中文版 | English
题名

苯乙烯-马来酸酐共聚物作为单晶硅抛光液分散剂的研究

其他题名
STUDY ON STYRENE MALEIC ANHYDRIDE COPOLYMER AS A DISPERSANT FOR MONOCRYSTALLINE SILICON POLISHING SLURRY
姓名
姓名拼音
HE Zhenhao
学号
12132004
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
0856 材料与化工
导师
邓永红
导师单位
材料科学与工程系
论文答辩日期
2023-05-19
论文提交日期
2023-06-30
学位授予单位
南方科技大学
学位授予地点
深圳
摘要
化学机械抛光(CMP)是集成电路制造过程中实现晶圆表面平坦化的关键工艺,而抛光液决定了 CMP 过程中化学腐蚀和机械磨削的协同效果, 对晶圆表面缺 陷和粗糙度等抛光效果起到至关重要的影响。CMP 抛光液的全球市场长期被美日企业所垄断,且现有抛光液存在容易团聚和过度腐蚀的问题。常采用分散剂抑制抛光液磨料的聚集,添加缓蚀剂解决过度腐蚀的问题。本文设计开发了集高分散稳定性和缓蚀性于一体的新型分散剂,用于硅溶胶抛光液,使被抛光的晶圆表面 达到高度平坦化、低表面粗糙度和低缺陷的要求。主要结果如下:
本论文合成了苯乙烯-马来酸酐共聚物(SMA),并以 SMA 作为硅溶胶的单分子分散剂,制备了高效 CMP 抛光液。通过对 Zeta 电位、平均粒径和极化电位变化表征分析,在硅溶胶抛光液中添加 SMA 后,Zeta 电位的绝对值明显增加,Zeta 电位从-44.94 mV 变化到-53.29 mV,表明 SMA 的引入增加了硅溶胶磨料间的静电排斥力。动态光散射测试发现 SMA 的引入使硅溶胶的平均粒径变化率由 19.24% 减小到 0.77%,证实了 SMA 促进抛光液粒径的稳定。此外,极化曲线的腐蚀电位从0.0689 V 增加到 0.1249 V,证实了 SMA 对硅的缓蚀性。将 SMA 分子与十二烷基苯磺酸钠(SDBS)分子复配使用,开发了一种兼具高分散稳定性和缓蚀性的新型硅溶胶抛光液分散剂。通过对 Zeta 电位、平均粒径和极化电位变化表征分析,复配 SDBS/SMA 的引入使得的硅溶胶的 Zeta 电位绝对值增加,从-44.94 mV 变化到-57.59 mV;平均粒径变化率由 19.24% 减小到 0.24%;极化曲线的腐蚀电位从 0.0689 V 增加到 0.1109 V。证实了该复配分散剂能有效提升硅溶胶的分散稳定性和抑制硅溶胶对单晶硅表面的过度腐蚀。光电子能谱分析表明 SMA 分子能够吸附在单晶硅表面形成一层界面保护层,从而抑制了硅溶胶对单晶硅表面的化学腐蚀作用。相比于硅溶胶抛光液,使用该复配改性的抛光液在单晶硅抛光过程后,平均表面粗糙度从 0.28 nm 减少到 0.11 nm,材料去除速率由312.57 nm/min 减少到 101.64 nm/min
关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2023-06
参考文献列表

[1] 张卫. 突破关键核心技术, 大力发展集成电路产业[J]. 张江科技评论, 2022(1): 24-25.
[2] 朱惠臣, 孙晓光, 杜黎明. 我国集成电路专用材料发展状况分析[J]. 集成电路应用, 2021,38(2): 22-25.
[3] 孟庆巨, 刘海波, 孟庆辉. 半导体器件物理. 第 2 版[M]. 北京:科学出版社, 2009: 15-16.
