[1] AHN Y Y, HAN S, KWAK H, et al. Analysis of topological characteristics of huge online socialnetworking services[J]. ACM, 2007.
[2] BARABáSI A, JEONG H, NéDA Z, et al. Evolution of the social network of scientific collaborations[J]. Physica A-statistical Mechanics and Its Applications, 2002, 311(3): 590-614.
[3] NEWMAN M E J. Scientific collaboration networks. I. Network construction and fundamentalresults[J]. Phys. Rev. E, 2001, 64: 016131.
[4] ERDOS P, RéNYI A. On random graphs[J]. Publications Mathematicae, 1959, 6: 290-297.
[5] ERDOS P, RéNYI A. On the strength of connectedness of random graphs[J]. Acta MathematicaScientia Hungary, 1961.
[6] ERDOS P, RéNYI A. On the evolution of random graphs[J]. Publ.Mah.Inst.Hung.Acad.Sci,1960.
[7] WATTS D J, STROGATZ S H. Collective dynamics of ’small-world’ networks.[J]. Nature,1998.
[8] BARABASI A L, ALBERT R. Emergence of Scaling in Random Networks.[J]. Science, 1999.
[9] NEWMAN M. The spread of epidemic disease on networks[J]. Physical Review E StatisticalNonlinear & Soft Matter Physics, 2002, 66(1 Pt 2): 016128.
[10] RAMANI A, CARSTEA A S, WILLOX R, et al. Oscillating epidemics: a discrete-time model[J]. Physica A: Statistical Mechanics and its Applications, 2004, 333(none): 278-292.
[11] ZANETTE D H. Dynamics of rumor propagation on small-world networks[J]. Physical review.E, Statistical, nonlinear, and soft matter physics, 2002, 65: 041908-041908.
[12] PAGE L, BRIN S, MOTWANI R, et al. The PageRank Citation Ranking: Bringing Order to theWeb[J]. Stanford Digital Libraries Working Paper, 1998.
[13] CALLAWAY D S, NEWMAN M, STROGATZ S H, et al. Network robustness and fragility:Percolation on random graphs[J]. Physical Review Letters, 2000, 85(25): 5468.
[14] NEWMAN M, STROGATZ S H, WATTS D J. Random graphs with arbitrary degree distributions and their applications[J]. Physical Review E Statistical Nonlinear & Soft Matter Physics,2001, 64.
[15] CASTELLANO C, FORTUNATO S, LORETO V. Statistical physics of social dynamics[J].Review of Modern Physics, 2007, 81(2).
[16] DOROGOVTSEV S N, GOLTSEV A V, MENDES J. k-core organization of complex networks[J]. Phys.rev.lett, 2006, 96(4): 185-194.
[17] BAXTER G J, DOROGOVTSEV S N, GOLTSEV A V, et al. Bootstrap percolation on complexnetworks[J]. Physical Review E, 2010, 82(1): 011103.
[18] GRANOVETTER, MARK. Threshold Models of Collective Behavior[J]. American Journal ofSociology, 1978, 83(6): 1420-1443.40参考文献
[19] MORONE F, MAKSE H A. Influence maximization in complex networks through optimalpercolation[J]. Nature (London), 2015, 524(7563): 65-68.
[20] ACHLIOPTAS D, D’SOUZA R M, SPENCER J. Explosive Percolation in Random Networks[J]. Science (American Association for the Advancement of Science), 2009, 323(5920): 1453-1455.
[21] STUNKARD A J, SORENSEN T I, HANIS C, et al. The Spread of Obesity in a Large SocialNetwork over 32 Years[J]. N Engl J Med, 2007, 357(4): 370-379.
[22] ROSENQUIST, NIELS J. The Spread of Alcohol Consumption Behavior in a Large SocialNetwork[J]. Annals of Internal Medicine, 2010, 152(7): 426.
[23] FOWLER J H, CHRISTAKIS N A. Cooperative behavior cascades in human social networks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010,107(12): 5334-5338.
[24] RUDOLPH A E, CRAWFORD N D, LATKIN C, et al. Individual and neighborhood correlatesof membership in drug using networks with a higher prevalence of HIV in New York City (2006–2009)[J]. Annals of Epidemiology, 2013, 23(5): 267-274.
[25] XIE J, WANG X, FENG L, et al. Indirect influence in social networks as an induced percolationphenomenon[J]. Proceedings of the National Academy of Sciences of the United States ofAmerica., 2022(9): 119.
[26] BARTHELEMY M, AMARAL L. Small-World Networks: Evidence for a Crossover Picture[J]. Physical Review Letters, 1999, 82(15).
