[1] 白志刚. 钛合金产业市场分析和发展趋势[J]. 中小企业管理与科技(下旬刊), 2014(07): 151-153.
[2] LüTJERING G, WILLIAMS J C. Titanium[M]. Germany: Springer Science & Busi-ness Media, 2007.
[3] SMITH W F, HASHEMI J. Foundations of materials science and engineering[M]. Foundations of materials science and engineering. USA: McGraw-Hill. 2011: 242-246.
[4] 邹武装. 钛及钛合金在航天工业的应用及展望[J]. 中国有色金属, 2016(01): 70-71.
[5] TABIE V M, LI C, WANG S F, et al. Mechanical properties of near alpha titanium alloys for high-temperature applications-a review[J]. Aircraft Engineering and Aerospace Technology, 2020, 92(4): 521-540.
[6] ZHAO Q, SUN Q, XIN S, et al. High-strength titanium alloys for aerospace engi-neering applications: A review on melting-forging process[J]. Materials Science and Engineering: A, 2022, 845: 143260.
[7] MOURITZ A P. Titanium alloys for aerospace structures and engines[J]. Introduction to aerospace materials, 2012, 2: 202-223.
[8] WILLIAMS J C, BOYER R R. Opportunities and Issues in the Application of Titanium Alloys for Aerospace Components[J]. Metals, 2020, 10(6): 705.
[9] ANDERSON V, MANTY B. Titanium Alloy Ignition and Combustion[M]. USA: PRA-TT AND WHITNEY AIRCRAFT GROUP WEST PALM BEACH FL GOVERNMENT PRODUCTS DIV, 1978.
[10] STROBRIDGE T R, MOULDER J C, CLARK A F. Titanium combustion in turbine engines[R]: NATIONAL BUREAU OF STANDARDS BOULDER CO THERMOPHYSI-CAL PROPERTIES DIV, USA, 1979.
[11] ZHANG K. The microstructure and properties of hipped powder Ti alloys[D]. Birmingham: University of Birmingham, 2010.
[12] 田浩亮, 熊声健, 金国, 等. 航空发动机钛合金压气机组件防钛火用阻燃可磨耗涂层研究进展[J]. 稀有金属材料与工程, 2021: 2620-2629.
[13] 魏东博, 张平则, 姚正军, 等. 钛合金阻燃技术的研究进展[J]. 机械工程材料, 2010, 34(8): 1-4.
[14] 赖运金, 张平祥, 辛社伟, 等. 国内阻燃钛合金工程化技术研究进展[J]. 稀有金属材料与工程, 2015, 44(08): 2067-2073.
[15] LV D, WANG B, HOU J, et al. Characteristics of chip formation and its effects on cutting force and tool wear/damage in milling Ti-25 V-15Cr (Ti40) beta titanium alloy[J]. The International Journal of Advanced Manufacturing Technology, 2022, 124: 2279–2288.
[16] BRYAN D J. Development of a burn-resistant titanium alloy through the laser depo-sition of elementally blended powders[D]. Columbus: The Ohio State University, 2002.
[17] 胡腾腾, 张凤英, 邱莹, 等. 元素添加方式对激光熔覆沉积 Ti-25V-15Cr 成形性的影响[J]. 表面技术, 2019, 48(5): 116-122.
[18] 王华明. 金属增材制造技术及其对重大装备制造业的影响[J]. 中国工业和信息化, 2019(12): 54-56.
[19] 杨森, 黄开虎, 李静, 等. 不同类型激光器对激光多层沉积Ti-35V-15Cr合金显微组织及性能的影响[J]. 表面技术, 2023, 52(01): 354-363.
[20] ZHANG F Y, LIU T, ZHAO H Y, et al. Influence of processing parameters on beta grain morphology of laser solid forming of Ti-25V-15Cr burn-resistant titanium alloy[J]. International Journal of Advanced Manufacturing Technology, 2017, 91(5-8): 1461-1472.
[21] TAN H, HU T, WANG Y, et al. Solidification Effect on the Microstructure and Mechanism of Laser-Solid-Forming-Produced Flame-Resistant Ti–35V–15Cr Alloy[J]. Advanced Engineering Materials, 2020, 22(7): 2000102.
[22] WU X, SHARMAN R, MEI J, et al. Microstructure and properties of a laser fabricated burn-resistant Ti alloy[J]. Materials & Design, 2004, 25(2): 103-109.
[23] DHIMAN S, JOSHI R S, SINGH S, et al. Recycling of Ti6Al4V machining swarf into additive manufacturing feedstock powder to realise sustainable recycling goals[J]. Journal of Cleaner Production, 2022, 348: 131342.
[24] STRANDRIDGE M. Aerospace materials–past, present and future[J]. Aerospace Manufacturing and Design, 2014, 13: 15-38.
[25] MOURITZ A. Materials and material requirements for aerospace structures and engines[J]. Introduction to aerospace materials, 2012: 39-56.
[26] PETERS M, KUMPFERT J, WARD C H, et al. Titanium alloys for aerospace applications[J]. Advanced Engineering Materials, 2003, 5(6): 419-427.
[27] GEPREEL M A-H, NIINOMI M. NEW TI-ALLOYS WITH SUPERIOR SPECIFIC-STRENGTH[C]. Proceedings of the METAL 2013-22nd International Conference on Metallurgy and Materials. Czech: International Conference on Metallurgy and Materials, 2013: 1-5.
[28] 王清江, 刘建荣, 杨锐. 高温钛合金的现状与前景[J]. 航空材料学报, 2014, 34(4): 1-26.
[29] BOYER R R. Titanium and Its Alloys: Metallurgy, Heat Treatment and Alloy Characteristics[M]. Encyclopedia of Aerospace Engineering. USA: John Wiley & Sons, Ltd. 2010.
[30] 刘全明, 张朝晖, 刘世锋, 等. 钛合金在航空航天及武器装备领域的应用与发展[J]. 钢铁研究学报, 2015, 27(3): 1-4.
[31] 赵丹丹. 钛合金在航空领域的发展与应用[J]. 铸造, 2014, 63(11): 1114-1117.
[32] 侯晓辉. 高速飞机技术发展简史[J]. 科技创新与应用, 2017(1): 1-5.
[33] 韩明臣, 黄淑梅. 钛在美国军工中的应用[J]. 钛工业进展, 2001(02): 28-32.
[34] CALLISTER W D, RETHWISCH D G. Materials science and engineering[M]. USA: John Wiley & Sons NY, 2011.
[35] COTTON J D, BRIGGS R D, BOYER R R, et al. State of the Art in Beta Titanium Alloys for Airframe Applications[J]. Jom, 2015, 67(6): 1281-1303.
[36] GAO L, DING X, LOOKMAN T, et al. Metastable phase transformation and hcp-ω transformation pathways in Ti and Zr under high hydrostatic pressures[J]. Applied Physics Letters, 2016, 109(3): 031912.
[37] GHEORGHE D, POP D, CIOCOIU R, et al. Microstructure Development in Titanium and Its Alloys Used for Medical Applications[J]. UPB Scientific Bulletin, Series B: Chemistry and Materials Science, 2019, 81: 244-258.
[38] CHOUDHURI D, ZHENG Y, ALAM T, et al. Coupled experimental and computational investigation of omega phase evolution in a high misfit titanium-vanadium alloy[J]. Acta Materialia, 2017, 130: 215-228.
[39] VEIGA C, DAVIM J, LOUREIRO A. Properties and applications of titanium alloys: a brief review[J]. Reviews on Advanced Materials Science, 2012, 32(2): 133-148.
[40] 邵磊. 航空领域用典型钛合金的燃烧行为与机理研究[D]. 北京: 北京科技大学, 2022.
[41] KOLLI R P, JOOST W J, ANKEM S. Phase stability and stress-induced transformations in beta titanium alloys[J]. Jom, 2015, 67(6): 1273-1280.
[42] VRANCKEN B, THIJS L, KRUTH J P, et al. Microstructure and mechanical properties of a novel β titanium metallic composite by selective laser melting[J]. Acta Materialia, 2014, 68: 150-158.
[43] XIE L, LIU C, SONG Y, et al. Evaluation of microstructure variation of TC11 alloy after electroshocking treatment[J]. Journal of Materials Research and Technology, 2020, 9(2): 2455-2466.
[44] ROYCE R. The jet engine[M]. USA: John Wiley & Sons, 2015.
[45] 孟令勇, 高海红, 郑天慧, 等. 航空发动机推重比技术指标研究[J]. 燃气涡轮试验与研究, 2016, 29(002): 57-62.
[46] 蔡建明, 弭光宝, 高帆, 等. 航空发动机用先进高温钛合金材料技术研究与发展[J]. 材料工程, 2016(8): 1-10.
[47] ZHOU Y H, LI W P, WANG D W, et al. Selective laser melting enabled additive manufacturing of Ti-22Al-25Nb intermetallic: Excellent combination of strength and ductility, and unique microstructural features associated[J]. Acta Materialia, 2019, 173: 117-129.
