[1] FRISTON K J. Functional and effective connectivity: a review[J]. Brain connectivity, 2011, 1 (1): 13-36.
[2] PARK H J, FRISTON K. Structural and functional brain networks: from connections to cognition[J]. Science, 2013, 342(6158): 1238411.
[3] DECO G, TONONI G, BOLY M, et al. Rethinking segregation and integration: contributions of whole-brain modelling[J]. Nature reviews neuroscience, 2015, 16(7): 430-439.
[4] DECO G, KRINGELBACH M L. Metastability and coherence: extending the communication through coherence hypothesis using a whole-brain computational perspective[J]. Trends in neurosciences, 2016, 39(3): 125-135.
[5] HAYNES J D. A primer on pattern-based approaches to fMRI: principles, pitfalls, and perspectives[J]. Neuron, 2015, 87(2): 257-270.
[6] ITO T, HEARNE L, MILL R, et al. Discovering the computational relevance of brain network organization[J]. Trends in cognitive sciences, 2020, 24(1): 25-38.
[7] KAPOGIANNIS D, MATTSON M P. Disrupted energy metabolism and neuronal circuit dysfunction in cognitive impairment and Alzheimer’s disease[J]. The lancet neurology, 2011, 10 (2): 187-198.
[8] LIVINGSTON G, HUNTLEY J, SOMMERLAD A, et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission[J]. The lancet, 2020, 396(10248): 413-446.
[9] MESULAM M M. From sensation to cognition.[J]. Brain: a journal of neurology, 1998, 121 (6): 1013-1052.
[10] POLDRACK R A. Can cognitive processes be inferred from neuroimaging data?[J]. Trends in cognitive sciences, 2006, 10(2): 59-63.
[11] BRESSLER S L, MENON V. Large-scale brain networks in cognition: emerging methods and principles[J]. Trends in cognitive sciences, 2010, 14(6): 277-290.
[12] KRIEGESKORTE N, DOUGLAS P K. Cognitive computational neuroscience[J]. Nature neuroscience, 2018, 21(9): 1148-1160.
[13] WHITTINGTON J C, MCCAFFARY D, BAKERMANS J J, et al. How to build a cognitive map[J]. Nature neuroscience, 2022, 25(10): 1257-1272.
[14] DEHAENE S, LE CLEC’H G, COHEN L, et al. Inferring behavior from functional brain images [J]. Nature neuroscience, 1998, 1(7): 549-549.
[15] GEERLIGS L, RUBINOV M, HENSON R N, et al. State and trait components of functional connectivity: individual differences vary with mental state[J]. Journal of neuroscience, 2015, 35(41): 13949-13961.
[16] SMITH S M, NICHOLS T E. Statistical challenges in “big data” human neuroimaging[J]. Neuron, 2018, 97(2): 263-268.
[17] DROBYSHEVSKY A, BAUMANN S B, SCHNEIDER W. A rapid fMRI task battery for mapping of visual, motor, cognitive, and emotional function[J]. Neuroimage, 2006, 31(2): 732-744.
[18] MILLER M B, DONOVAN C L, VAN HORN J D, et al. Unique and persistent individual patterns of brain activity across different memory retrieval tasks[J]. Neuroimage, 2009, 48(3): 625-635.
[19] WOO C W, CHANG L J, LINDQUIST M A, et al. Building better biomarkers: brain models in translational neuroimaging[J]. Nature neuroscience, 2017, 20(3): 365-377.
[20] LIVEZEY J A, GLASER J I. Deep learning approaches for neural decoding across architectures and recording modalities[J]. Briefings in bioinformatics, 2021, 22(2): 1577-1591.
[21] SCHWEMMER M A, SKOMROCK N D, SEDERBERG P B, et al. Meeting brain–computer interface user performance expectations using a deep neural network decoding framework[J]. Nature medicine, 2018, 24(11): 1669-1676.
[22] DU B, CHENG X, DUAN Y, et al. fMRI brain decoding and its applications in brain–computer interface: a survey[J]. Brain sciences, 2022, 12(2): 228.
[23] XU L, XU M, JUNG T P, et al. Review of brain encoding and decoding mechanisms for EEGbased brain–computer interface[J]. Cognitive neurodynamics, 2021, 15: 569-584.
