中文版 | English
题名

微型化实时发光强度监测系统研究

其他题名
STUDY ON MINIATURIZED REAL-TIME FLUORESCENCE INTENSITY MONITORING SYSTEM
姓名
姓名拼音
GAO Qinyuan
学号
12132623
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
08 工学
导师
唐斌
导师单位
生物医学工程系
论文答辩日期
2023-05-16
论文提交日期
2023-06-29
学位授予单位
南方科技大学
学位授予地点
深圳
摘要
糖尿病是一种无法治愈的代谢疾病,近年来在我国中老年人群中已经成为高发疾病。无论是使用降糖类药物或者采用人工胰腺的方式进行治疗,病人的血糖数据都需要进行实时准确的动态监测。目前最广泛应用的电化学传感器的有创检测方式给病人的生理和心理都带来了一定的负担,同时电化学传感器存在着噪声干扰、频繁校准和伤口感染等不可避免的缺陷。光学传感技术在这种背景下应运而生,并且有望克服上述缺点。但在临床应用上光学传感技术需要进行进一步的探索研究,解决便携性光学激发和发光实时监测等重大问题。
本文首先对血糖监测背景和国内外血糖检测技术做了系统性的调研,然后介绍半导体聚合物的葡萄糖传感原理和制备过程。在器件设计部分,完成了光学传感模块和蓝牙通讯两个主要功能模块的设计。系统的激发光源采用390 nm 的紫外LED 灯珠,探测模块采用对发射光束波长响应灵敏的光电二极管。激发光束在黑暗的背景环境下照射含葡萄糖的封闭样品器皿,探测模块采集经过葡萄糖传感器产生的发光信号。在实验验证阶段,先从系统通信验证开始验证系统的可用性,再使用不同半导体聚合物材料检测系统对发光信号实时检测。最后使用半导体聚合物葡萄糖传感器进行发光强度测量,在不同浓度下进行对比实验,验证了该系统的可行性。同时实时的数据传输到智能手机,对开发可穿戴无创血糖监控技术方法具有一定的研究意义和价值。
关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2023-06-30
参考文献列表

[1] GUARIGUATA L, WHITING D, WEIL C, et al. The international diabetes federation diabetes atlas methodology for estimating global and national prevalence of diabetes in adults[J].Diabetes Research and Clinical Practice, 2011, 94(3): 322-332.
[2] SHAW J E, SICREE R A, ZIMMET P Z. Global estimates of the prevalence of diabetes for2010 and 2030[J]. Diabetes Research and Clinical Practice, 2010, 87(1): 4-14.
[3] WANG, JIANG, DAI, et al. Prevalence and control of diabetes in chinese adults[J]. JAMA: theJournal of the American Medical Association, 2013: 948-958.
[4] MAGLIANO D J, ISLAM R M, BARR E L M, et al. Trends in incidence of total or type 2diabetes: systematic review[J]. British Medical Journal, 2019, 366: 366.
[5] PUNTHAKEE Z, GOLDENBERG R, KATZ P. Definition, classification and diagnosis of diabetes, prediabetes and metabolic syndrome[J]. Canadian Journal of Diabetes, 2018, 42: S10-S15.
[6] ELLIOTT T L, PFOTENHAUER K M. Classification and diagnosis of diabetes[J]. PrimaryCare, 2022, 49(2): 191-200.
[7] 高丽. 整体护理干预对糖尿病足护理效果的研究[J]. 内蒙古中医药, 2014, 33(13): 133-134.
[8] 梁峰,胡大一,沈珠军. 2014 美国糖尿病指南:糖尿病诊疗标准[J]. 中华临床医师杂志(电子版), 2014, 8(6): 151-158.
[9] ZUCCHINI S. Clinical aspects of different forms of diabetes in children and adolescents[J].Frontiers in Endocrinology, 2022, 13: 1110373.
[10] AGUIRRE F, BROWN A, CHO N, et al. Idf diabetes atlas: Tenth edition[M]. Tenth ed. International Diabetes Federation, 2021.
[11] HILL N E, OLIVER N S. Distinguishing between type 1 and type 2 diabetes evolving type 1diabetes in distinguishing between type 1 and type 2 diabetes[J]. British Medical Journal, 2020,370: m2998.