[48] LAGOW B W. Materials Selection in Gas Turbine Engine Design and the Role of Low Thermal Expansion Materials[J]. Jom, 2016, 68(11): 2770-2775.
[49] OKURA T. Materials for Aircraft Engines[J]. ASEN, 2015, 5063: 1-14.
[50] UIHLEIN T, SCHIEGEL H. Titanium fire in jet engines[R]. Daimler Benz Aerospace, Munich, Germany, 1993.
[51] 田浩亮, 熊声健, 金国, 等. 航空发动机钛合金压气机组件防钛火用阻燃可磨耗涂层研究进展[J]. 稀有金属材料与工程, 2021, 50(7): 2620-2629.
[52] MI G-B, YAO K, MIN X-H. Effect of temperature on wear behavior in a Ti-V-Cr base fireproof titanium alloy[J]. International Journal of Precision Engineering and Manufacturing, 2017, 18(11): 1553-1559.
[53] 王巍巍, 陈玉洁, 高海红. 航空发动机钛火防护技术及试验验证方法[J]. 燃气涡轮试验与研究, 2013, 000(005): 55-58.
[54] 孙护国, 霍武军. 航空发动机钛合金机件的阻燃技术[J]. 航空制造技术, 2003(01): 46-48+55.
[55] 赖运金. Ti-V-Cr系阻燃钛合金热变形基础及应用性能[D]. 西安: 西北工业大学, 2016.
[56] 梁贤烨, 弭光宝, 李培杰, 等. 航空发动机钛火特性理论计算研究[J]. 航空材料学报, 2021, 41(6): 59-67.
[57] 弭光宝, 黄旭, 曹京霞, 等. 航空发动机钛火试验技术研究新进展[J]. 航空材料学报, 2016, 36(3): 20-26.
[58] 唐勇, 董维, 邹祥瑞, 等. 铝颗粒群点火与燃烧特性研究[J]. 导弹与航天运载技术(中英文), 2022(05): 48-52+87.
[59] SHAFIROVICH E, TEOH S K, VARMA A. Combustion of levitated titanium particles in air[J]. Combustion and Flame, 2008, 152(1): 262-271.
[60] 黄明月. 航空发动机用钛合金燃烧特性研究[D]. 西安: 西安建筑科技大学, 2013.
[61] XIA Y, ZHAO J, TIAN Q, et al. Review of the Effect of Oxygen on Titanium and Deoxygenation Technologies for Recycling of Titanium Metal[J]. Jom, 2019, 71(9): 3209-3220.
[62] SUMMITT R, FINK F T. PACER LIME. Part 2. Experimental Determination of Environmental Corrosion Severity[R]. Wright-Patterson Air Force Base, OH, USA, 1980.
[63] MOISEYEV V N. Titanium alloys: Russian aircraft and aerospace applications[M]. CRC press, 2005.
[64] 徐祖耀, 李麟. 材料热力学[M]. 中国: 科学出版社, 1999.
[65] YAMADA O, HACHIYA M, NAKANE S, et al. Simultaneous synthesis and sintering of alpha-Ti(N) by self-propagating high-temperature combustion under nitrogen pressure[J]. Journal of Materials Science Letters, 1999, 18(5): 363-365.
[66] MILLOGO M, BERNARD S, GILLARD P, et al. Combustion properties of titanium alloy powder in ALM processes: Ti6Al4V[J]. Journal of Loss Prevention in the Process Industries, 2018, 56: 254-261.
[67] VENTURA G, PERFETTI M. Thermal properties of solids at room and cryogenic temperatures[M]. Germany: Springer, 2014.
[68] MI G, HUANG X, CAI J, et al. Fireproof Property and Its Mechanism of A New High Temperature Titanium Alloy[C]. Proceedings of the 13th World Conference on Titanium. USA: John Wiley & Sons, 2016: 745-751.
[69] CLARK A, MOULDER J, RUNYAN C. Combustion of bulk titanium in oxygen[C]. Proceedings of the Symposium (International) on Combustion. Netherlands: Elsevier, 1975: 15(1):489-499.
[70] BOLOBOV V I. Mechanism of Self-Ignition of Titanium Alloys in Oxygen[J]. Combustion, Explosion and Shock Waves, 2002, 38(6): 639-645.
[71] MI G-B, HUANG X, CAO J-X, et al. Frictional ignition of Ti40 fireproof titanium alloys for aero-engine in oxygen-containing media[J]. Transactions of Nonferrous Metals Society of China, 2013, 23(8): 2270-2275.
[72] SHAO L, XIE G, LIU X, et al. Combustion behaviour and mechanism of a Cu-Ni-Mn alloy in an oxygen enriched atmosphere[J]. Corrosion Science, 2020, 163: 108253.
[73] SHAO L, XIE G, LIU X, et al. Combustion behavior and mechanism of Ti-25V-15Cr compared to Ti-6Al-4V alloy[J]. Corrosion Science, 2022, 194: 109957.
[74] MI GUANGBAO H X, CAO JINGXIA, CAO CHUNXIAO. IGNITION RESISTANCE PERFORMANCE AND ITS THEORETICAL ANALYSIS OF Ti-V-Cr TYPE FIREPROOF TITANIUM ALLOYS[J]. Acta Metallurgica Sinica, 2014, 50(5): 575-586.
[75] YANG W, CHEN Y, ZHAO Q, et al. Multiscale exploit the role of copper on the burn resistant behavior of Ti-Cu alloy[J]. Journal of Alloys and Compounds, 2021, 863: 158639.
[76] 刘玉芹, 白克武, 沈剑韵, 等. Ti-Cr-V 与 Ti-Cr-Mo 合金阻燃机理热力学分析[J]. 稀有金属, 1998, 22(3): 204-207.
[77] SHAO L, WANG Y, XIE G, et al. Combustion Mechanism of Alloying Elements Cr in Ti-Cr-V Alloys[J]. Materials, 2019, 12(19): 3206.
[78] SHAO L, XIE G, LIU X, et al. Combustion behaviour and mechanism of TC4 and TC11 alloys[J]. Corrosion Science, 2020, 168: 108564.
[79] 霍武军, 孙护国. 航空发动机钛火故障及防护技术[J]. 航空科学技术, 2002(04): 31-34.
[80] 汪瑞军, 马小斌, 鲍曼雨. 钛合金表面阻燃隔热复合功能涂层力学性能研究[J]. 湘潭大学学报: 自然科学版, 2019, 41(6): 27-34.
[81] RAJENDRAN R. Gas turbine coatings–An overview[J]. Engineering Failure Analysis, 2012, 26: 355-369.
[82] 李雅迪, 弭光宝, 李培杰, 等. 航空发动机阻燃钛合金力学性能预测及成分优化[J]. 工程科学学报, 2022, 44: 1-8.
[83] LI Y G, BLENKINSOP P A, LORETTO M H, et al. Effect of carbon and oxygen on microstructure and mechanical properties of Ti-25V-15Cr-2Al (wt%) alloys[J]. Acta Materialia, 1999, 47(10): 2889-2905.
[84] BRODERICK T F, RESHAD J, WARD C H, et al. Solvus temperatures of various phases in alloy C+[J]. Titanium'95- Science and technology, 1996: 2385-2392.
[85] BOYER R R. An overview on the use of titanium in the aerospace industry[J]. Materials Science and Engineering: A, 1996, 213(1-2): 103-114.
[86] 弭光宝, 黄旭, 曹京霞, 等. 航空发动机用Alloy C + 阻燃钛合金的抗点燃机理[J]. 中国有色金属学报, 2013, 23(z1): 305-311.
[87] LI G, LI D, LIU Y, et al. Microstructure and mechanical properties of Ti-35V-15Cr-0.05 C nonburning titanium alloy[J]. Journal of Materials Science & Technology, 1998: 411-414.
[88] SUN F S, LAVERNIA E J. Creep behavior of nonburning Ti-35V-15Cr-xC alloys[J]. Journal of Materials Engineering and Performance, 2005, 14(6): 784-787.
[89] ZHAO Y Q, ZHU K Y, QU H L, et al. Effect of alloying elements on properties and microstructures of Ti-V-Cr burn resistant alloys[J]. Materials Science and Technology, 2000, 16(9): 1073-1075.
[90] WANG F D. Direct Laser Fabrication of Ti-25V-15Cr-2Al-0.2C (wt pct) Burn-Resistant Titanium Alloy[J]. Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science, 2012, 43a(2): 677-686.
[91] LI Y G, BLENKINSOP P A, LORETTO M H, et al. Structure and stability of preci-pitates in 500 degrees C exposed Ti-25V-15Cr-xAl alloys[J]. Acta Materialia, 1998, 46(16): 5777-5794.
[92] LI Y, LORETTO M, RUGG D, et al. Effect of heat treatment and exposure on microstructure and mechanical properties of Ti–25V–15Cr–2Al–0.2 C (wt%)[J]. Acta Materialia, 2001, 49(15): 3011-3017.