[24] AMUNTS K, EBELL C, MULLER J, et al. The human brain project: creating a European research infrastructure to decode the human brain[J]. Neuron, 2016, 92(3): 574-581.
[25] MA Y, GONG A, NAN W, et al. Personalized Brain–Computer Interface and Its Applications [J]. Journal of personalized medicine, 2023, 13(1): 46.
[26] GROOTSWAGERS T, WARDLE S G, CARLSON T A. Decoding dynamic brain patterns from evoked responses: A tutorial on multivariate pattern analysis applied to time series neuroimaging data[J]. Journal of cognitive neuroscience, 2017, 29(4): 677-697.
[27] RITCHIE J B, KAPLAN D M, KLEIN C. Decoding the brain: Neural representation and the limits of multivariate pattern analysis in cognitive neuroscience[J]. The British journal for the philosophy of science, 2019.
[28] NORMAN K A, POLYN S M, DETRE G J, et al. Beyond mind-reading: multi-voxel pattern analysis of fMRI data[J]. Trends in cognitive sciences, 2006, 10(9): 424-430.
[29] CARLSON T A, SCHRATER P, HE S. Patterns of activity in the categorical representations of objects[J]. Journal of cognitive neuroscience, 2003, 15(5): 704-717.
[30] MOURAO-MIRANDA J, BOKDE A L, BORN C, et al. Classifying brain states and determining the discriminating activation patterns: support vector machine on functional MRI data[J]. NeuroImage, 2005, 28(4): 980-995.
[31] HAXBY J V, GOBBINI M I, FUREY M L, et al. Distributed and overlapping representations of faces and objects in ventral temporal cortex[J]. Science, 2001, 293(5539): 2425-2430.
[32] KRIEGESKORTE N, GOEBEL R, BANDETTINI P. Information-based functional brain mapping[J]. Proceedings of the national academy of sciences, 2006, 103(10): 3863-3868.
[33] PEREIRA F, MITCHELL T, BOTVINICK M. Machine learning classifiers and fMRI: a tutorial overview[J]. Neuroimage, 2009, 45(1): S199-S209.
[34] COX D D, SAVOY R L. Functional magnetic resonance imaging (fMRI)“brain reading”: detecting and classifying distributed patterns of fMRI activity in human visual cortex[J]. Neuroimage, 2003, 19(2): 261-270.
[35] CONROY B R, SINGER B D, GUNTUPALLI J S, et al. Inter-subject alignment of human cortical anatomy using functional connectivity[J]. NeuroImage, 2013, 81: 400-411.
[36] HAXBY J V, GUNTUPALLI J S, CONNOLLY A C, et al. A common, high-dimensional model of the representational space in human ventral temporal cortex[J]. Neuron, 2011, 72(2): 404- 416.
[37] KOYAMADA S, SHIKAUCHI Y, NAKAE K, et al. Deep learning of fMRI big data: a novel approach to subject-transfer decoding[A]. 2015.
[38] Li, Hongming and Fan, Yong. Brain decoding from functional MRI using long short-term memory recurrent neural networks[C]//International conference on medical image computing and computer-assisted intervention. Springer, 2018: 320-328.
[39] LI H, FAN Y. Interpretable, highly accurate brain decoding of subtly distinct brain states from functional MRI using intrinsic functional networks and long short-term memory recurrent neural networks[J]. NeuroImage, 2019, 202: 116059.
[40] GAO Y, ZHANG Y, CAO Z, et al. Decoding brain states from fMRI signals by using unsupervised domain adaptation[J]. IEEE journal of biomedical and health informatics, 2019, 24(6): 1677-1685.
[41] WANG X, LIANG X, JIANG Z, et al. Decoding and mapping task states of the human brain via deep learning[J]. Human brain mapping, 2020, 41(6): 1505-1519.
[42] ZHANG Y, TETREL L, THIRION B, et al. Functional annotation of human cognitive states using deep graph convolution[J]. NeuroImage, 2021, 231: 117847.
[43] SATTERTHWAITE T D, ELLIOTT M A, RUPAREL K, et al. Neuroimaging of the Philadelphia neurodevelopmental cohort[J]. Neuroimage, 2014, 86: 544-553.
[44] JACK JR C R, BERNSTEIN M A, FOX N C, et al. The Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods[J]. Journal of magnetic resonance imaging, 2008, 27(4): 685- 691.