[4] SINHA S, YERIC G, CHANDRA V, et al. Exploring Sub-20nm FinFET Design with Pre-dictive Technology Models[C]//DAC ’12: number 6 Proceedings of the 49th Annual Design Automation Conference. New York, NY, USA: Association for Computing Machinery, 2012:283–288.
[5] CHOWDHURY R K, MAITI R, GHORAI A, et al. Novel silicon compatible p-WS2 2D/3D heterojunction devices exhibiting broadband photoresponse and superior detectivity[J]. Nanoscale,2016, 8(7): 13429-13436.
[6] ZHANG X, CONNELLY D, TAKEUCHI H, et al. Comparison of SOI Versus Bulk FinFETTechnologies for 6T-SRAM Voltage Scaling at the 7-/8-nm Node[J]. IEEE Transactions onElectron Devices, 2017, 64(1): 329-332.
[7] WANG C N, LEE Y H, HSU H P, et al. The heuristic preemptive dispatching method for convey-based automated material handling system of 450mm wafer fabrication[J]. Computers & Industrial Engineering, 2016, 96: 52-60.
[8] COTTLE R, YATHAPU N, SIEG K. 450mm metrology and inspection: The current state and the road ahead[C]//25th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC 2014). 2014: 265-269.
[9] MATIJEVIć E, BABU S V. Colloid aspects of chemical-mechanical planarization.[J]. Journal of Colloid & Interface Science, 2010, 59(1): 219-237.
[10] RING T A, FEENEY P, BOLDRIDGE D, et al. Brittle and Ductile Fracture Mechanics Analysis of Surface Damage Caused During CMP[J]. Journal of the Electrochemical Society, 2007, 154 (3): 239-248.
[11] 徐嘉慧、康仁科、董志刚、王紫光. 硅片化学机械抛光技术的研究进展[J]. 金刚石与磨料磨具工程, 2020, 40(4): 10.
[12] 宋恩敏, 卞达, 徐浩, 等. 碳酸胍和聚乙二醇对单晶硅片 CMP 的影响[J]. 固体电子学研究与进展, 2022(1): 42-48.
[13] 孙禹辉. 硅片化学机械抛光中材料去除非均匀性研究[J]. 大连理工大学, 2011.
[14] MOORE G E. Cramming More Components Onto Integrated Circuits[J]. Proceedings of the IEEE, 2002, 86(1): 82-85.
[15] REGH J, SILVEY DECEASED. G A. METHOD FOR POLISHING A SILICON SURFACE[M]. US, 1971.
[16] KRISHNAN M, NALASKOWSKI J W, COOK L M. Chemical Mechanical Planarization: Slurry Chemistry, Materials, and Mechanisms[J]. Chemical Reviews, 2010, 110(1): 178-204.
[17] LU Z, LEE S H, BABU S V, et al. The use of monodispersed colloids in the polishing of copper and tantalum[J]. Journal of Colloid and Interface Science, 2003, 261(1): 55-64.
[18] CHOI W, MAHAJAN U, LEE S M, et al. Effect of Slurry Ionic Salts at Dielectric Silica CMP [J]. Journal of The Electrochemical Society, 2004, 151(3): 185.
[19] ZANTYE P B, KUMAR A, SIKDER A K. Chemical mechanical planarization for microelec tronics applications[J]. Materials Science & Engineering R-Reports, 2004, 45(3): 89-220.
[20] SEO J. A review on chemical and mechanical phenomena at the wafer interface during chemical mechanical planarization[J]. Journal of Materials Research, 2021, 36(1): 235-257.
[21] YUN J, KWAK D, KIM J, et al. Study on the effect of residual ceria slurry on chemical mechan ical planarization (CMP)[J]. Microelectronic Engineering, 2021, 249(15): 111620-111629.
[22] ILIE F, IPATE G. Study of the additives influence in the CMP slurry for the surfaces planarisa tion covered by selective transfer[J]. International Journal of Surface Science and Engineering, 2020, 14(2): 105-116.
