[1] 张卫. 突破关键核心技术, 大力发展集成电路产业[J]. 张江科技评论, 2022(1): 24-25.
[2] 朱惠臣, 孙晓光, 杜黎明. 我国集成电路专用材料发展状况分析[J]. 集成电路应用, 2021,38(2): 22-25.
[3] 孟庆巨, 刘海波, 孟庆辉. 半导体器件物理. 第 2 版[M]. 北京:科学出版社, 2009: 15-16.
[4] SINHA S, YERIC G, CHANDRA V, et al. Exploring Sub-20nm FinFET Design with Pre-dictive Technology Models[C]//DAC ’12: number 6 Proceedings of the 49th Annual Design Automation Conference. New York, NY, USA: Association for Computing Machinery, 2012:283–288.
[5] CHOWDHURY R K, MAITI R, GHORAI A, et al. Novel silicon compatible p-WS2 2D/3D heterojunction devices exhibiting broadband photoresponse and superior detectivity[J]. Nanoscale,2016, 8(7): 13429-13436.
[6] ZHANG X, CONNELLY D, TAKEUCHI H, et al. Comparison of SOI Versus Bulk FinFETTechnologies for 6T-SRAM Voltage Scaling at the 7-/8-nm Node[J]. IEEE Transactions onElectron Devices, 2017, 64(1): 329-332.
[7] WANG C N, LEE Y H, HSU H P, et al. The heuristic preemptive dispatching method for convey-based automated material handling system of 450mm wafer fabrication[J]. Computers & Industrial Engineering, 2016, 96: 52-60.
[8] COTTLE R, YATHAPU N, SIEG K. 450mm metrology and inspection: The current state and the road ahead[C]//25th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC 2014). 2014: 265-269.
[9] MATIJEVIć E, BABU S V. Colloid aspects of chemical-mechanical planarization.[J]. Journal of Colloid & Interface Science, 2010, 59(1): 219-237.
[10] RING T A, FEENEY P, BOLDRIDGE D, et al. Brittle and Ductile Fracture Mechanics Analysis of Surface Damage Caused During CMP[J]. Journal of the Electrochemical Society, 2007, 154 (3): 239-248.
[11] 徐嘉慧、康仁科、董志刚、王紫光. 硅片化学机械抛光技术的研究进展[J]. 金刚石与磨料磨具工程, 2020, 40(4): 10.
[12] 宋恩敏, 卞达, 徐浩, 等. 碳酸胍和聚乙二醇对单晶硅片 CMP 的影响[J]. 固体电子学研究与进展, 2022(1): 42-48.
[13] 孙禹辉. 硅片化学机械抛光中材料去除非均匀性研究[J]. 大连理工大学, 2011.
[14] MOORE G E. Cramming More Components Onto Integrated Circuits[J]. Proceedings of the IEEE, 2002, 86(1): 82-85.
[15] REGH J, SILVEY DECEASED. G A. METHOD FOR POLISHING A SILICON SURFACE[M]. US, 1971.
[16] KRISHNAN M, NALASKOWSKI J W, COOK L M. Chemical Mechanical Planarization: Slurry Chemistry, Materials, and Mechanisms[J]. Chemical Reviews, 2010, 110(1): 178-204.
[17] LU Z, LEE S H, BABU S V, et al. The use of monodispersed colloids in the polishing of copper and tantalum[J]. Journal of Colloid and Interface Science, 2003, 261(1): 55-64.
[18] CHOI W, MAHAJAN U, LEE S M, et al. Effect of Slurry Ionic Salts at Dielectric Silica CMP [J]. Journal of The Electrochemical Society, 2004, 151(3): 185.
[19] ZANTYE P B, KUMAR A, SIKDER A K. Chemical mechanical planarization for microelec tronics applications[J]. Materials Science & Engineering R-Reports, 2004, 45(3): 89-220.