[45] DI MARTINO A, YAN C G, LI Q, et al. The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism[J]. Molecular psychiatry, 2014, 19(6): 659-667.
[46] VAN ESSEN D C, SMITH S M, BARCH D M, et al. The WU-Minn human connectome project: an overview[J]. Neuroimage, 2013, 80: 62-79.
[47] ZHOU J, CUI G, HU S, et al. Graph neural networks: A review of methods and applications [J]. AI open, 2020, 1: 57-81.
[48] KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks [C]//International conference on learning representations. 2017.
[49] VELIČKOVIĆ P, CUCURULL G, CASANOVA A, et al. Graph attention networks[C]// International conference on learning representations. 2018.
[50] XU K, HU W, LESKOVEC J, et al. How powerful are graph neural networks?[C]//International conference on learning representations. 2018.
[51] YU B, YIN H, ZHU Z. Spatio-temporal graph convolutional networks: a deep learning framework for traffic forecasting[C]//Proceedings of the international joint conference on artificial intelligence. 2018: 3634-3640.
[52] YAN S, XIONG Y, LIN D. Spatial temporal graph convolutional networks for skeleton-based action recognition[C]//AAAI conference on artificial intelligence. 2018.
[53] CHENG K, ZHANG Y, HE X, et al. Skeleton-based action recognition with shift graph convolutional network[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2020: 183-192.
[54] SHI L, ZHANG Y, CHENG J, et al. Skeleton-based action recognition with multi-stream adaptive graph convolutional networks[J]. IEEE Transactions on image processing, 2020, 29: 9532- 9545.
[55] SONG Y F, ZHANG Z, SHAN C, et al. Constructing stronger and faster baselines for skeletonbased action recognition[J]. IEEE Transactions on pattern analysis and machine intelligence, 2022, 45(2): 1474-1488.
[56] SONG C, LIN Y, GUO S, et al. Spatial-temporal synchronous graph convolutional networks: A new framework for spatial-temporal network data forecasting[C]//Proceedings of the AAAI conference on artificial intelligence: volume 34. 2020: 914-921.
[57] WU Z, PAN S, LONG G, et al. Connecting the dots: Multivariate time series forecasting with graph neural networks[C]//Proceedings of the ACM SIGKDD International conference on knowledge discovery and data mining. 2020: 753-763.
[58] HAN L, DU B, SUN L, et al. Dynamic and multi-faceted spatio-temporal deep learning for traffic speed forecasting[C]//Proceedings of the ACM SIGKDD conference on knowledge discovery and data mining. 2021: 547-555.
[59] SHAO W, PENG Y, ZU C, et al. Hypergraph based multi-task feature selection for multimodal classification of Alzheimer’s disease[J]. Computerized medical imaging and graphics, 2020, 80: 101663.
[60] LI X, ZHOU Y, DVORNEK N, et al. BrainGNN: Interpretable brain graph neural network for fmri analysis[J]. Medical image analysis, 2021, 74: 102233.
[61] ZU C, GAO Y, MUNSELL B, et al. Identifying disease-related subnetwork connectome biomarkers by sparse hypergraph learning[J]. Brain imaging and behavior, 2019, 13(4): 879- 892.
[62] LIU M, GAO Y, YAP P T, et al. Multi-hypergraph learning for incomplete multimodality data [J]. IEEE journal of biomedical and health informatics, 2017, 22(4): 1197-1208.
[63] CUI H, DAI W, ZHU Y, et al. BrainGB: a benchmark for brain network analysis with graph neural networks[J]. IEEE Transactions on medical imaging, 2022.
[64] BESSADOK A, MAHJOUB M A, REKIK I. Graph neural networks in network neuroscience [J]. IEEE Transactions on pattern analysis and machine intelligence, 2022.
[65] LI X, ZHOU Y, DVORNEK N C, et al. Pooling regularized graph neural network for fmri biomarker analysis[C]//International conference on medical image computing and computerassisted intervention. Springer, 2020: 625-635.
[66] XIAO L, WANG J, KASSANI P H, et al. Multi-hypergraph learning-based brain functional connectivity analysis in fMRI data[J]. IEEE Transactions on medical imaging, 2019, 39(5): 1746-1758.