[23] VERWEY E J. Theory of the stability of lyophobic colloids[J]. Journal of Physical & Colloid Chemistry, 1955, 10(2): 224-225.
[24] HAMAKER H. The London—Van der Waals attraction between spherical particles[J]. Physica, 1937, 4(10): 1058-1072.
[25] 周祖康, 顾惕人, 马季铭. 胶体化学基础[M]. 北京:北京大学出版社, 1987: 22-260.
[26] 赵振国. 吸附作用应用原理[M]. 2005: 53-298.
[27] HELLER W, PUGH T L. “Steric Protection” of Hydrophobic Colloidal Particles by Adsorption of Flexible Macromolecules[J]. Journal of Chemical Physics, 1954, 22(10): 1778-1778.
[28] KUO P, CHANG T, LU L. Functional polymers for colloidal applications. I. Structural effects of lipophile-modified polyacrylates on adsorption and dispersion ability[J]. Journal of Applied Polymer Science, 2010, 44: 859-867.
[29] PARK R G. Scratch formation and its mechanism in chemical mechanical planarization (CMP) [J]. Friction, 2013, 1(4): 279-305.
[30] KRISHNAN M, NALASKOWSKI J W, COOK L M. Chemical Mechanical Planarization: Slurry Chemistry, Materials, and Mechanisms[J]. Chemical Reviews, 2010, 110(1): 178-186.
[31] HAN X, JIN Z, MU Q, et al. Morphological characteristics and formation mechanism of latent scratches in chemical mechanical polishing[J]. Journal of Materials Processing Technology, 2022, 307: 117689.
[32] 夏菁菁, 余俊, 王占山, 等. 单晶硅化学机械抛光划痕演变研究[J]. 光学学报, 2022, 42(9):9.
[33] LI Y, LIU Y, WANG C, et al. Role of Dispersant Agent on Scratch Reduction during Copper Barrier Chemical Mechanical Planarization[J]. ECS Journal of Solid State Science and Technology, 2018(6): 7.
[34] KHANNA A J, GUPTA S, KUMAR P, et al. Study of Agglomeration Behavior of Chemical Mechanical Polishing Slurry under Controlled Shear Environments[J]. Ecs Journal of Solid State Science & Technology, 2018, 7(5): 238-242.
[35] CHANG F C, KUMAR P, SINGH R, et al. Role of interparticle forces during stress-inducedagglomeration of CMP slurries[J]. Colloids & Surfaces A Physicochemical & Engi neering Aspects, 2011, 389(3): 33-37.
[36] BASIM G B, MOUDGIL B M. Effect of Soft Agglomerates on CMP Slurry Performance[J]. Journal of Colloid & Interface Science, 2002, 256(1): 137-142.
[37] BASIM G B, VAKARELSKI I U, MOUDGIL B M. Role of interaction forces in controlling the stability and polishing performance of CMP slurries[J]. J Colloid Interface, 2003, 263(2): 506-515.
[38] REMSEN E E, ANJUR S, BOLDRIDGE D, et al. Analysis of Large Particle Count in Fumed Silica Slurries and Its Correlation with Scratch Defects Generated by CMP[J]. Journal of the Electrochemical Society, 2006, 153(5): 453-461.
[39] KIM Y H, KIM S K, PARK J G, et al. Increase in the Adsorption Density of Anionic Molecules on Ceria for Defect-Free STI CMP[J]. Journal of the Electrochemical Society, 2010, 157(1): 72-77.
[40] LEI H, TONG K, WANG Z. Preparation of Ce-doped colloidal SiO2 composite abrasives and their chemical mechanical polishing behavior on sapphire substrates[J]. Materials Chemistry and Physics, 2016, 172(1): 26-31.
[41] ZHANG W Q, LIU Y L, WANG C W, et al. Role of 1,2,4-Triazole in Co/Cu Removal Rate Selectivity and Galvanic Corrosion during Barrier CMP[J]. Ecs Journal of Solid State Science and Technology, 2017, 6(12): 786-793.