[93] HOOD R, JOHNSON C M, SOO S L, et al. High-speed ball nose end milling of burn-resistant titanium (BuRTi) alloy[J]. International Journal of Computer Integrated Manufacturing, 2014, 27(2): 139-147.
[94] 黄天娥, 范桂彬, 闫海, 等. 航空用钛合金材料及钛合金标准发展综述[J]. 航空标准化与质量, 2010(3): 30-33.
[95] LAI Y J, ZHANG P X, ZHANG X M, et al. Physical properties of WSTi3515S burn-resistant titanium alloy[J]. Rare Metals, 2016, 35(5): 361-366.
[96] 宝钛集团有限公司, 宝鸡钛业股份有限公司, 中国有色金属工业标准计量质量研究所. GB/T 3620.1-201. 钛及钛合金牌号和化学成分[S]. 中国: 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 2016.
[97] 曹京霞, 黄旭, 弭光宝, 等. Ti-V-Cr系阻燃钛合金应用研究进展[J]. 航空材料学报, 2014, 34(04): 92-97.
[98] 马凡蛟, 赖运金, 辛社伟, 等. WSTi3515S 阻燃钛合金热暴露性能[J]. 锻压技术, 2017, 42(5): 147-151.
[99] БОРИСОВА Е, СКЛЯРОВ Н. Горение и пожаробезопасность титановых сплавов[J]. Под редакцией Каблова ЕНМ: ВИАМ, 2007: 1-8.
[100]CHEN Y N, HUO Y Z, SONG X D, et al. Burn-resistant behavior and mechanism of Ti14 alloy[J]. International Journal of Minerals Metallurgy and Materials, 2016, 23(2): 215-221.
[101]屈可朋, 陈永楠, 魏建锋, 等. 300热暴露后Ti14合金的组织和性能[J]. 金属热处理, 2008, 33(11): 32-35.
[102]MUKHERJEE A, WACH S. Kinetics of the oxidation of vanadium in the temperature range 350–950 °C[J]. Journal of the Less Common Metals, 1983, 92(2): 289-300.
[103]辛社伟, 赵永庆, 曾卫东. 钒和铬对 Ti40 阻燃钛合金力学性能的影响机制[J]. 中国有色金属学报, 2008, 18(7): 1216-1222.
[104]SEMIATIN S L, SEETHARAMAN V, WEISS I. Hot workability of titanium and titanium aluminide alloys—an overview[J]. Materials Science and Engineering: A, 1998, 243(1): 1-24.
[105]EZUGWU E O, WANG Z M. Titanium alloys and their machinability—a review[J]. Journal of Materials Processing Technology, 1997, 68(3): 262-274.
[106]YANCUN Z, WEIDONG Z, YONGQING Z. Influence of Deformation Parameters on Fracture Mechanism of Ti40 Titanium Alloy[J]. Rare Metal Materials and Engineering, 2017, 46(5): 1207-1213.
[107]ZHU Y, ZENG W, ZHANG F, et al. A new methodology for prediction of fracture initiation in hot compression of Ti40 titanium alloy[J]. Materials Science and Engineering: A, 2012, 553: 112-118.
[108]吕东升, 徐九华, 傅玉灿, 等. 变进给高效铣削 Ti40 阻燃钛合金的刀具磨损规律[J]. 稀有金属材料与工程, 2019, 4: 1213-1219.
[109]曹宇霞. WSTi3515S 阻燃钛合金热变形行为研究[D]. 西安: 长安大学, 2019.
[110]NGO T D, KASHANI A, IMBALZANO G, et al. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges[J]. Composites Part B-Engineering, 2018, 143: 172-196.
[111]CALIGNANO F, MANFREDI D, AMBMBROSIO E P, et al. Overview on Additive Manufacturing Technologies[J]. Proceedings of the Ieee, 2017, 105(4): 593-612.
[112]顾冬冬, 张红梅, 陈洪宇, 等. 航空航天高性能金属材料构件激光增材制造[J]. 中国激光, 2020, 47(05): 32-55.
[113]WANG B C, TAO F, FANG X D, et al. Smart Manufacturing and Intelligent Manufacturing: A Comparative Review[J]. Engineering, 2021, 7(6): 738-757.
[114]GIBSON I, ROSEN D W, STUCKER B. Additive manufacturing technologies[M]. Germany: Springer, 2014.
[115]王大为, 董阳平, 田艳红, 等. 活性气氛对金属材料激光增材制造的作用机制[J]. 中国激光, 2022, 49(14): 1402201.
[116] ASTM, ISO. ASTM52900-15. Standard terminology for additive manufacturing—general principles—terminology[S]. ASTM International, West Conshohocken, PA, 2015.
[117]王华明. 高性能大型金属构件激光增材制造:若干材料基础问题[J]. 航空学报, 2014, 35(10): 2690-2698.
[118]LEWANDOWSKI J J, SEIFI M. Metal Additive Manufacturing: A Review of Mechanical Properties[J]. Annual Review of Materials Research, Vol 46, 2016, 46: 151-186.
[119]DEBROY T, WEI H L, ZUBACK J S, et al. Additive manufacturing of metallic components - Process, structure and properties[J]. Progress in Materials Science, 2018, 92: 112-224.
[120]李苏, 张占辉, 韩善果, 等. 激光技术在材料加工领域的应用与发展[J]. 精密成形工程, 2020, 12(04): 76-85.
[121]LU B H, LI D C, TIAN X Y. Development Trends in Additive Manufacturing and 3D Printing[J]. Engineering, 2015, 1(1): 85-89.
[122]LIU Z, ZHAO D, WANG P, et al. Additive manufacturing of metals: Microstructure evolution and multistage control[J]. Journal of Materials Science & Technology, 2022, 100: 224-236.
[123]GU D, SHI X, POPRAWE R, et al. Material-structure-performance integrated laser-metal additive manufacturing[J]. Science, 2021, 372(6545): eabg1487.
[124]王磊, 卢秉恒. 我国增材制造技术与产业发展研究[J]. 中国工程科学, 2022, 24(04): 202-211.
[125]DEBROY T, MUKHERJEE T, MILEWSKI J O, et al. Scientific, technological and economic issues in metal printing and their solutions[J]. Nature Materials, 2019, 18(10): 1026-1032.
[126]GU D D, MEINERS W, WISSENBACH K, et al. Laser additive manufacturing of metallic components: materials, processes and mechanisms[J]. International Materials Reviews, 2013, 57(3): 133-164.
[127]刘景博, 刘世锋, 杨鑫, 等. 金属增材制造技术轻量化应用研究进展[J]. 中国材料进展, 2020, 39(2): 163-168.
[128]KATZ-DEMYANETZ A, KOPTYUG A, POPOV V V. In-situ Alloying as a Novel Methodology in Additive Manufacturing[C]. Proceedings of the 2020 IEEE 10th International Conference Nanomaterials: Applications & Properties (NAP). USA: IEEE, 2020: 02SAMA05-1-4.
[129]MOSALLANEJAD M H, NIROUMAND B, AVERSA A, et al. In-situ alloying in laser-based additive manufacturing processes: A critical review[J]. Journal of Alloys and Compounds, 2021, 872: 159567.
[130]SING S L, HUANG S, GOH G D, et al. Emerging metallic systems for additive manufacturing: In-situ alloying and multi-metal processing in laser powder bed fusion[J]. Progress in Materials Science, 2021, 119: 100795.
[131]CHMIELEWSKA A, WYSOCKI B, BUHAGIAR J, et al. In situ alloying of NiTi: Influence of laser powder bed fusion (LBPF) scanning strategy on chemical composition[J]. Materials Today Communications, 2022, 30: 103007.
[132]FISCHER M, JOGUET D, ROBIN G, et al. In situ elaboration of a binary Ti–26Nb alloy by selective laser melting of elemental titanium and niobium mixed powders[J]. Materials Science and Engineering: C, 2016, 62: 852-859.
[133]陈永楠, 杨雯清, 杨泽慧, 等. 合金元素对典型阻燃钛合金燃烧行为的影响[J]. 稀有金属材料与工程, 2019, 48(11): 3608-3614.
[134]TAN J H, WONG W L E, DALGARNO K W. An overview of powder granulometry on feedstock and part performance in the selective laser melting process[J]. Additive Manufacturing, 2017, 18: 228-255.
[135]ANDERSON I E, WHITE E M H, DEHOFF R. Feedstock powder processing research needs for additive manufacturing development[J]. Current Opinion in Solid State and Materials Science, 2018, 22(1): 8-15.
[136]BAUMERS M, DICKENS P, TUCK C, et al. The cost of additive manufacturing: machine productivity, economies of scale and technology-push[J]. Technological Forecasting and Social Change, 2016, 102: 193-201.