[12] SCHAZMANN B, MORRIS D, SLATER C, et al. A wearable electrochemical sensor for thereal-time measurement of sweat sodium concentration[J]. Analytical Methods, 2010, 2: 342-348.
[13] LEBLANC E S, HILLIER T A. The impact of gestational weight gain on glucose and insulinphysiology in pregnancy-does timing matter? comment[J]. Journal of Clinical Endocrinologyand Metabolism, 2022, 107(3): E1303-E1304.
[14] SANLIOGLU A D, ALTUNBAS H A, BALCI M K, et al. Clinical utility of insulin and insulinanalogs[J]. Islets, 2013, 5(2): 67-78.
[15] ACIKGOZ S U, DIWEKAR U M. Blood glucose regulation with stochastic optimal control forinsulin-dependent diabetic patients[J]. Chemical Engineering Science, 2010, 65(3): 1227-1236.
[16] VECCHIO I, TORNALI C, BRAGAZZI N L, et al. The discovery of insulin: An importantmilestone in the history of medicine[J]. Frontiers in Endocrinology, 2018, 9: 613.
[17] ROSENFELD L. Insulin: Discovery and controversy[J]. Clinical Chemistry, 2002, 48(12):2270-2288.
[18] LOPEZ-DE ANDRES A, PEREZ-FARINOS N, DE MIGUEL-DIEZ J, et al. Type 2 diabetesand postoperative pneumonia: An observational, population-based study using the spanish hospital discharge database, 2001-2015[J]. PLOS One, 2019, 14(2): e0211230.
[19] BROWN L, EDELMAN E. Optimal control of blood glucose: The diabetic patient or themachine?[J]. Science Translational Medicine, 2010, 2: 27ps18.
[20] TIEN K J, HUNG Y J, CHEN J F, et al. Basal insulin therapy: Unmet medical needs in asiaand the new insulin glargine in diabetes treatment[J]. Journal of Diabetes Investigation, 2019,10(3): 560-570.
[21] BERAN D, LAZO-PORRAS M, MBA C M, et al. A global perspective on the issue of accessto insulin[J]. Diabetologia, 2021, 64(5): 954-962.
[22] 孙凯, 周华, 杨膺琨, 等. 血糖监测系统的研究进展[J]. 中国激光, 2018, 45(2): 0207003.
[23] CLARKE S E, FOSTER J R. A history of blood glucose meters and their role in self-monitoringof diabetes mellitus[J]. British Journal of Biomedical Science, 2012, 69(2): 83-93.
[24] TAMBORLANE W V, BECK R W, BODE B W, et al. Continuous glucose monitoring andintensive treatment of type 1 diabetes[J]. New England Journal of Medicine, 2008, 359(14):1464-U65.
[25] CLARK L C, LYONS C. Electrode systems for continuous monitoring in cardiovascular surgery[J]. Annals of the New York Academy of Sciences, 1962, 102(Automated and Semi-AutomatedSystems in Clinical Chemistry): 29-45.
[26] SCHL?PFER P, MINDT W, RACINE P H. Electrochemical measurement of glucose usingvarious electron acceptors[J]. Clinica Chimica Acta, 1974, 57(3): 283-289.
[27] CASS A, DAVIS G, FRANCIS G D, et al. Ferrocene-mediated enzyme electrode for amperometric determination of glucose[J]. Analytical Chemistry, 1984: 667-671.
[28] ZHANG S, YANG W, NIU Y, et al. Multilayered construction of glucose oxidase andpoly(allylamine)ferrocene on gold electrodes by means of layer-by-layer covalent attachment[J]. Sensors and Actuators B: Chemical, 2004: 387-393.
[29] ZHANG S, WANG N, YU H, et al. Covalent attachment of glucose oxidase to an au electrodemodified with gold nanoparticles for use as glucose biosensor.[J]. Bioelectrochemistry, 2005,67(1): 15-22.
[30] WENTAO S, JING D, ZHANFANG M. Electrochemical glucose biosensors[J]. Progress inChemistry, 2012, 24(4): 568-576.
[31] SARREAL R, SLAUGHTER G. Dual glucose and lactate electrochemical biosensor[C]//International Conference on Nano-Micro Engineered and Molecular Systems NEMS: 201813TH Annual Ieee International Conference On Nano/Micro Engineered and Molecular Systems (Nems 2018). IEEE; IEEE Nanotechnol Council, 2018: 64-67.