[67] GADGIL S, ZHAO Q, PFEFFERBAUM A, et al. Spatio-temporal graph convolution for restingstate fmri analysis[C]//International conference on medical image computing and computerassisted intervention. Springer, 2020: 528-538.
[68] KIM B H, YE J C, KIM J J. Learning dynamic graph representation of brain connectome with spatio-temporal attention[C]//Advances in neural information processing systems: volume 34. 2021: 4314-4327.
[69] KAN X, DAI W, CUI H, et al. Brain network transformer[C]//Advances in neural information processing systems. 2022.
[70] LUNDBERG S M, LEE S I. A unified approach to interpreting model predictions[M]//Advances in neural information processing systems: volume 30. 2017.
[71] LUNDBERG S M, ERION G, CHEN H, et al. From local explanations to global understanding with explainable AI for trees[J]. Nature machine intelligence, 2020, 2(1): 56-67.
[72] COVERT I, LUNDBERG S M, LEE S I. Understanding global feature contributions with additive importance measures[C]//Advances in neural information processing systems: volume 33. 2020: 17212-17223.
[73] YUAN H, YU H, GUI S, et al. Explainability in graph neural networks: A taxonomic survey [J]. IEEE Transactions on pattern analysis and machine intelligence, 2022.
[74] GEVREY M, DIMOPOULOS I, LEK S. Review and comparison of methods to study the contribution of variables in artificial neural network models[J]. Ecological modelling, 2003, 160(3): 249-264.
[75] BALDASSARRE F, AZIZPOUR H. Explainability Techniques for Graph Convolutional Networks[C]//International conference on machine learning (ICML) workshops. 2019.
[76] SPRINGENBERG J, DOSOVITSKIY A, BROX T, et al. Striving for Simplicity: The All Convolutional Net[C]//International conference on learning representations (ICLR) workshop. 2015.
[77] SHRIKUMAR A, GREENSIDE P, KUNDAJE A. Learning important features through propagating activation differences[C]//International conference on machine learning. PMLR, 2017: 3145-3153.
[78] POPE P E, KOLOURI S, ROSTAMI M, et al. Explainability methods for graph convolutional neural networks[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2019: 10772-10781.
[79] HUANG Q, YAMADA M, TIAN Y, et al. Graphlime: Local interpretable model explanations for graph neural networks[J]. IEEE Transactions on knowledge and data engineering, 2022: 1-6.
[80] VU M, THAI M T. Pgm-explainer: Probabilistic graphical model explanations for graph neural networks[C]//Advances in neural information processing systems: volume 33. 2020: 12225- 12235.
[81] ZHANG Y, DEFAZIO D, RAMESH A. Relex: A model-agnostic relational model explainer [C]//Proceedings of the 2021 AAAI/ACM Conference on AI, ethics, and society. 2021: 1042- 1049.
[82] SCHWARZENBERG R, HÜBNER M, HARBECKE D, et al. Layerwise relevance visualization in convolutional text graph classifiers[C]//Proceedings of the Workshop on Graph-Based Methods for Natural Language Processing. 2019: 58-62.
[83] FENG Q, LIU N, YANG F, et al. DEGREE: Decomposition based explanation for graph neural networks[C]//International conference on learning representations. 2022.
[84] YUAN H, TANG J, HU X, et al. XGNN: Towards model-level explanations of graph neural networks[C]//Proceedings of the ACM SIGKDD International conference on knowledge discovery and data mining. 2020: 430-438.
[85] SHAN C, SHEN Y, ZHANG Y, et al. Reinforcement learning enhanced explainer for graph neural networks[C]//Advances in neural information processing systems: volume 34. 2021: 22523-22533.
[86] COVERT I C, LUNDBERG S, LEE S I. Explaining by removing: A unified framework for model explanation[J]. The journal of machine learning research, 2021, 22(1): 9477-9566.
[87] GOODWIN N L, NILSSON S R, CHOONG J J, et al. Toward the explainability, transparency, and universality of machine learning for behavioral classification in neuroscience[J]. Current opinion in neurobiology, 2022, 73: 102544.
[88] YING Z, BOURGEOIS D, YOU J, et al. Gnnexplainer: Generating explanations for graph neural networks[M]//Advances in neural information processing systems: volume 32. 2019.