[137]HOU Y H, LIU B, LIU Y, et al. Ultra-low cost Ti powder for selective laser melting additive manufacturing and superior mechanical properties associated[J]. Opto-Electronic Advances, 2019, 2(5): 180028.
[138]冯士超, 王艳红, 狄嫣, 等. 金属增材制造专用材料发展现状[J]. 冶金经济与管理, 2021(1): 32-34.
[139]SUN P, FANG Z G Z, ZHANG Y, et al. Review of the Methods for Production of Spherical Ti and Ti Alloy Powder[J]. Jom, 2017, 69(10): 1853-1860.
[140]DONG Y P, LI Y L, ZHOU S Y, et al. Cost-affordable Ti-6Al-4V for additive manufacturing: Powder modification, compositional modulation and laser in-situ alloying[J]. Additive Manufacturing, 2021, 37: 101699.
[141]左世全. 中国增材制造产业年鉴:2020[M]. 中国: 人民邮电出版社, 2021.
[142]SUN Y Y, GULIZIA S, OH C H, et al. Manipulation and Characterization of a Novel Titanium Powder Precursor for Additive Manufacturing Applications[J]. Jom, 2015, 67(3): 564-572.
[143]XIA Y, FANG Z Z, ZHANG Y, et al. Hydrogen assisted magnesiothermic reduction (HAMR) of commercial TiO2 to produce titanium powder with controlled morphology and particle size[J]. Materials Transactions, 2017, 58(3): 355-360.
[144]DING W W, CHEN G, QIN M L, et al. Low-cost Ti powders for additive manufacturing treated by fluidized bed[J]. Powder Technology, 2019, 350: 117-122.
[145]XU W, XIAO S Q, LU X, et al. Fabrication of commercial pure Ti by selective laser melting using hydride-dehydride titanium powders treated by ball milling[J]. Journal of Materials Science & Technology, 2019, 35(2): 322-327.
[146]DONG Y P, TANG J C, WANG D W, et al. Additive manufacturing of pure Ti with superior mechanical performance, Low cost, and biocompatibility for potential replacement of Ti-6Al-4V[J]. Materials & Design, 2020, 196: 109142.
[147]TAO Q Y, WANG Z W, CHEN G, et al. Selective laser melting of CP-Ti to overcome the low cost and high performance trade-off[J]. Additive Manufacturing, 2020, 34: 101198.
[148]DONG Y, LI Y, EBEL T, et al. Cost-affordable, high-performance Ti–TiB composite for selective laser melting additive manufacturing[J]. Journal of Materials Research, 2020: 1-14.
[149]ZHANG Y, HUANG C, LIU F, et al. Nanocrystallization of a Ti40 cladding layer by ultrasonic impact to improve burn resistance[J]. Journal of Materials Research and Technology, 2021, 11: 1331-1342.
[150]WU X, SHARMAN R, MEI J, et al. Direct laser fabrication and microstructure of a burn-resistant Ti alloy[J]. Materials & Design, 2002, 23(3): 239-247.
[151]ZHANG F Y, QIU Y, HU T T, et al. Microstructures and mechanical behavior of beta-type Ti-25V-15Cr-0.2Si titanium alloy coating by laser cladding[J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2020, 796: 140063.
[152]FENGYING Z, GANG W, TONG L, et al. Microstructure and Flame-Resistant Properties of Ti-XV-15Cr (X= 20, 25, 30, 35) Alloys Prepared by Directed Energy Deposition[J]. Rare Metal Materials and Engineering, 2021, 50(2): 380-388.
[153]刘磊, 刘柳, 张海鸥. 3D打印技术在无人机制造中的应用[J]. 飞航导弹, 2015(7): 11-16.
[154]冯杨, 蒋超, 崔玉伟. 俄乌冲突中无人机作战运用及启示[J]. 中国军转民, 2022(23): 35-40.
[155]FIEGL T, FRANKE M, KöRNER C. Impact of build envelope on the properties of additive manufactured parts from AlSi10Mg[J]. Optics & Laser Technology, 2019, 111: 51-57.
[156]ROBLOT E, GROSSEAU P, GUILHOT B, et al. A study on the action mechanisms of grinding aids used for clinker comminution[C]. Proceedings of the Conference: Process of Industrials Minerals PIM 2005, Czech: Prague University of Economics, 2005:1-6.
[157]ADACHI S. Handbook On Optical Constants Of Metals, The: In Tables And Figures[M]. Singapore: World Scientific, 2012.
[158]YAWS C L. Liquid density of the elements: a comprehensive tabulation for all the important elements from Ag to Zr[J]. Chemical Engineering, 2007, 114(12): 44-47.
[159]HAYNES W M. CRC handbook of chemistry and physics[M]. USA: CRC press, 2016.
[160]ZHOU Y H, ZHANG Z H, WANG Y P, et al. Selective laser melting of typical metallic materials: An effective process prediction model developed by energy absorption and consumption analysis[J]. Additive Manufacturing, 2019, 25: 204-217.
[161]DUAN R, LI S, CAI B, et al. In situ alloying based laser powder bed fusion processing of β Ti–Mo alloy to fabricate functionally graded composites[J]. Composites Part B: Engineering, 2021, 222: 109059.
[162]BANIA P J. Beta titanium alloys and their role in the titanium industry[J]. Jom, 1994, 46: 16-19.
[163]ZHU Y, ZENG W, ZHAO Y, et al. Effect of processing parameters on hot deformation behavior and microstructural evolution during hot compression of Ti40 titanium alloy[J]. Materials Science and Engineering: A, 2012, 552: 384-391.
[164]LI Y G, LORETTO M H, RUGG D, et al. Effect of heat treatment and exposure on microstructure and mechanical properties of Ti–25V–15Cr–2Al–0.2C (wt%)[J]. Acta Materialia, 2001, 49(15): 3011-3017.
[165]LEE J Y, KIM J H, PARK S I, et al. Phase equilibrium of the Ti–Cr–V ternary system in the non-burning β-Ti alloy region[J]. Journal of Alloys and Compounds, 1999, 291(1-2): 229-238.
[166]ANDREWS C, HEO T W, SHI R, et al. Interplay of strain and phase evolution of laser powder bed fusion Ti–6Al–4V[J]. Materials Science and Engineering: A, 2022, 855: 143860.
[167]GHOSH C, BASU J, RAMACHANDRAN D, et al. Alloy design and microstructural evolution in V–Ti–Cr alloys[J]. Materials Characterization, 2015, 106: 292-301.
[168]TOOP G. Predicting ternary activities using binary data[J]. Transactions of the Metallurgical Society of AIME, 1965, 223: 850-855.
[169]DREVAL L A, AGRAVAL P G, TURCHANIN M A. Enthalpy of mixing of liquid Cu-Fe-Zr alloys at 1873 K (1600 C)[J]. Metallurgical and Materials Transactions B, 2015, 46: 2234-2245.
[170]YANG J J, YU H C, YIN J, et al. Formation and control of martensite in Ti-6Al-4V alloy produced by selective laser melting[J]. Materials & Design, 2016, 108: 308-318.
[171]ABDULLAH E C, GELDART D. The use of bulk density measurements as flowability indicators[J]. Powder Technology, 1999, 102(2): 151-165.
[172]GELDART D, ABDULLAH E C, HASSANPOUR A, et al. Characterization of powder flowability using measurement of angle of repose[J]. China Particuology, 2006, 4(3): 104-107.
[173]王伟, 李强, 何林, 等. Ti-25V-15Cr 阻燃钛合金组织结构及氧化行为研究[J]. 材料导报: 纳米与新材料专辑, 2016, 30(1): 548-550.
[174]TAN C, WENG F, SUI S, et al. Progress and perspectives in laser additive manufacturing of key aeroengine materials[J]. International Journal of Machine Tools and Manufacture, 2021, 170: 103804.
[175]SHI W, WANG P, LIU Y, et al. Experiment of Process Strategy of Selective Laser Melting Forming Metal Nonhorizontal Overhanging Structure[J]. Metals, 2019, 9(4): 385.
[176]JIA H, SUN H, WANG H, et al. Scanning strategy in selective laser melting (SLM): a review[J]. The International Journal of Advanced Manufacturing Technology, 2021, 113(9): 2413-2435.
[177]CATCHPOLE-SMITH S, ABOULKHAIR N, PARRY L, et al. Fractal scan strategies for selective laser melting of ‘unweldable’ nickel superalloys[J]. Additive Manufacturing, 2017, 15: 113-122.
[178]KHAIRALLAH S A, MARTIN A A, LEE J R I, et al. Controlling interdependent meso-nanosecond dynamics and defect generation inmetal 3D printing[J]. Science, 2020, 368(6491): 660-665.
[179]MAZUR M, BENOIT M, EASTON M, et al. Selective laser melting of Inconel 625 alloy with reduced defect formation[J]. Journal of Laser Applications, 2020, 32(2): 022058.