[42] MU Y, ZHONG M, RUSHING K J, et al. Benzotriazole as a passivating agent during chemical mechanical planarization of Ni–P alloy substrates[J]. Applied Surface Science, 2014, 315(1): 190-195.
[43] YANG S, ZHANG B, ZHANG Q, et al. A Study of Cobalt Galvanic and Pitting Corrosion with Combination of BTA and PMP[J]. ECS Journal of Solid State Science and Technology, 2019, 8(8): 416-422.
[44] JI J, TAN B, ZHANG S, et al. Investigation on the control effect of benzotriazole and two derivatives on cobalt pitting corrosion in chemical mechanical polishing process: A combination of experiments and theoretical simulations[J]. Journal of Molecular Liquids, 2022, 367(1): 120487-120496.
[45] 田立朋, 王力. 表面活性剂对二氧化硅溶胶稳定性的影响[J]. 硅酸盐通报, 2009, 28(6): 5-9.
[46] ZHANG Z, LIU W, SONG Z. Particle size and surfactant effects on chemical mechanical pol ishing of glass using silica-based slurry[J]. Appl. Opt., 2010, 49(28): 5480-5485.
[47] 洪姣, 刘国瑞, 牛新环, 等. 碱性 CMP 表面活性剂对硅衬底表面状态的影响[J]. 微纳电子技术, 2018, 55(6): 5-10.
[48] ZENG N, ZHAO H, LIU Y, et al. Optimizing of the Colloidal Dispersity of Silica Nanoparticle Slurries for Chemical Mechanical Polishing[J]. Silicon, 2022, 14(13): 7473-7481.
[49] YAO C, NIU X, WANG C, et al. Study on the Weakly Alkaline Slurry of Copper Chemical Mechanical Planarization for GLSI[J]. ECS Journal of Solid State Science and Technology, 2017, 6(8): 499-505.
[50] SHARMA K P, ASWAL V K, KUMARASWAMY G. Adsorption of nonionic surfactant on silica nanoparticles: structure and resultant interparticle interactions.[J]. Journal of Physical Chemistry B, 2010, 114(34): 10986-10994.
[51] YANG, JINLU, SHIBINWANG, et al. Effects of HEC Concentration on Silicon Polishing[J]. Silicon, 2019, 11(4): 2059–2066.
[52] ZHAO Q, XIE S, WANG H, et al. Control of the Micro-Defects on the Surface of Silicon Wafer in Chemical Mechanical Polishing[J]. ECS Journal of Solid State Science and Technology, 2022, 11(2): 023009.
[53] 宋晓岚; 吴雪兰; 曲鹏; 王海波; 邱冠周. 纳米 SiO2 分散稳定性能影响因素及作用机理研究[J]. 硅酸盐通报, 2005, 24(1): 3-7.
[54] PARK C, KIM H, CHO H, et al. Effect of Relative Surface Charge of Colloidal Silica and Sapphire on Removal Rate in Chemical Mechanical Polishing[J]. International Journal of Precision Engineering and Manufacturing-Green Technology, 2019, 6(2): 339-347.
[55] XIE W, ZHANG Z, WANG L, et al. Chemical mechanical polishing of silicon wafers using developed uniformly dispersed colloidal silica in slurry[J]. Journal of Manufacturing Processes,2023, 90(24): 196-203.

所在学位评定分委会
材料与化工
国内图书分类号
TN304.5
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/544653
专题创新创业学院
推荐引用方式
GB/T 7714
何镇濠. 苯乙烯-马来酸酐共聚物作为单晶硅抛光液分散剂的研究[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132004-何镇濠-创新创业学院.(4813KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[何镇濠]的文章
百度学术
百度学术中相似的文章
[何镇濠]的文章
必应学术
必应学术中相似的文章
[何镇濠]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。