[32] WANG Z, LI C, WEI Y. Application of fluorescence in studying therapeutic enzymes[M]//Advances in Experimental Medicine and Biology: volume 1148 Therapeutic Enzymes: Function and Clinical Implications. 2019: 105-114.
[33] CASH K J, CLARK H A. Nanosensors and nanomaterials for monitoring glucose in diabetes[J]. Trends in Molecular Medicine, 2010, 16(12): 584-593.
[34] HUANG Y, LONG Z, ZOU J, et al. A glucose sensor based on surface functionalized mxene[J]. IEEE Transactions on Nanotechnology, 2022, 21: 399-405.
[35] HEIKENFELD J. Technological leap for sweat sensing[J]. Nature (London), 2016, 529(7587):475-476.
[36] ROSE D P, RATTERMAN M E, GRIFFIN D K, et al. Adhesive rfid sensor patch for monitoringof sweat electrolytes[J]. IEEE Transactions on Biomedical Engineering, 2015, 62(6): 1457-1465.
[37] BARIYA M, NYEIN H, JAVEY A. Wearable sweat sensors[J]. Nature Electronics, 2018, 1(3):160-171.
[38] COYLE S, LAU K T, MOYNA N, et al. Biotexbiosensing textiles for personalised healthcaremanagement[J]. IEEE Transactions on Information Technology in Biomedicine, 2010, 14: 364-370.
[39] 苏亚, 孟卓, 王龙志, 等. 光学相干层析无创血糖检测中相关性分析及标定[J]. 中国激光,2014(7): 6.
[40] 丁宇, 姚清凯, 邓丽军, 等. 基于光声技术的血糖无损检测[J]. 激光与光电子学进展, 2018,55(3): 11.
[41] LAKSHMI N. CELLA N V M, Wilfred Chen, MULCHANDANI A. Single-walled carbonnanotube-based chemiresistive affinity biosensors for small molecules: ultrasensitive glucosedetection.[J]. Journal of the American Chemical Society, 2010, 132(14): 5024-6.
[42] CORDES D B, GAMSEY S, SINGARAM B. Fluorescent quantum dots with boronic acidsubstituted viologens to sense glucose in aqueous solution[J]. Angewandte Chemie InternationalEdition, 2006, 45(23): 3829-3832.
[43] GANG L, MEI Z, HONG-JIE W, et al. The research status and development of noninvasiveglucose optical measurements[J]. Spectroscopy and Spectral Analysis, 2010, 30(10): 2744-2747.
[44] ALARCON-PAREDES A, FRANCISCO-GARCIA V, GUZMAN-GUZMAN I P, et al. An iotbased non-invasive glucose level monitoring system using raspberry pi[J]. Applied SciencesBasel, 2019, 9(15): 3046.
[45] VADDIRAJU S, BURGESS D J, TOMAZOS I, et al. Technologies for continuous glucose monitoring: Current problems and future promises[J]. Journal of Diabetes Science and Technology,2010, 4(6): 1540-1562.
[46] WOLFBEIS O S, OEHME I, PAPKOVSKAYA N, et al. Sol–gel based glucose biosensors employing optical oxygen transducers, and a method for compensating for variable oxygen background[J]. Biosensors and Bioelectronics, 2000, 15(1-2): 69-76.
[47] ZHOU Z, QIAO L, ZHANG P, et al. An optical glucose biosensor based on glucose oxidaseimmobilized on a swim bladder membrane[J]. Analytical and Bioanalytical Chemistry, 2005,383(4): 673-679.
[48] Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis[J]. Nature,2016: 509-514.
[49] BRUEN D, DELANEY C, FLOREA L, et al. Glucose sensing for diabetes monitoring: Recentdevelopments[J]. Sensors, 2017, 17(8): 163-170.
[50] KHATAMI S H, VAKILI O, AHMADI N, et al. Glucose oxidase: Applications, sources, andrecombinant production[J]. Biotechnology and Applied Biochemistry, 2022, 69(3): 939-950.
[51] DUONG H D, SOHN O J, RHEE J I. Development of a ratiometric fluorescent glucose sensor using an oxygen-sensing membrane immobilized with glucose oxidase for the detection ofglucose in tears[J]. Biosensors-Basel, 2020, 10(8): 86.