[180]刘彬, 方艳丽, 李安, 等. TA15 钛合金激光表面重熔快速凝固晶粒异常粗化[J]. 稀有金属材料与工程, 2009, 38(6): 1005-1009.
[181]CARTER L N, MARTIN C, WITHERS P J, et al. The influence of the laser scan strategy on grain structure and cracking behaviour in SLM powder-bed fabricated nickel superalloy[J]. Journal of Alloys and Compounds, 2014, 615: 338-347.
[182]SHOJI AOTA L, BAJAJ P, ZSCHOMMLER SANDIM H R, et al. Laser Powder-Bed Fusion as an Alloy Development Tool: Parameter Selection for In-Situ Alloying Using Elemental Powders[J]. Materials, 2020, 13(18): 3922.
[183]HUBER F, RASCH M, SCHMIDT M. Laser Powder Bed Fusion (PBF-LB/M) Process Strategies for In-Situ Alloy Formation with High-Melting Elements[J]. Metals, 2021, 11(2): 336.
[184]NAKAJIMA H, KOIWA M. Diffusion in Titanium[J]. Isij International, 1991, 31(8): 757-766.
[185]LUO Y W, WANG M Y, TU J G, et al. Reduction of residual stress in porous Ti6Al4V by in situ double scanning during laser additive manufacturing[J]. International Journal of Minerals Metallurgy and Materials, 2021, 28(11): 1844-1853.
[186]XIAO Z, CHEN C, HU Z, et al. Effect of rescanning cycles on the characteristics of selective laser melting of Ti6Al4V[J]. Optics & Laser Technology, 2020, 122: 105890.
[187]BRODIE E, MEDVEDEV A, FRITH J, et al. Remelt processing and microstructure of selective laser melted Ti25Ta[J]. Journal of Alloys and Compounds, 2020, 820: 153082.
[188]SCHWAB H, BöNISCH M, GIEBELER L, et al. Processing of Ti-5553 with improved mechanical properties via an in-situ heat treatment combining selective laser melting and substrate plate heating[J]. Materials & Design, 2017, 130: 83-89.
[189]MARTIN J H, YAHATA B D, HUNDLEY J M, et al. 3D printing of high-strength aluminium alloys[J]. Nature, 2017, 549(7672): 365-369.
[190]MOSTAFAEI A, ZHAO C, HE Y, et al. Defects and anomalies in powder bed fusion metal additive manufacturing[J]. Current Opinion in Solid State and Materials Science, 2022, 26(2): 100974.
[191]WANG D, HAN H, SA B, et al. A review and a statistical analysis of porosity in metals additively manufactured by laser powder bed fusion[J]. Opto-Electronic Advances, 2022, 5(10): 210058.
[192]PINEAU A, BENZERGA A A, PARDOEN T. Failure of metals I: Brittle and ductile fracture[J]. Acta Materialia, 2016, 107: 424-483.
[193]DOWLING N E. Mechanical behavior of materials: engineering methods for deformation, fracture, and fatigue[M]. USA: Pearson, 2012.
[194]CALLISTER JR W D, RETHWISCH D G. Callister's materials science and engineering[M]. USA: John Wiley & Sons, 2020.
[195]ZHAO Y Q, XIN S W, ZENG W D. Effect of major alloying elements on microstructure and mechanical properties of a highly beta stabilized titanium alloy[J]. Journal of Alloys and Compounds, 2009, 481(1-2): 190-194.
[196]COULES H, HORNE G, VENKATA K A, et al. The effects of residual stress on elastic-plastic fracture propagation and stability[J]. Materials & Design, 2018, 143: 131-140.
[197]雷力明, 黄旭, 孙福生, 等. Ti-25V-15Cr-2Al-0.2 C 合金的组织, 性能及其变形机制[J]. 中国有色金属学报, 2003, 13(4): 939-943.
[198]LI Y G, BLENKINSOP P A, LORETTO M H, et al. Microstructure and Mechanical Properties of Thermomechanically Processed Ti-25V-15Cr-xAl alloys[M]. Materials for Transportation Technology. USA: John Wiley & Sons, 2000, 1: 211-217.
[199]赵红霞, 黄旭, 王宝,等. 热处理对Ti-35V-15Cr-0.15Si-0.05C合金热稳定性能的影响[J]. 材料工程, 2013(7): 73-77.
[200]ZHAO Y, ZHU K, QU H, et al. Microstructures of a burn resistant highly stabilized β-titanium alloy[J]. Materials Science and Engineering: A, 2000, 282(1-2): 153-157.
[201]辛社伟, 赵永庆, 曾卫东. Ti40 阻燃钛合金热处理的研究[J]. 金属热处理, 2008, 33(5): 68-71.
[202]WANG X X, WANG W Q, ZHANG Y Q. Effect of heat treatment and thermal exposure on microstructure of the alloy C+ bars[C]. Proceedings of the Materials Science Forum. Switzerland: Trans Tech Publications, 2013: 506-510.
[203]雷力明, 黄旭, 孙福生, 等. 热处理对 Ti—25V—15Cr—2A1—2Mo—0.2 C 合金组织稳定性的影响[J]. 稀有金属, 2003, 27(4): 503-506.
[204]李笑, 卢亚锋, 辛社伟, 等. 去应力退火对 Ti40 合金力学性能的影响[J]. 金属热处理, 2011, 36(12): 30-33.
[205]FOLTZ J W, WELK B, COLLINS P C, et al. Formation of Grain Boundary α in β Ti Alloys: Its Role in Deformation and Fracture Behavior of These Alloys[J]. Metallurgical and Materials Transactions A, 2011, 42(3): 645-650.
[206]CARDARELLI F. Materials handbook: a concise desktop reference, 3rd Edition.[M]. Canada: Springer, 2018.
[207]WITHERS P. Residual stress and its role in failure[J]. Reports on progress in physics, 2007, 70(12): 2211-2264.
[208]白凡. 残余应力和损伤对焊接厚板组合构件的力学性能影响的研究[D]. 北京: 北京交通大学, 2013.
[209]王惠民, 张武. 残余应力对复合材料横向拉伸和压缩性能的影响[J]. 高分子材料科学与工程, 1991, 7(5): 91-93.
[210]PAUL A, LAURILA T, VUORINEN V, et al. Fick’s Laws of Diffusion[M]. Thermodynamics, Diffusion and the Kirkendall Effect in Solids. Gemany: Springer International Publishing. 2014: 115-139.
[211]李孟星, 张宏博, 孟祥海, 等. 退火过程中 Ni 的扩散行为[J]. 金属热处理, 2019, 9: 46-51.
[212]辛社伟, 赖运金, 马凡蛟, 等. Ti-35V-15Cr-Si-C合金退火过程中组织演化行为[J]. 稀有金属材料与工程, 2016, 45(11): 2841-2846.
[213]ZHU Y-C, HUANG Q-X, SHI X-H, et al. Precipitation location of secondary phase and microstructural evolution during static recrystallization of as-cast Ti-25V-15Cr-0.3 Si titanium alloy[J]. Transactions of Nonferrous Metals Society of China, 2018, 28(8): 1521-1529.
[214]AFONSO C R M, ALEIXO G T, RAMIREZ A J, et al. Influence of cooling rate on microstructure of Ti–Nb alloy for orthopedic implants[J]. Materials Science and Engineering: C, 2007, 27(4): 908-913.
[215]ZHANG H, ZHANG J, HOU J, et al. Making a low-cost duplex titanium alloy ultra-strong and ductile via interstitial solutes[J]. Acta Materialia, 2022, 241: 118411.
[216]吴芳堤, 曹晶晶. 金属材料洛氏硬度与抗拉强度的相关关系[J]. 理化检验: 物理分册, 2019, 55(5): 301-304.
[217]陈文广. 钛的布氏硬度与抗拉强度, 面缩率, 伸长率的关系[J]. 稀有金属, 1986(1): 30-33.
[218]WANG M, ZHAO Y, ZHOU L, et al. Study on creep behavior of Ti–V–Cr burn resistant alloys[J]. Materials Letters, 2004, 58(26): 3248-3252.
[219]CONRAD H. Effect of Interstitial Solutes on the Strength and Ductility of Titanium[J]. Progress in Materials Science, 1981, 26(2-4): 123-404.
[220]PEŠIČKA J, KUŽEL R, DRONHOFER A, et al. The evolution of dislocation density during heat treatment and creep of tempered martensite ferritic steels[J]. Acta Materialia, 2003, 51(16): 4847-4862.
[221]ZHAO G-H, LIANG X, KIM B, et al. Modelling strengthening mechanisms in beta-type Ti alloys[J]. Materials Science and Engineering: A, 2019, 756: 156-160.
[222]BALZAR D. X-ray diffraction line broadening: Modeling and applications to high-Tc superconductors[J]. Journal of Research of the National Institute of Standards and Technology, 1993, 98(3): 321-353.
[223]BRAGG W H, BRAGG W L. The reflection of X-rays by crystals[J]. Proceedings of the Royal Society of London Series A, Containing Papers of a Mathematical and Physical Character, 1913, 88(605): 428-438.