[89] LUO D, CHENG W, XU D, et al. Parameterized explainer for graph neural network[C]// Advances in neural information processing systems: volume 33. 2020: 19620-19631.
[90] FUNKE T, KHOSLA M, RATHEE M, et al. Zorro: Valid, sparse, and stable explanations in graph neural networks[J]. IEEE Transactions on knowledge and data engineering, 2022.
[91] WANG X, WU Y, ZHANG A, et al. Towards multi-grained explainability for graph neural networks[C]//Advances in neural information processing systems: volume 34. 2021: 18446- 18458.
[92] SCHLICHTKRULL M S, DE CAO N, TITOV I. Interpreting Graph Neural Networks for NLP With Differentiable Edge Masking[C]//International conference on learning representations. 2021.
[93] YUAN H, YU H, WANG J, et al. On explainability of graph neural networks via subgraph explorations[C]//International conference on machine learning. PMLR, 2021: 12241-12252.
[94] KINGMA D P, WELLING M. Auto-encoding variational bayes[J]. CoRR, 2013, abs/1312.6114.
[95] DABKOWSKI P, GAL Y. Real time image saliency for black box classifiers[M]//Advances in neural information processing systems: volume 30. 2017.
[96] KOCSIS L, SZEPESVÁRI C. Bandit based monte-carlo planning[C]//European conference on machine learning. Springer, 2006: 282-293.
[97] ŠTRUMBELJ E, KONONENKO I. Explaining prediction models and individual predictions with feature contributions[J]. Knowledge and information systems, 2014, 41: 647-665.
[98] SHAPLEY L S, et al. A value for n-person games[M]. Princeton University Press Princeton, 1953.
[99] BULLMORE E, SPORNS O. Complex brain networks: graph theoretical analysis of structural and functional systems[J]. Nature reviews neuroscience, 2009, 10(3): 186-198.
[100] Bullmore, Ed and Sporns, Olaf. The economy of brain network organization[J]. Nature reviews neuroscience, 2012, 13(5): 336-349.
[101] BUCKNER R L, DINICOLA L M. The brain’s default network: updated anatomy, physiology and evolving insights[J]. Nature reviews neuroscience, 2019, 20(10): 593-608.
[102] DECO G, VIDAURRE D, KRINGELBACH M L. Revisiting the global workspace orchestrating the hierarchical organization of the human brain[J]. Nature human behaviour, 2021, 5(4): 497- 511.
[103] CAUCHETEUX C, GRAMFORT A, KING J R. Evidence of a predictive coding hierarchy in the human brain listening to speech[J]. Nature human behaviour, 2023: 1-12.
[104] DING N, MELLONI L, ZHANG H, et al. Cortical tracking of hierarchical linguistic structures in connected speech[J]. Nature neuroscience, 2016, 19(1): 158-164.
[105] LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection [C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 2117-2125.
[106] YARKONI T, POLDRACK R A, NICHOLS T E, et al. Large-scale automated synthesis of human functional neuroimaging data[J]. Nature methods, 2011, 8(8): 665-670.
[107] BASSETT D S, SPORNS O. Network neuroscience[J]. Nature neuroscience, 2017, 20(3): 353-364.
[108] ROSENBAUM R, SMITH M A, KOHN A, et al. The spatial structure of correlated neuronal variability[J]. Nature neuroscience, 2017, 20(1): 107-114.
[109] VAN DEN HEUVEL M P, MANDL R C, KAHN R S, et al. Functionally linked resting-state networks reflect the underlying structural connectivity architecture of the human brain[J]. Human brain mapping, 2009, 30(10): 3127-3141.
[110] HERMUNDSTAD A M, BASSETT D S, BROWN K S, et al. Structural foundations of restingstate and task-based functional connectivity in the human brain[J]. Proceedings of the national academy of sciences, 2013, 110(15): 6169-6174.
[111] HAMMOND D K, VANDERGHEYNST P, GRIBONVAL R. Wavelets on graphs via spectral graph theory[J]. Applied and computational harmonic analysis, 2011, 30(2): 129-150.
[112] DEFFERRARD M, BRESSON X, VANDERGHEYNST P. Convolutional neural networks on graphs with fast localized spectral filtering[M]//Advances in neural information processing systems: volume 29. 2016: 3844-3852.