[52] BOUGHTON C K, HOVORKA R. The artificial pancreas[J]. Current Opinion in Organ Transplantation, 2020, 25(4): 336-342.
[53] KOSCHINSKY T, HEINEMANN L. Sensors for glucose monitoring: technical and clinicalaspects[J]. Diabetes-Metabolism Research and Reviews, 2001, 17(2): 113-123.
[54] ZAVAREH A T, KO B, ROBERTS J, et al. A versatile multichannel instrument for measurementof ratiometric fluorescence intensity and phosphorescence lifetime[J]. IEEE Access, 2021, 9:103835-103849.
[55] JIN X, LI G, XU T, et al. Fully integrated flexible biosensor for wearable continuous glucosemonitoring[J]. Biosensors and Bioelectronics, 2022, 196: 113760.
[56] LEE H, LEE J, PARK H, et al. Batteryless, miniaturized implantable glucose sensor using afluorescent hydrogel[J]. Sensors, 2021, 21(24): 8464.
[57] WANG W, BAO L, LEI J, et al. Visible light induced photoelectrochemical biosensing basedon oxygen-sensitive quantum dots[J]. Analytica Chimica Acta, 2012, 744: 33-38.
[58] MILES M E, RICE M J. Recent advances in perioperative glucose monitoring[J]. CurrentOpinion in Anesthesiology, 2017, 30(6): 718-722.
[59] SAWAYAMA J, TAKEUCHI S. Long-term continuous glucose monitoring using afluorescence-based biocompatible hydrogel glucose sensor[J]. Advanced Healthcare Materials, 2021, 10(3): 2001286.
[60] ADEEL M, RAHMAN M M, CALIGIURI I, et al. Recent advances of electrochemical andoptical enzyme-free glucose sensors operating at physiological conditions[J]. Biosensors andBioelectronics, 2020, 165: 112331.
[61] LAKOWICZ J R. Principles of fluorescence spectroscopy[M]. Boston: Springer, 2006.
[62] DANDIN M, ABSHIRE P, SMELA E. Optical filtering technologies for integrated fluorescencesensors[J]. Lab on a Chip, 2007, 7(8): 955-977.
[63] PENG J, LI X, LIU Y, et al. Photoelectrochemical sensor based on zinc phthalocyanine semiconducting polymer dots for ultrasensitive detection of dopamine[J]. Sensors and ActuatorsB-Chemical, 2022, 360: 131619
[64] SUN K, TANG Y, LI Q, et al. In vivo dynamic monitoring of small molecules with implantablepolymer-dot transducer[J]. ACS Nano, 2016, 10(7): 6769-6781.
[65] PENSO C M, ROCHA J L, MARTINS M S, et al. Ptoep-pdms-based optical oxygen sensor[J].Sensors, 2021, 21(16): 5645.
[66] WU C, CHIU D T. Highly fluorescent semiconducting polymer dots for biology and medicine[J]. Angewandte Chemie-International Edition, 2013, 52(11): 3086-3109.
[67] MEYER-ALMES F J. Fluorescence lifetime based bioassays[J]. Methods and Applications inFluorescence, 2017, 5(4): 042002.
[68] KUO J, KUYPER C, ALLEN P, et al. High-power blue/uv light-emitting diodes as excitationsources for sensitive detection[J]. Electrophoresis, 2004, 25(21-22): 3796-3804.
[69] ALLEN T J, BEARD P C. Light emitting diodes as an excitation source for biomedical photoacoustics[C]//Proceedings of SPIE: Photons Plus Ultrasound: Imaging and Sensing 2013. SPIE,2013.
[70] BERNESCHI S, TRONO C, BERNINI R, et al. A waveguide absorption filter for fluorescencemeasurements[J]. Sensors and Actuators B-ChemicalL, 2019, 281: 90-95.

所在学位评定分委会
材料与化工
国内图书分类号
TN29
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/544647
专题工学院_生物医学工程系
推荐引用方式
GB/T 7714
高沁源. 微型化实时发光强度监测系统研究[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132623-高沁源-生物医学工程系(8240KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[高沁源]的文章
百度学术
百度学术中相似的文章
[高沁源]的文章
必应学术
必应学术中相似的文章
[高沁源]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。