[20] SEO J. A review on chemical and mechanical phenomena at the wafer interface during chemical mechanical planarization[J]. Journal of Materials Research, 2021, 36(1): 235-257.
[21] YUN J, KWAK D, KIM J, et al. Study on the effect of residual ceria slurry on chemical mechan ical planarization (CMP)[J]. Microelectronic Engineering, 2021, 249(15): 111620-111629.
[22] ILIE F, IPATE G. Study of the additives influence in the CMP slurry for the surfaces planarisa tion covered by selective transfer[J]. International Journal of Surface Science and Engineering, 2020, 14(2): 105-116.
[23] VERWEY E J. Theory of the stability of lyophobic colloids[J]. Journal of Physical & Colloid Chemistry, 1955, 10(2): 224-225.
[24] HAMAKER H. The London—Van der Waals attraction between spherical particles[J]. Physica, 1937, 4(10): 1058-1072.
[25] 周祖康, 顾惕人, 马季铭. 胶体化学基础[M]. 北京:北京大学出版社, 1987: 22-260.
[26] 赵振国. 吸附作用应用原理[M]. 2005: 53-298.
[27] HELLER W, PUGH T L. “Steric Protection” of Hydrophobic Colloidal Particles by Adsorption of Flexible Macromolecules[J]. Journal of Chemical Physics, 1954, 22(10): 1778-1778.
[28] KUO P, CHANG T, LU L. Functional polymers for colloidal applications. I. Structural effects of lipophile-modified polyacrylates on adsorption and dispersion ability[J]. Journal of Applied Polymer Science, 2010, 44: 859-867.
[29] PARK R G. Scratch formation and its mechanism in chemical mechanical planarization (CMP) [J]. Friction, 2013, 1(4): 279-305.
[30] KRISHNAN M, NALASKOWSKI J W, COOK L M. Chemical Mechanical Planarization: Slurry Chemistry, Materials, and Mechanisms[J]. Chemical Reviews, 2010, 110(1): 178-186.
[31] HAN X, JIN Z, MU Q, et al. Morphological characteristics and formation mechanism of latent scratches in chemical mechanical polishing[J]. Journal of Materials Processing Technology, 2022, 307: 117689.
[32] 夏菁菁, 余俊, 王占山, 等. 单晶硅化学机械抛光划痕演变研究[J]. 光学学报, 2022, 42(9):9.
[33] LI Y, LIU Y, WANG C, et al. Role of Dispersant Agent on Scratch Reduction during Copper Barrier Chemical Mechanical Planarization[J]. ECS Journal of Solid State Science and Technology, 2018(6): 7.
[34] KHANNA A J, GUPTA S, KUMAR P, et al. Study of Agglomeration Behavior of Chemical Mechanical Polishing Slurry under Controlled Shear Environments[J]. Ecs Journal of Solid State Science & Technology, 2018, 7(5): 238-242.
[35] CHANG F C, KUMAR P, SINGH R, et al. Role of interparticle forces during stress-inducedagglomeration of CMP slurries[J]. Colloids & Surfaces A Physicochemical & Engi neering Aspects, 2011, 389(3): 33-37.
[36] BASIM G B, MOUDGIL B M. Effect of Soft Agglomerates on CMP Slurry Performance[J]. Journal of Colloid & Interface Science, 2002, 256(1): 137-142.
[37] BASIM G B, VAKARELSKI I U, MOUDGIL B M. Role of interaction forces in controlling the stability and polishing performance of CMP slurries[J]. J Colloid Interface, 2003, 263(2): 506-515.
[38] REMSEN E E, ANJUR S, BOLDRIDGE D, et al. Analysis of Large Particle Count in Fumed Silica Slurries and Its Correlation with Scratch Defects Generated by CMP[J]. Journal of the Electrochemical Society, 2006, 153(5): 453-461.
[39] KIM Y H, KIM S K, PARK J G, et al. Increase in the Adsorption Density of Anionic Molecules on Ceria for Defect-Free STI CMP[J]. Journal of the Electrochemical Society, 2010, 157(1): 72-77.