[113] ZHANG P, LAN C, XING J, et al. View adaptive neural networks for high performance skeletonbased human action recognition[J]. IEEE Transactions on pattern analysis and machine intelligence, 2019, 41(8): 1963-1978.
[114] ZHANG B, XIONG D, XIE J, et al. Neural machine translation with GRU-gated attention model [J]. IEEE Transactions on neural networks and learning systems, 2020, 31(11): 4688-4698.
[115] MELGANI F, BRUZZONE L. Classification of hyperspectral remote sensing images with support vector machines[J]. IEEE Transactions on geoscience and remote sensing, 2004, 42(8): 1778-1790.
[116] TOLSTIKHIN I O, HOULSBY N, KOLESNIKOV A, et al. Mlp-mixer: An all-mlp architecture for vision[C]//Advances in neural information processing systems: volume 34. 2021.
[117] TZOURIO-MAZOYER N, LANDEAU B, PAPATHANASSIOU D, et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain[J]. Neuroimage, 2002, 15(1): 273-289.
[118] GLASSER M F, COALSON T S, ROBINSON E C, et al. A multi-modal parcellation of human cerebral cortex[J]. Nature, 2016, 536(7615): 171-178.
[119] THOMAS YEO B, KRIENEN F M, SEPULCRE J, et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity[J]. Journal of neurophysiology, 2011, 106 (3): 1125-1165.
[120] KAMITANI Y, TONG F. Decoding the visual and subjective contents of the human brain[J]. Nature neuroscience, 2005, 8(5): 679-685.
[121] HAYNES J D, REES G. Decoding mental states from brain activity in humans[J]. Nature reviews neuroscience, 2006, 7(7): 523-534.
[122] SWISHER J D, GATENBY J C, GORE J C, et al. Multiscale pattern analysis of orientationselective activity in the primary visual cortex[J]. Journal of neuroscience, 2010, 30(1): 325-330.
[123] FANG M, TANG L, YANG X, et al. FTPG: A fine-grained traffic prediction method with graph attention network using big trace data[J]. IEEE Transactions on intelligent transportation systems, 2021.
[124] HUNTENBURG J M, BAZIN P L, MARGULIES D S. Large-scale gradients in human cortical organization[J]. Trends in cognitive sciences, 2018, 22(1): 21-31.
[125] FELLEMAN D J, VAN ESSEN D C. Distributed hierarchical processing in the primate cerebral cortex.[J]. Cerebral cortex, 1991, 1(1): 1-47.
[126] LI Y, LIANG R, WEI W, et al. Temporal pyramid network with spatial-temporal attention for pedestrian trajectory prediction[J]. IEEE Transactions on network science and engineering, 2021.
[127] WANG Y, ZHANG P, GAO S, et al. Pyramid spatial-temporal aggregation for video-based person re-identification[C]//Proceedings of the IEEE/CVF international conference on computer vision. 2021: 12026-12035.
[128] WU B, LI J, YU J, et al. A survey of trustworthy graph learning: Reliability, explainability, and privacy protection[A]. 2022.
[129] LIU Q, FARAHIBOZORG S, PORCARO C, et al. Detecting large-scale networks in the human brain using high-density electroencephalography[J]. Human brain mapping, 2017, 38(9): 4631- 4643.
[130] PRETI M G, VAN DE VILLE D. Decoupling of brain function from structure reveals regional behavioral specialization in humans[J]. Nature communications, 2019, 10(1): 1-7.
[131] CURTIS C E, D’ESPOSITO M. Persistent activity in the prefrontal cortex during working memory[J]. Trends in cognitive sciences, 2003, 7(9): 415-423.
[132] ZHENG S, PUNIA D, WU H, et al. Graph theoretic analysis reveals intranasal oxytocin induced network changes over frontal regions[J]. Neuroscience, 2021, 459: 153-165.
[133] BAO P, SHE L, MCGILL M, et al. A map of object space in primate inferotemporal cortex[J]. Nature, 2020, 583(7814): 103-108.
[134] BALCONI M. Dorsolateral prefrontal cortex, working memory and episodic memory processes: insight through transcranial magnetic stimulation techniques[J]. Neuroscience bulletin, 2013, 29: 381-389.