[224]CLARK H T. The lattice parameters of high purity alpha titanium; and the effects of oxygen and nitrogen on them[J]. Jom, 1949, 1(9): 588-589.
[225]NAGASE T, HORI T, TODAI M, et al. Additive manufacturing of dense components in beta‑titanium alloys with crystallographic texture from a mixture of pure metallic element powders[J]. Materials & Design, 2019, 173: 107771.
[226]HARTE A, ATKINSON M, PREUSS M, et al. A statistical study of the relationship between plastic strain and lattice misorientation on the surface of a deformed Ni-based superalloy[J]. Acta Materialia, 2020, 195: 555-570.
[227]LUO Z, YOSHINO M, TERANO M, et al. Prediction of static recrystallization nucleation sites in tensile deformed single crystal pure Iron through a combination of in-situ EBSD and CP-FEM[J]. Metals, 2018, 8(10): 858.
[228]KRäMER T, EISENHUT L, GERMAIN L, et al. Assessment of EBSD analysis and reconstruction methods as a tool for the determination of recrystallized fractions in hot-deformed austenitic microstructures[J]. Metallurgical and Materials Transactions A, 2018, 49: 2795-2802.
[229]ZHANG J, LIU Y, BAYAT M, et al. Achieving high ductility in a selectively laser melted commercial pure-titanium via in-situ grain refinement[J]. Scripta Materialia, 2021, 191: 155-160.
[230]HU D, GRILLI N, YAN W. Dislocation structures formation induced by thermal stress in additive manufacturing: Multiscale crystal plasticity modeling of dislocation transport[J]. Journal of the Mechanics and Physics of Solids, 2023, 173: 105235.
[231]BATON J, GESLIN W, MOUSSA C. Influence of crystallographic orientation on the recrystallization of pure tantalum through microstructure-based estimation of the stored energy[J]. International Journal of Refractory Metals and Hard Materials, 2022, 104: 105786.
[232]谷雨, 杨树峰, 赵朋, 等. 镍基高温合金 GH4738 的凝固偏析和碳化物析出行为[J]. 中国冶金, 2021, 31(7): 13-21.
[233]LU S-Q, OUYANG D-L, XIA C, et al. Dynamic recrystallization behavior of burn resistant titanium alloy Ti–25V–15Cr–0.2 Si[J]. Transactions of Nonferrous Metals Society of China, 2016, 26(4): 1003-1010.
[234]FIELD D P, TRIVEDI P B, WRIGHT S I, et al. Analysis of local orientation gradients in deformed single crystals[J]. Ultramicroscopy, 2005, 103(1): 33-39.
[235]ZHENG X, ZHENG S, WANG J, et al. Twinning and sequential kinking in lamellar Ti-6Al-4V alloy[J]. Acta Materialia, 2019, 181: 479-490.
[236]LI Y G, BLENKINSOP P A, LORETTO M H, et al. Effect of aluminiumon ordering of highly stabilised β-Ti-V-Cr alloys[J]. Materials Science and Technology, 1998, 14(8): 732-737.
[237]雷力明, 黄旭, 孙福生, 等. Heat treatment process for improving ductility of Ti-25V-15Cr-2Al-0. 2C alloy[J]. 中国有色金属学会会刊: 英文版, 2003, 13(5): 1175-1180.
[238]GHOSH G. Thermodynamic and kinetic modeling of the Cr-Ti-V system[J]. Journal of Phase Equilibria, 2002, 23(4): 310-328.
[239]YAN M, LUO S, SCHAFFER G, et al. TEM and XRD characterisation of commercially pure α-Ti made by powder metallurgy and casting[J]. Materials Letters, 2012, 72: 64-67.
[240]VON HARRACH H S, KLENOV D, FREITAG B, et al. Comparison of the Detection Limits of EDS and EELS in S/TEM[J]. Microscopy and Microanalysis, 2010, 16(S2): 1312-1313.
[241]YU Q, QI L, TSURU T, et al. Origin of dramatic oxygen solute strengthening effect in titanium[J]. Science, 2015, 347(6222): 635-639.
[242]DOS SANTOS L U, CAMPO K N, CARAM R, et al. Oxygen addition in biomedical Ti–Nb alloys with low Nb contents: Effect on the microstructure and mechanical properties[J]. Materials Science and Engineering: A, 2021, 823: 141750.
[243]TAHARA M, KIM H Y, HOSODA H, et al. Effect of nitrogen addition and annealing temperature on superelastic properties of Ti–Nb–Zr–Ta alloys[J]. Materials Science and Engineering: A, 2010, 527(26): 6844-6852.
[244]DE FONTAINE D, PATON N, WILLIAMS J. The omega phase transformation in titanium alloys as an example of displacement controlled reactions[J]. Acta Metallurgica, 1971, 19(11): 1153-1162.
[245]JONES R, KNOWLES A, CLEGG W. A binary beta titanium superalloy containing ordered-beta TiFe, alpha and omega[J]. Scripta Materialia, 2021, 200: 113905.
[246]PANG E, PICKERING E, BAIK S, et al. The effect of zirconium on the omega phase in Ti-24Nb-
[0–8] Zr (at.%) alloys[J]. Acta Materialia, 2018, 153: 62-70.
[247]林成, 于佳石, 尹桂丽, 等. 钛合金中 ω 相变的研究进展[J]. 材料导报, 2018, 31(5): 72-76.
[248]BALLOR J, LI T, PRIMA F, et al. A review of the metastable omega phase in beta titanium alloys: The phase transformation mechanisms and its effect on mechanical properties[J]. International Materials Reviews, 2022: 1-20.
[249]ZHENG Y, CHOUDHURI D, ALAM T, et al. The role of cuboidal ω precipitates on α precipitation in a Ti-20V alloy[J]. Scripta Materialia, 2016, 123: 81-85.
[250]KIM H Y, WEI L, KOBAYASHI S, et al. Nanodomain structure and its effect on abnormal thermal expansion behavior of a Ti–23Nb–2Zr–0.7 Ta–1.2 O alloy[J]. Acta Materialia, 2013, 61(13): 4874-4886.
[251]TODAI M, FUKUNAGA K, NAKANO T. Athermal ω Phase and Lattice Modulation in Binary Zr-Nb Alloys[J]. Materials, 2022, 15(6): 2318.
[252]DEVARAJ A, NAG S, SRINIVASAN R, et al. Experimental evidence of concurrent compositional and structural instabilities leading to ω precipitation in titanium–molybdenum alloys[J]. Acta Materialia, 2012, 60(2): 596-609.
[253]ZHENG Y, WILLIAMS R E, NAG S, et al. The effect of alloy composition on instabilities in the β phase of titanium alloys[J]. Scripta Materialia, 2016, 116: 49-52.
[254]LEE S, PARK C, HONG J, et al. The role of nano-domains in {1–011} twinned martensite in metastable titanium alloys[J]. Scientific Reports, 2018, 8(1): 11914.
[255]ZHENG Y, BANERJEE D, FRASER H L. A nano-scale instability in the β phase of dilute Ti–Mo alloys[J]. Scripta Materialia, 2016, 116: 131-134.
[256]ZHENG Y, WILLIAMS R E, WANG D, et al. Role of ω phase in the formation of extremely refined intragranular α precipitates in metastable β-titanium alloys[J]. Acta Materialia, 2016, 103: 850-858.
[257]PRIMA F, VERMAUT P, TEXIER G, et al. Evidence of α-nanophase heterogeneous nucleation from ω particles in a β-metastable Ti-based alloy by high-resolution electron microscopy[J]. Scripta Materialia, 2006, 54(4): 645-648.
[258]ZHENG Y, BANERJEE R, WANG Y, et al. Pathways to Titanium Martensite[J]. Transactions of the Indian Institute of Metals, 2022, 75(4): 1051-1068.
[259]MORINAGA M, SAITO J-I, MORISHITA M. Design of titanium alloys by means of a d-electrons theory[J]. Journal of Japan Institute of Light Metals, 1992, 42(11): 614-621.
[260]BANERJEE D, WILLIAMS J C. Perspectives on Titanium Science and Technology[J]. Acta Materialia, 2013, 61(3): 844-879.
[261]BAHL S, SUWAS S, CHATTERJEE K. Comprehensive review on alloy design, processing, and performance of β Titanium alloys as biomedical materials[J]. International Materials Reviews, 2021, 66(2): 114-139.
[262]ABDEL-HADY M, HINOSHITA K, MORINAGA M. General approach to phase stability and elastic properties of beta-type Ti-alloys using electronic parameters[J]. Scripta Materialia, 2006, 55(5): 477-480.
[263]MANTRI S A, CHOUDHURI D, ALAM T, et al. Change in the deformation mode resulting from beta-omega compositional partitioning in a TiMo alloy: Room versus elevated temperature[J]. Scripta Materialia, 2017, 130: 69-73.
