentially applicable for hypersonic wind tunnel harsh environments[J]. Advances in Aerodynamics, 2020, 2(1): 10.
[17] FENG W, XU B, FAN Y-F, et al. Study on life evaluation technology of fiber optic gyroscope in space application[C]. Fiber Optic Sensing and Optical Communication, 2018, 10849: 1-7.
[18] TOSI D, POEGGEL S, IORDACHITA I, et al. Fiber optic sensors for biomedical applications[M]. Opto-Mechanical Fiber Optic Sensors, 2018: 301-333.
[19] PEVEC S, DONLAGIC D. High resolution, all-fiber, micro-machined sensor for simultaneous measurement of refractive index and temperature[J]. Optics Express, 2014, 22(13): 16241-16253.
[20] VOLKOV P V, GORYUNOV A V, LUK’YANOV A Y, et al. A fiber-optic temperature sensor[J]. Automation and Remote Control, 2013, 74(4): 690-696.
[21] HOU W, LIU G, HAN M. A novel, high-resolution, high-speed fiber-optic temperature sensor for oceanographic applications[C]. IEEE Oceanic Engineering Society, 2015, 1-4.
[22] AMARAL L M N, FRAZAO O, SANTOS J L, et al. Fiber-Optic inclinometer based on taper michelson interferometer[J]. IEEE Sensors Journal, 2011, 11(9): 1811-1814.
[23] BAE M-K, LIM J A, KIM S, et al. Ultra-highly sensitive optical gas sensors based on chemomechanical polymer-incorporated fiber interferometer[J]. Optics Express, 2013, 21(2): 2018-2023.
[24] UVA G, PORCO F, FIORE A, et al. Structural monitoring using fiber optic sensors of a pre-stressed concrete viaduct during construction phases[J]. Case Studies in Nondestructive Testing and Evaluation, 2014, 2: 27-37.
[25] MA L, KANG Z-X, QI Y, et al. Fiber-optic temperature sensor based on a thinner no-core fiber[J]. Optik, 2015, 126(9): 1044-1046.
[26] AU H Y, KHIJWANIA S K, FU H Y, et al. Temperature-insensitive Fiber Bragg Grating based tilt sensor with large dynamic range[J]. Journal of Lightwave Technology, 2011, 29(11): 1714-1720.
[27] LIU S, WANG Y, LIAO C, et al. High-sensitivity strain sensor based on in-fiber improved Fabry-Perot interferometer[J]. Optics Letters, 2014, 39(7): 2121-2124.
[28] CARLINO S, MIRABILE M, TROISE C, et al. Distributed-Temperature-Sensing using optical methods: A first application in the offshore area of Campi Flegrei Caldera (Southern Italy) for volcano monitoring[J]. Remote Sensing, 2016, 8(8): 674.
[29] GU G, JIANG J, WANG S, et al. Highly sensitive temperature sensor based on hollow microsphere for ocean application[J]. IEEE Photonics Journal, 2019, 11(6): 1-8.
[30] YANG M, ZHU Y, AN R. Underwater fiber-optic salinity and pressure sensor based on surface plasmon resonance and multimode interference[J]. Applied Optics, 2021, 60(30): 9352-9357.
[31] PEVEC S, DONLAGIC D. Miniature fiber-optic sensor for simultaneous measurement of pressure and refractive index[J]. Optics Letters, 2014, 39(21): 6221-6224.
[32] WANG S, YANG H, LIAO Y, et al. High-Sensitivity salinity and temperature sensing in seawater based on a microfiber directional coupler[J]. IEEE Photonics Journal, 2016, 8(4): 1-9.
[33] HU X, GIRARDI M, YE Z, et al. Si3N4 photonic integration platform at 1 µm for optical interconnects[J]. Optics Express, 2020, 28(9): 13019-13031.
[34] LI K H, FU W Y, CHOI H W. Chip-scale GaN integration[J]. Progress in Quantum Electronics, 2020, 70: 100247.
[35] LIU A Y, BOWERS J. Photonic Integration With Epitaxial III–V on Silicon[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24(6): 1-12.
[36] YAN J, PIAO J, WANG Y. An enhancement mode MOSFET based on GaN-on-Silicon platform for monolithic OEIC[J]. IEEE Electron Device Letters, 2020, 41(1): 76-79.
[37] ARNOLD B, WOHLRAB D, MEINECKE C, et al. Design, Manufacturing and test of a high-precision MEMS inclination sensor for navigation systems in robot-assisted surgery[C] International Journal of Biomedical Science and Engineering, 2018, 6(1): 1-6.
[38] PEI H-F, YIN J-H, JIN W. Development of novel optical fiber sensors for measuring tilts and displacements of geotechnical structures[J]. Measurement Science and Technology, 2013, 24(9): 095202.
[39] YOSHIDA T, OHATA K, UEBA M. Highly accurate inclinometer robust to ultralow-frequency acceleration disturbances and applications to autotracking antenna systems for vessels[J]. IEEE Transactions on Instrumentation and Measurement, 2009, 58(8): 2525-2534.