[135] MARS R B, GROL M J. Dorsolateral prefrontal cortex, working memory, and prospective coding for action[J]. Journal of neuroscience, 2007, 27(8): 1801-1802.
[136] LIU D, GU X, ZHU J, et al. Medial prefrontal activity during delay period contributes to learning of a working memory task[J]. Science, 2014, 346(6208): 458-463.
[137] WIRT R A, HYMAN J M. Integrating spatial working memory and remote memory: interactions between the medial prefrontal cortex and hippocampus[J]. Brain sciences, 2017, 7(4): 43.
[138] TAKEDA K, FUNAHASHI S. Prefrontal task-related activity representing visual cue location or saccade direction in spatial working memory tasks[J]. Journal of neurophysiology, 2002, 87 (1): 567-588.
[139] HUNT P R, AGGLETON J P. Medial dorsal thalamic lesions and working memory in the rat [J]. Behavioral and neural biology, 1991, 55(2): 227-246.
[140] PARNAUDEAU S, O’NEILL P K, BOLKAN S S, et al. Inhibition of mediodorsal thalamus disrupts thalamofrontal connectivity and cognition[J]. Neuron, 2013, 77(6): 1151-1162.
[141] ACHESON A, RAY K L, HINES C S, et al. Functional activation and effective connectivity differences in adolescent marijuana users performing a simulated gambling task[J]. Journal of addiction, 2015, 2015.
[142] NOORI H R, LINAN A C, SPANAGEL R. Largely overlapping neuronal substrates of reactivity to drug, gambling, food and sexual cues: A comprehensive meta-analysis[J]. European Neuropsychopharmacology, 2016, 26(9): 1419-1430.
[143] IRIZAR P, ALBEIN-URIOS N, MARTÍNEZ-GONZÁLEZ J M, et al. Unpacking common and distinct neuroanatomical alterations in cocaine dependent versus pathological gambling[J]. European neuropsychopharmacology, 2020, 33: 81-88.
[144] ZHA R, LI P, LIU Y, et al. The orbitofrontal cortex represents advantageous choice in the Iowa gambling task[J]. Human brain mapping, 2022, 43(12): 3840-3856.
[145] HABIB R, DIXON M R. Neurobehavioral evidence for the “near-miss” effect in pathological gamblers[J]. Journal of the experimental analysis of behavior, 2010, 93(3): 313-328.
[146] BOUCHARD A E, DICKLER M, RENAULD E, et al. Concurrent transcranial direct current stimulation and resting-state functional magnetic resonance imaging in patients with gambling disorder[J]. Brain connectivity, 2021, 11(10): 815-821.
[147] SUN Y, YING H, SEETOHUL R M, et al. Brain fMRI study of crave induced by cue pictures in online game addicts (male adolescents)[J]. Behavioural brain research, 2012, 233(2): 563-576.
[148] CHIAO J Y, HARADA T, OBY E R, et al. Neural representations of social status hierarchy in human inferior parietal cortex[J]. Neuropsychologia, 2009, 47(2): 354-363.
[149] LAYCOCK R, CROSS A J, DALLE NOGARE F, et al. Self-rated social skills predict visual perception: impairments in object discrimination requiring transient attention associated with high autistic tendency[J]. Autism research, 2014, 7(1): 104-111.
[150] GREGORY M D, MERVIS C B, ELLIOTT M L, et al. Williams syndrome hemideletion and LIMK1 variation both affect dorsal stream functional connectivity[J]. Brain, 2019, 142(12): 3963-3974.
[151] ALLISON T, PUCE A, MCCARTHY G. Social perception from visual cues: role of the STS region[J]. Trends in cognitive sciences, 2000, 4(7): 267-278.
[152] COCCHI L, HALFORD G S, ZALESKY A, et al. Complexity in relational processing predicts changes in functional brain network dynamics[J]. Cerebral cortex, 2014, 24(9): 2283-2296.
[153] SUVILEHTO J T, RENVALL V, NUMMENMAA L. Relationship-specific encoding of social touch in somatosensory and insular cortices[J]. Neuroscience, 2021, 464: 105-116.
[154] DUMONTHEIL I, HOULTON R, CHRISTOFF K, et al. Development of relational reasoning during adolescence[J]. Developmental science, 2010, 13(6): F15-F24.