[264]DANARD Y, SUN F, GLORIANT T, et al. The Influence of Twinning on the Strain–Hardenability in TRIP/TWIP Titanium Alloys: Role of Solute–Solution Strengthening[J]. Frontiers in Materials, 2020, 7: 00240.
[265]DANARD Y, POULAIN R, GARCIA M, et al. Microstructure design and in-situ investigation of TRIP/TWIP effects in a forged dual-phase Ti–10V–2Fe–3Al alloy[J]. Materialia, 2019, 8: 100507.
[266]BATON J, GESLIN W, MOUSSA C. Orientation and deformation conditions dependence of dislocation substructures in cold deformed pure tantalum[J]. Materials Characterization, 2021, 171: 110789.
[267]GAO J, HUANG Y, GUAN D, et al. Deformation mechanisms in a metastable beta titanium twinning induced plasticity alloy with high yield strength and high strain hardening rate[J]. Acta Materialia, 2018, 152: 301-314.
[268]HOUNKPATI V, FRéOUR S, GLOAGUEN D, et al. In situ neutron measurements and modelling of the intergranular strains in the near-β titanium alloy Ti-β21S[J]. Acta Materialia, 2016, 109: 341-352.
[269]ZHAO Y, QU H, WANG M, et al. Thermal stability and creep behavior of Ti–V–Cr burn-resistant alloys[J]. Journal of Alloys and Compounds, 2006, 407(1-2): 118-124.
[270]LI S, DENG T, ZHANG Y, et al. Review on the creep resistance of high-temperature titanium alloy[J]. Transactions of the Indian Institute of Metals, 2021, 74: 215-222.
[271]KUO Y-L, KAMIGAICHI A, KAKEHI K. Characterization of Ni-Based Superalloy Built by Selective Laser Melting and Electron Beam Melting[J]. Metallurgical and Materials Transactions A, 2018, 49(9): 3831-3837.
[272]XU Z, CAO L, ZHU Q, et al. Creep property of Inconel 718 superalloy produced by selective laser melting compared to forging[J]. Materials Science and Engineering: A, 2020, 794: 139947.
[273]赖运金, 张平祥, 张赛飞, 等. 阻燃钛合金 Ti40 的热物理性能及力学性能[J]. 航空材料学报, 2017, 37(5): 22-28.
[274]DUAN Y, WU Y, PENG M, et al. The interstitial diffusion behaviors and mechanisms of boron in α-Ti and β-Ti: A first-principles calculation[J]. Computational Materials Science, 2020, 184: 109866.
[275]WASZ M, BROTZEN F, MCLELLAN R, et al. Effect of oxygen and hydrogen on mechanical properties of commercial purity titanium[J]. International Materials Reviews, 1996, 41(1): 1-12.
[276]YAN M, LUO S D, SCHAFFER G B, et al. Impurity (Fe, Cl, and P)-Induced Grain Boundary and Secondary Phases in Commercially Pure Titanium (CP-Ti)[J]. Metallurgical and Materials Transactions A, 2013, 44(8): 3961-3969.
[277]SPIERINGS A B, VOEGTLIN M, BAUER T, et al. Powder flowability characterisation methodology for powder-bed-based metal additive manufacturing[J]. Progress in Additive Manufacturing, 2016, 1(1-2): 9-20.
[278]WEI H L, MUKHERJEE T, ZHANG W, et al. Mechanistic models for additive manufacturing of metallic components[J]. Progress in Materials Science, 2021, 116: 100703.
[279]PESENTI H, LEONI M, SCARDI P. XRD line profile analysis of calcite powders produced by high energy milling[J]. Zeitschrift Fur Kristallographie, 2008, 27: 143-150.
[280]RODRIGUEZ-CARVAJAL J. Recent advances in magnetic structure determination by neutron powder diffraction[J]. Physica B: Condensed Matter, 1993, 192(1-2): 55-69.
[281]RODRíQUEZ-CARVAJAL J, ROISNEL T. Line Broadening Analysis Using FullProf*: Determination of Microstructural Properties[J]. Materials Science Forum, 2004, 443-444: 123-126.
[282]RANGASWAMY P, PRIME M B, DAYMOND M, et al. Comparison of residual strains measured by X-ray and neutron diffraction in a titanium (Ti-6Al-4V) matrix composite[J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 1999, 259(2): 209-219.
[283]WANG D W, ZHOU Y H, YAO X Y, et al. Inheritance of microstructure and mechanical properties in laser powder bed fusion additive manufacturing: A feedstock perspective[J]. Materials Science and Engineering: A, 2022, 832: 142311.
[284]刘紫微, 华佳捷, 林初城, 等. 透射模式电子背散射衍射技术在纳米材料研究中的应用[J]. 无机材料学报, 2015, 30(8): 833-837.
[285]WANG S, NIU L, CHEN C, et al. Size effects on the tensile properties and deformation mechanism of commercial pure titanium foils[J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2018, 730: 244-261.
[286]WRONSKI M, KUMAR M A, CAPOLUNGO L, et al. Deformation behavior of CP-titanium: Experiment and crystal plasticity modeling[J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2018, 724: 289-297.
[287]BARTZSCH G, SCHERBRING S, RICHTER J, et al. Gas atomization of Al-steels[J]. Materials Today Communications, 2023, 34: 105388.
[288]GOKELMA M, CELIK D, TAZEGUL O, et al. Characteristics of Ti6Al4V Powders Recycled from Turnings via the HDH Technique[J]. Metals, 2018, 8(5): 336.
[289]YANG Y F, QIAN M. Fundamental Understanding of the Dissolution of Oxide Film on Ti Powder and the Unique Scavenging Feature by LaB6[J]. Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science, 2018, 49a(1): 1-6.
[290]SAHA N C, TOMPKINS H G. Titanium Nitride Oxidation Chemistry - an X-Ray Photoelectron-Spectroscopy Study[J]. Journal of Applied Physics, 1992, 72(7): 3072-3079.
[291]WANG D W, ZHOU Y H, SHEN J, et al. Selective laser melting under the reactive atmosphere: A convenient and efficient approach to fabricate ultrahigh strength commercially pure titanium without sacrificing ductility[J]. Materials Science and Engineering: A, 2019, 762: 138078.
[292]WYSOCKI B, MAJ P, KRAWCZYNSKA A, et al. Microstructure and mechanical properties investigation of CP titanium processed by selective laser melting (SLM)[J]. Journal of Materials Processing Technology, 2017, 241: 13-23.
[293]LI X P, VAN HUMBEECK J, KRUTH J P. Selective laser melting of weak-textured commercially pure titanium with high strength and ductility: A study from laser power perspective[J]. Materials & Design, 2017, 116: 352-358.
[294]MASSALSKI T B. Massive transformations revisited[J]. Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science, 2002, 33(8): 2277-2283.
[295]LIU H, NAKATA K, ZHANG J X, et al. Microstructural evolution of fusion zone in laser beam welds of pure titanium[J]. Materials Characterization, 2012, 65: 1-7.
[296]LU S L, QIAN M, TANG H P, et al. Massive transformation in Ti–6Al–4V additively manufactured by selective electron beam melting[J]. Acta Materialia, 2016, 104: 303-311.
[297]RAGAB A. A model for ductile fracture based on internal necking of spheroidal voids[J]. Acta Materialia, 2004, 52(13): 3997-4009.
[298]BECKER H, PANTLEON W. Work-hardening stages and deformation mechanism maps during tensile deformation of commercially pure titanium[J]. Computational Materials Science, 2013, 76: 52-59.
[299]MECKING H, KOCKS U F, HARTIG C. Taylor factors in materials with many deformation modes[J]. Scripta Materialia, 1996, 35(4): 465-471.
[300]BARKIA B, DOQUET V, COUZINIE J P, et al. In situ monitoring of the deformation mechanisms in titanium with different oxygen contents[J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2015, 636: 91-102.
[301]LEWANDOWSKI J J, THOMPSON A W. Effects of the Prior Austenite Grain-Size on the Ductility of Fully Pearlitic Eutectoid Steel[J]. Metallurgical Transactions a-Physical Metallurgy and Materials Science, 1986, 17(3): 461-472.
[302]MATSUMOTO H, YONEDA H, SATO K, et al. Room-temperature ductility of Ti–6Al–4V alloy with α′ martensite microstructure[J]. Materials Science and Engineering: A, 2011, 528(3): 1512-1520.
[303]BOLEY C D, KHAIRALLAH S A, RUBENCHIK A M. Calculation of laser absorption by metal powders in additive manufacturing[J]. Applied optics, 2015, 54(9): 2477-2482.
[304]ZHANG B C, CODDET C. Selective Laser Melting of Iron Powder: Observation of Melting Mechanism and Densification Behavior Via Point-Track-Surface-Part Research[J]. Journal of Manufacturing Science and Engineering-Transactions of the Asme, 2016, 138(5): 051001.