[27] BARRAT A, WEIGT M. On the properties of small-world network models[J]. European Physical Journal B (Condensed Matter and Complex Systems), 2000, 13(3): 547-560.
[28] CRISTIAN, F., MOUKARZEL. Spreading and shortest paths in systems with sparse long-rangeconnections[J]. Physical Review E, 1999, 60(6): R6263–R6266.
[29] BARABáSI A. Mean-field theory for scale-free[J]. Physica A: Statistical Mechanics and itsApplications, 1999, 2(72): 172-182.
[30] BROADBENT S, HAMMERSLEY J. Percolation processes. I: Crystals and mazes[J]. Mathematical Proceedings of the Cambridge Philosophical Society, 1957, 53.
[31] LIU Y Y, CSOKA E, ZHOU H, et al. Core Percolation on Complex Networks[J]. Physicalreview letters, 2012, 109(20): 205703.1-205703.5.
[32] BAUER M, GOLINELLI O. Core percolation in random graphs: a critical phenomena analysis[J]. The European physical journal. B, Condensed matter physics, 2001, 24(3): 339-352.
[33] CHALUPA J, LEATH P L, REICH G R. Bootstrap percolation on a Bethe lattice[J]. Journal ofPhysics C: Solid State Physics, 1979, 12(1): L31.
[34] DI MURO M A, VALDEZ L D, STANLEY H E, et al. Insights into bootstrap percolation: Itsequivalence with k-core percolation and the giant component[J]. Physical review. E, 2019, 99(2-1): 022311-022311.
[35] DA COSTA R A, DOROGOVTSEV S N, GOLTSEV A V, et al. Explosive Percolation Transition is Actually Continuous[J/OL]. Phys. Rev. Lett., 2010, 105: 255701. https://link.aps.org/doi/10.1103/PhysRevLett.105.255701.41参考文献
[36] RIORDAN O, WARNKE L. Explosive Percolation Is Continuous[J]. Science (American As sociation for the Advancement of Science), 2011, 333(6040): 322-324.
[37] PICCARDI C, CASAGRANDI R. Inefficient epidemic spreading in scale-free networks[J].Physical Review E, 2008, 77.
[38] JONSSON P F, CAVANNA T, ZICHA D, et al. Cluster analysis of networks generated throughhomology: automatic identification of important protein communities involved in cancer metas tasis[J]. BMC bioinformatics, 2006, 7(1): 2-2.
[39] GONZáLEZ M, HERRMANN H, KERTéSZ J, et al. Community structure and ethnic prefer ences in school friendship networks[J]. Physica A, 2007, 379(1): 307-316.
[40] PALLA G, DERANYI I, FARKAS I, et al. Uncovering the overlapping community structure ofcomplex networks in nature and society[J]. Nature, 2005, 435(7043): 814.
[41] BATES J P A. Global topological features of cancer proteins in the human interactome[J].Bioinformatics, 2006, 22(18): 2291-2297.
[42] LI D, FU B, WANG Y, et al. Percolation transition in dynamical traffic network with evolvingcritical bottlenecks[J]. Proceedings of the National Academy of Sciences, 2015, 112(3): 669-672.
[43] BIHAM O, MIDDLETON A A. Self-organization and a dynamical transition in traffic-flowmodels[J]. Physical review. A, Atomic, molecular, and optical physics, 1992, 46(10): R6124-R6127.
[44] HAMEDMOGHADAM H, JALILI M, VU H L, et al. Percolation of heterogeneous flows un covers the bottlenecks of infrastructure networks[J]. Nature Communications, 2021, 12.
[45] YANG Y, WANG J, MOTTER A E. Network observability transitions[J]. Physical reviewletters, 2013, 109(25): 258701-258701.
[46] YANG Y, RADICCHI F. Observability transition in real networks[J]. Physical review. E, 2016,94(3-1): 030301-030301.
[47] SZABó G, TOKE C. Evolutionary prisoner’s dilemma game on a square lattice[J]. PhysicalReview E, 1998, 58(1): 69-73.
[48] SZABO G, FATH G. Evolutionary games on graphs[J]. Physics reports, 2007, 446(4): 97-216.
[49] NEWMAN M E J M E J. Monte Carlo methods in statistical physics[M]. Oxford: ClarendonPress, 1999.
[50] GUIMARãES P R, Jr, PIRES M M, JORDANO P, et al. Indirect effects drive coevolution inmutualistic networks[J]. Nature (London), 2017, 550(7677): 511-514.
[51] 尼古拉斯·克里斯塔基斯, 詹姆斯·富. 大连接[M]. 中国人民大学出版社, 2013.
修改评论