[40] LEI H, TONG K, WANG Z. Preparation of Ce-doped colloidal SiO2 composite abrasives and their chemical mechanical polishing behavior on sapphire substrates[J]. Materials Chemistry and Physics, 2016, 172(1): 26-31.
[41] ZHANG W Q, LIU Y L, WANG C W, et al. Role of 1,2,4-Triazole in Co/Cu Removal Rate Selectivity and Galvanic Corrosion during Barrier CMP[J]. Ecs Journal of Solid State Science and Technology, 2017, 6(12): 786-793.
[42] MU Y, ZHONG M, RUSHING K J, et al. Benzotriazole as a passivating agent during chemical mechanical planarization of Ni–P alloy substrates[J]. Applied Surface Science, 2014, 315(1): 190-195.
[43] YANG S, ZHANG B, ZHANG Q, et al. A Study of Cobalt Galvanic and Pitting Corrosion with Combination of BTA and PMP[J]. ECS Journal of Solid State Science and Technology, 2019, 8(8): 416-422.
[44] JI J, TAN B, ZHANG S, et al. Investigation on the control effect of benzotriazole and two derivatives on cobalt pitting corrosion in chemical mechanical polishing process: A combination of experiments and theoretical simulations[J]. Journal of Molecular Liquids, 2022, 367(1): 120487-120496.
[45] 田立朋, 王力. 表面活性剂对二氧化硅溶胶稳定性的影响[J]. 硅酸盐通报, 2009, 28(6): 5-9.
[46] ZHANG Z, LIU W, SONG Z. Particle size and surfactant effects on chemical mechanical pol ishing of glass using silica-based slurry[J]. Appl. Opt., 2010, 49(28): 5480-5485.
[47] 洪姣, 刘国瑞, 牛新环, 等. 碱性 CMP 表面活性剂对硅衬底表面状态的影响[J]. 微纳电子技术, 2018, 55(6): 5-10.
[48] ZENG N, ZHAO H, LIU Y, et al. Optimizing of the Colloidal Dispersity of Silica Nanoparticle Slurries for Chemical Mechanical Polishing[J]. Silicon, 2022, 14(13): 7473-7481.
[49] YAO C, NIU X, WANG C, et al. Study on the Weakly Alkaline Slurry of Copper Chemical Mechanical Planarization for GLSI[J]. ECS Journal of Solid State Science and Technology, 2017, 6(8): 499-505.
[50] SHARMA K P, ASWAL V K, KUMARASWAMY G. Adsorption of nonionic surfactant on silica nanoparticles: structure and resultant interparticle interactions.[J]. Journal of Physical Chemistry B, 2010, 114(34): 10986-10994.
[51] YANG, JINLU, SHIBINWANG, et al. Effects of HEC Concentration on Silicon Polishing[J]. Silicon, 2019, 11(4): 2059–2066.
[52] ZHAO Q, XIE S, WANG H, et al. Control of the Micro-Defects on the Surface of Silicon Wafer in Chemical Mechanical Polishing[J]. ECS Journal of Solid State Science and Technology, 2022, 11(2): 023009.
[53] 宋晓岚; 吴雪兰; 曲鹏; 王海波; 邱冠周. 纳米 SiO2 分散稳定性能影响因素及作用机理研究[J]. 硅酸盐通报, 2005, 24(1): 3-7.
[54] PARK C, KIM H, CHO H, et al. Effect of Relative Surface Charge of Colloidal Silica and Sapphire on Removal Rate in Chemical Mechanical Polishing[J]. International Journal of Precision Engineering and Manufacturing-Green Technology, 2019, 6(2): 339-347.
[55] XIE W, ZHANG Z, WANG L, et al. Chemical mechanical polishing of silicon wafers using developed uniformly dispersed colloidal silica in slurry[J]. Journal of Manufacturing Processes,2023, 90(24): 196-203.
修改评论