[305]ROMBOUTS M, FROYEN L, GUSAROV A V, et al. Photopyroelectric measurement of thermal conductivity of metallic powders[J]. Journal of Applied Physics, 2005, 97(2): 024905.
[306]WEI H L, CAO Y, LIAO W H, et al. Mechanisms on inter-track void formation and phase transformation during laser Powder Bed Fusion of Ti-6Al-4V[J]. Additive Manufacturing, 2020, 34: 101221.
[307]KIM S K, PARK J K. In-situ measurement of continuous cooling β → α transformation behavior of CP-Ti[J]. Metallurgical and Materials Transactions A, 2002, 33(4): 1051-1056.
[308]CAYRON C. ARPGE: a computer program to automatically reconstruct the parent grains from electron backscatter diffraction data[J]. Journal of Applied Crystallography, 2007, 40: 1183-1188.
[309]KAMIYAMA K, KARIYA S, FUKUO M, et al. Ductility Improvement Mechanism of Ti–6Al–4V+O Sintered Material[J]. Materials Transactions, 2020, 61(3): 430-437.
[310]CHEN B, SHEN J H, YE X X, et al. Advanced mechanical properties of powder metallurgy commercially pure titanium with a high oxygen concentration[J]. Journal of Materials Research, 2017, 32(19): 3769-3776.
[311]王大为. 气氛辅助增强激光 3D 打印纯钛的成型及其强化机理研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.
[312]OH M, LEE J-Y, PARK J K. Continuous cooling β-to-α transformation behaviors of extra-pure and commercially pure Ti[J]. Metallurgical and Materials Transactions A, 2004, 35(10): 3071-3077.
[313]BIDARE P, BITHARAS I, WARD R M, et al. Fluid and particle dynamics in laser powder bed fusion[J]. Acta Materialia, 2018, 142: 107-120.
[314]殷杰, 郝亮, 杨亮亮, 等. 激光选区熔化增材制造中金属蒸气与飞溅相互作用研究[J]. Chinese Journal of Lasers, 2022, 49(14): 1402202.
[315]WANG T, ZHU Y Y, ZHANG S Q, et al. Grain morphology evolution behavior of titanium alloy components during laser melting deposition additive manufacturing[J]. Journal of Alloys and Compounds, 2015, 632: 505-513.
[316]JANERKA K, PAWLYTA M, JEZIERSKI J, et al. Carburiser properties transfer into the structure of melted cast iron[J]. Journal of Materials Processing Technology, 2014, 214(4): 794-801.
[317]QI J-G, WANG J-Z, DU H-L, et al. Heredity of Aluminum Melt by Electric Pulse Modification (II)[J]. Journal of Iron and Steel Research International, 2007, 14(5): 76-78.
[318]边秀房, 潘学民, 秦绪波, 等. 金属熔体中程有序结构[J]. 中国科学:技术科学, 2002, 32(002): 145-151.
[319]HOJJATZADEH S M H, PARAB N D, GUO Q L, et al. Direct observation of pore formation mechanisms during LPBF additive manufacturing process and high energy density laser welding[J]. International Journal of Machine Tools & Manufacture, 2020, 153: 103555.
[320]FEDINA T, SUNDQVIST J, POWELL J, et al. A comparative study of water and gas atomized low alloy steel powders for additive manufacturing[J]. Additive Manufacturing, 2020, 36: 101675.
[321]ATTAR H, CALIN M, ZHANG L C, et al. Manufacture by selective laser melting and mechanical behavior of commercially pure titanium[J]. Materials Science and Engineering: A, 2014, 593: 170-177.
[322]FATEMI A, MOLAEI R, SHARIFIMEHR S, et al. Multiaxial fatigue behavior of wrought and additive manufactured Ti-6Al-4V including surface finish effect[J]. International Journal of Fatigue, 2017, 100: 347-366.
[323]CHICHILI D R, RAMESH K T, HEMKER K J. The high-strain-rate response of alpha-titanium: Experiments, deformation mechanisms and modeling[J]. Acta Materialia, 1998, 46(3): 1025-1043.
[324]MECKING H, KOCKS U F. Kinetics of Flow and Strain-Hardening[J]. Acta Metallurgica, 1981, 29(11): 1865-1875.
[325]FOLLANSBEE P S, KOCKS U F. A Constitutive Description of the Deformation of Copper Based on the Use of the Mechanical Threshold Stress as an Internal State Variable[J]. Acta Metallurgica, 1988, 36(1): 81-93.
[326]NEMAT-NASSER S, GUO W G, CHENG J Y. Mechanical properties and deformation mechanisms of a commercially pure titanium[J]. Acta Materialia, 1999, 47(13): 3705-3720.
[327]WON J W, PARK C H, LEE T, et al. Integrated Constitutive Model for Flow Behavior of Pure Titanium Considering Interstitial Solute Concentration[J]. Metals and Materials International, 2014, 20(6): 1017-1025.
[328]LEDERICH R J, SASTRY S M L, O'NEAL J E, et al. The effect of grain size on yield stress and work hardening of polycrystalline titanium at 295 K and 575 K[J]. Materials Science and Engineering, 1978, 33(2): 183-188.
[329]SUN B, LI S, IMAI H, et al. Fabrication of high-strength Ti materials by in-process solid solution strengthening of oxygen via P/M methods[J]. Materials Science and Engineering: A, 2013, 563: 95-100.
[330]KONDOH K, ISSARIYAPAT A, UMEDA J, et al. Selective laser-melted titanium materials with nitrogen solid solutions for balanced strength and ductility[J]. Materials Science and Engineering: A, 2020, 790: 139641.
[331]LEI Z F, LIU X J, WU Y, et al. Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes[J]. Nature, 2018, 563(7732): 546-550.
[332]BERTOLI U S, GUSS G, WU S, et al. In-situ characterization of laser-powder interaction and cooling rates through high-speed imaging of powder bed fusion additive manufacturing[J]. Materials & Design, 2017, 135: 385-396.
[333]LI R D, SHI Y S, WANG Z G, et al. Densification behavior of gas and water atomized 316L stainless steel powder during selective laser melting[J]. Applied Surface Science, 2010, 256(13): 4350-4356.
[334]ZHAO C, PARAB N D, LI X, et al. Critical instability at moving keyhole tip generates porosity in laser melting[J]. Science, 2020, 370: 1080-1086.
[335]LI K, WEI L, AN B, et al. Aging phenomenon in low lattice-misfit cobalt-free maraging steel: Microstructural evolution and strengthening behavior[J]. Materials Science and Engineering: A, 2019, 739: 445-454.
[336]ZHAO X, BIAN X, WANG C, et al. The evolution of coordination structure in liquid GaSn alloy[J]. Chinese Journal of Physics, 2018, 56(6): 2684-2688.
[337]ZHANG T, YUAN H. Effects of heat treatments on microstructure and mechanical properties of laser melting multi-layer materials[J]. Materials Science and Engineering: A, 2022, 848: 143380.
[338]LOUAT N P. On the theory of normal grain growth[J]. Acta Metallurgica, 1974, 22(6): 721-724.
[339]WANG L, DOU R, BAI M, et al. Characterisation of microstructure and hardness of perovskite-structured Ba0.5Sr0.5Co0.8Fe0.2O3−δ under different sintering conditions[J]. Journal of the European Ceramic Society, 2016, 36(7): 1659-1667.
[340]ZHAO P C, GUAN B, TONG Y G, et al. A quasi-in-situ EBSD study of the thermal stability and grain growth mechanisms of CoCrNi medium entropy alloy with gradient-nanograined structure[J]. Journal of Materials Science & Technology, 2022, 109: 54-63.
[341]CHEN R, CHEN Q, PENG P, et al. Abnormal grain growth induced by <110> orientation of AZ31 magnesium alloy[J]. Materials Science and Technology, 2023: 1-13.
[342]BACZMAŃSKI A, WIERZBANOWSKI K, LIPIŃSKI P, et al. Residual stresses, dislocation density and recrystallization process[J]. Journal of Neutron Research, 2007, 15: 281-287.
[343]SHI R, NIE Z, FAN Q, et al. Correlation between dislocation-density-based strain hardening and microstructural evolution in dual phase TC6 titanium alloy[J]. Materials Science and Engineering: A, 2018, 715: 101-107.
[344]RUI S-S, HAN Q-N, WANG X, et al. Correlations between two EBSD-based metrics Kernel Average Misorientation and Image Quality on indicating dislocations of near-failure low alloy steels induced by tensile and cyclic deformations[J]. Materials Today Communications, 2021, 27: 102445.
[345]DING R, CHU M, ZHANG S. A study of microstructure and mechanical property of a burn-resistant Ti alloy fabricated by HIPping[J]. Materials Characterization, 2020, 163: 110280.
[346]WANG Z, WU H, WU Y, et al. Solving oxygen embrittlement of refractory high-entropy alloy via grain boundary engineering[J]. Materials Today, 2022, 54: 83-89.
修改评论