[40] ZHAO S, LI Y, ZHANG E, et al. Note: Differential amplified high-resolution tilt angle measurement system[J]. The Review of scientific instruments, 2014, 85(9): 096104.
[41] TANG L, ZHANG K R, CHEN S, et al. MEMS inclinometer based on a novel piezoresistor structure[J]. Microelectronics Journal, 2009, 40(1): 78-82.
[42] SU S, LI D, TAN N, et al. The study of a novel tilt sensor using magnetic fluid and its detection mechanism[J]. IEEE Sensors Journal, 2017, 17(15): 4708-4715.
[43] YAO J, LIU S, LI Z, et al. A novel ferrofluid inclinometer exploiting a hall element[J]. IEEE Sensors Journal, 2016, 16(22): 7986-7991.
[44] ZOU X, THIRUVENKATANATHAN P, SESHIA A A. A high-resolution micro-electro-mechanical resonant tilt sensor[J]. Sensors and Actuators A: Physical, 2014, 220: 168-177.
[45] COURTEAUD J, COMBETTE P, CRESPY N, et al. Thermal simulation and experimental results of a micromachined thermal inclinometer[J]. Sensors and Actuators A: Physical, 2008, 141(2): 307-313.
[46] DINH T D, BUI T T, QUOC T V, et al. Two-axis tilt angle detection based on dielectric liquid capacitive sensor[J]. 2016 IEEE SENSORS, 2016, 1-3.
[47] UEDA H, UENO H, ITOIGAWA K, et al. Micro capacitive inclination sensor utilizing dielectric nano-particles[J]. IEEE International Conference on Micro Electro Mechanical Systems, 2006, 706-709.
[48] OLARU R N, DRAGOI D D. Inductive tilt sensor with magnets and magnetic fluid[J]. Sensors and Actuators A-physical, 2005, 120(2): 424-428.
[49] BAJIĆ J S, STUPAR D Z, MANOJLOVIC L M, et al. A simple, low-cost, high-sensitivity fiber-optic tilt sensor[J]. Sensors and Actuators A-physical, 2012, 185: 33-38.
[50] BAJIĆ J S, STUPAR D Z, JOŽA A, et al. A simple fibre optic inclination sensor based on the refraction of light[J]. Physica Scripta, 2012, 2012(T149): 014024.
[51] AISH A A A, REHMAN M. Development of a low cost optical tilt sensor[C]. International Conference on Autonomous Robots and Agents, 2000, 290-293.
[52] BAO H, DONG X, SHAO L-Y, et al. Temperature-insensitive 2-d pendulum clinometer using two fiber bragg gratings[J]. IEEE Photonics Technology Letters, 2010, 22(12): 863-865.
[53] BAO H, DONG X, GONG H, et al. Temperature-insensitive FBG tilt sensor with a large measurement range[J]. Optics Communications, 2010, 283(6): 968-970
[54] DENG M, ZHAO Y, YIN F, et al. Interferometric fiber-optic tilt sensor exploiting taper and lateral-offset fusing splicing[J]. IEEE Photonics Technology Letters, 2016, 28(20): 2225-2228.
[55] LEE C-L, SHIH W-C, HSU J-M, et al. Asymmetrical dual tapered fiber Mach-Zehnder interferometer for fiber-optic directional tilt sensor[J]. Optics express, 2014, 22(20): 24646-24654.
[56] DAS S, BADAL C. A liquid pendulum based optical tilt sensor[J]. Sensors and Actuators A: Physical, 2019, 285: 543-549
[57] YANG Y, GAO X, YUAN J, et al. On-chip integration operating under the extraordinary light detection mode of an InGaN/GaN diode[J]. IEEE Photonics Technology Letters, 2017, 29(5): 446-449.
[58] ABBAS K A, ABDULKARIM S M, SALEH A M, et al. Suitability of viscosity measurement methods for liquid food variety and applicability in food industry - A review[J]. Journal of Food Agriculture and Environment, 2010, 8(3): 100-107.
[59] JAKOBY B, BEIGELBECK R, KEPLINGER F, et al. Miniaturized sensors for the viscosity and density of liquids-performance and issues[J]. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 2010, 57(1): 111-120.
[60] MA C, SUN W, XU L, et al. A minireview of viscosity-sensitive fluorescent probes: design and biological applications[J]. Journal of materials chemistry B, 2020, 8(42): 9642-9651.
[61] YUNUS M, ARIFIN A. Design of oil viscosity sensor based on plastic optical fiber[J]. Journal of Physics: Conference Series, 2018, 979(1): 012083
[62] HAIDEKKER M A, AKERS W J, FISCHER D A, et al. Optical fiber-based fluorescent viscosity sensor[J]. Optics letters, 2006, 31(17): 2529-2531.
[63] CHANG C L, PéREZ A, KUVER R, et al. Optical viscosity sensor using bend loss of fiber[C]. Health Monitoring of Structural and Biological Systems, 2008, 6935(1): 1-11.
[64] WANG J-N, TANG J-L. An optical fiber viscometer based on long-period fiber grating technology and capillary tube mechanism[J]. Sensors, 2010, 10(12): 11174 - 11188.
[65] TAGUCHI Y, NAGAMACHI R, NAGASAKA Y. Micro optical viscosity sensor for in situ measurement based on a laser-induced capillary wave[J]. Journal of Thermal Science and Technology, 2009, 4(1): 98-108.
[66] GUPTA S, WANG W S-Y, VANAPALLI S A. Microfluidic viscometers for shear rheology of complex fluids and biofluids[J]. Biomicrofluidics, 2016, 10(4): 043402.
[67] SINGH P, SHARMA A, PUCHADES V, et al. A comprehensive review on mems-based viscometers[J]. Sensors and Actuators A: Physical, 2022, 338, 113456
[68] VOGLHUBER-BRUNNMAIER T, JAKOBY B. Electromechanical resonators for sensing fluid density and viscosity—a review[J]. Measurement Science and Technology, 2021, 33(1): 012001.
[69] BASUMATARY T, CHETIA D, SINGH H K, et al. Fiber optic viscometer based on sliding of liquid drop under gravity on inclined flow channel[J]. IEEE Transactions on Instrumentation and Measurement, 2016, 65(4): 930-938.
[70] SARMA P, SINGH H K, BEZBORUAH T. Fiber optic capillary flow viscometer[J]. IEEE Sensors Letters, 2019, 3(2): 1-4.
[71] GAO X, LIU P, YIN Q, et al. Wireless light energy harvesting and communication in a waterproof GaN optoelectronic system[J]. Communications Engineering, 2022, 1(16): 1-7.
[72] HOSPODKOVá A, NIKL M, PACHEROVA O, et al. InGaN/GaN multiple quantum well for fast scintillation application: radioluminescence and photoluminescence study[J]. Nanotechnology, 2014, 25(45): 455501.
[73] YU C-L, CHUANG R W, CHANG S-J, et al. InGaN–GaN MQW metal–semiconductor–metal photodiodes with semi-insulating Mg-doped GaN cap layers[J]. IEEE Photonics Technology Letters, 2007, 19(11): 846-848.
[74] KHATIR B, GOLOVIN K. Ultrasmall volume single-droplet viscometry: monitoring cornering instabilities on omniphobic polydimethylsiloxane brushes[J]. Langmuir, 2021, 37(44): 12812-12818.
[75] PODGORSKI T, FLESSELLES J M, LIMAT L. Corners, cusps, and pearls in running drops[J]. Physical Review Letters, 2001, 87(3): 036102.
[76] ALMANASSRA I W, ZAKARIA Y, KOCHKODAN V, et al. XPS and material properties of raw and oxidized carbide-derived carbon and their application in antifreeze thermal fluids/nanofluids[J]. Journal of Thermal Analysis and Calorimetry, 2022, 147(21): 1-17.
[77] LEHN A, BAUMER A, LEFTWICH M C. An experimental approach to a simplified model of human birth[J]. Journal of biomechanics, 2016, 49(11): 2313-2317.
[78] ABD-RAZAK N H, CHEW Y M J, BIRD M R. Membrane fouling during the fractionation of phytosterols isolated from orange juice[J]. Food and Bioproducts Processing, 2019, 113: 10-21.
[79] PALA Ç U, TOKLUCU A K. Microbial, Physicochemical and sensory properties of UV-C processed orange juice and its microbial stability during refrigerated storage[J]. Lwt - Food Science and Technology, 2013, 50(2): 426-431.
[80] MAKTOUF S, NEIFAR M, DRIRA S J, et al. Lemon juice clarification using fungal pectinolytic enzymes coupled to membrane ultrafiltration[J]. Food and Bioproducts Processing, 2014, 92(1): 14-19.
[81] SARAVACOS G D. Effect of temperature on viscosity of fruit juices and purees[J]. Journal of Food Science, 1970, 35(2): 122-125.
[82] WANG W C, LIU C S. Liquid viscosity sensing using nonlinear vibration of a fiberoptic sensor[J]. Rev Sci Instrum, 2013, 84(7): 075007.
[83] OLIVEIRA R A, CANNING J, COOK K T, et al. Compact dip-style viscometer based on the acousto-optic effect in a long period fiber grating[J]. Sensors and Actuators B-chemical, 2011, 157(2): 621-626.

所在学位评定分委会
电子科学与技术
国内图书分类号
TP212. 1
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/544645
专题南方科技大学-香港科技大学深港微电子学院筹建办公室
推荐引用方式
GB/T 7714
杨鸿颖. GaN集成器件对液滴的动态响应及其应用研究[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032645-杨鸿颖-南方科技大学-(3529KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[杨鸿颖]的文章
百度学术
百度学术中相似的文章
[杨鸿颖]的文章
必应学术
必应学术中相似的文章
[杨鸿颖]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。