[155] WILSON B, MARSLEN-WILSON W D, PETKOV C I. Conserved sequence processing in primate frontal cortex[J]. Trends in neurosciences, 2017, 40(2): 72-82.
[156] HAUSER M F, HOFMANN J, OPITZ B. Rule and similarity in grammar: Their interplay and individual differences in the brain[J]. NeuroImage, 2012, 60(4): 2019-2026.
[157] ENGELEN T, DE GRAAF T A, SACK A T, et al. A causal role for inferior parietal lobule in emotion body perception[J]. Cortex, 2015, 73: 195-202.
[158] CAMACHO M C, KARIM H T, PERLMAN S B. Neural architecture supporting active emotion processing in children: A multivariate approach[J]. Neuroimage, 2019, 188: 171-180.
[159] VAN ZUTPHEN L, SIEP N, JACOB G A, et al. Impulse control under emotion processing: an fMRI investigation in borderline personality disorder compared to non-patients and cluster-C personality disorder patients[J]. Brain imaging and behavior, 2020, 14: 2107-2121.
[160] PALOMERO-GALLAGHER N, AMUNTS K. A short review on emotion processing: A lateralized network of neuronal networks[J]. Brain structure and function, 2022, 227(2): 673-684.
[161] POZZI E, SIMMONS J G, BOUSMAN C A, et al. The influence of maternal parenting style on the neural correlates of emotion processing in children[J]. Journal of the American academy of child and adolescent psychiatry, 2020, 59(2): 274-282.
[162] DUVAL E R, SHEYNIN J, KING A P, et al. Neural function during emotion processing and modulation associated with treatment response in a randomized clinical trial for posttraumatic stress disorder[J]. Depression and anxiety, 2020, 37(7): 670-681.
[163] GIL-DA COSTA R, BRAUN A, LOPES M, et al. Toward an evolutionary perspective on conceptual representation: species-specific calls activate visual and affective processing systems in the macaque[J]. Proceedings of the national academy of sciences, 2004, 101(50): 17516-17521.
[164] BUTLER P D, ABELES I Y, WEISKOPF N G, et al. Sensory contributions to impaired emotion processing in schizophrenia[J]. Schizophrenia bulletin, 2009, 35(6): 1095-1107.
[165] KNYAZEV G, SLOBODSKOJ-PLUSNIN J Y, BOCHAROV A. Event-related delta and theta synchronization during explicit and implicit emotion processing[J]. Neuroscience, 2009, 164 (4): 1588-1600.
[166] GOLDBERG H, PREMINGER S, MALACH R. The emotion–action link? Naturalistic emotional stimuli preferentially activate the human dorsal visual stream[J]. Neuroimage, 2014, 84: 254-264.
[167] TOZZI L, CARBALLEDO A, WETTERLING F, et al. Single-nucleotide polymorphism of the FKBP5 gene and childhood maltreatment as predictors of structural changes in brain areas involved in emotional processing in depression[J]. Neuropsychopharmacology, 2016, 41(2): 487-497.
[168] SCHNAKE T, EBERLE O, LEDERER J, et al. Higher-order explanations of graph neural networks via relevant walks[J]. IEEE Transactions on pattern analysis and machine intelligence, 2021(01): 1-1.
[169] BAJAJ M, CHU L, XUE Z Y, et al. Robust counterfactual explanations on graph neural networks [C]//Advances in neural information processing systems: volume 34. 2021: 5644-5655.
[170] LIN W, LAN H, WANG H, et al. Orphicx: A causality-inspired latent variable model for interpreting graph neural networks[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2022: 13729-13738.
[171] LUCIC A, TER HOEVE M A, TOLOMEI G, et al. Cf-gnnexplainer: Counterfactual explanations for graph neural networks[C]//International conference on artificial intelligence and statistics. PMLR, 2022: 4499-4511.
[172] WU Y X, WANG X, ZHANG A, et al. Discovering invariant rationales for graph neural networks [C]//International conference on learning representations. 2022.
[173] WANG X, WU Y, ZHANG A, et al. Reinforced causal explainer for graph neural networks[J]. IEEE Transactions on pattern analysis and machine intelligence, 2022.
[174] SCHLICHTKRULL M S, DE CAO N, TITOV I. Interpreting graph neural networks for NLP with differentiable edge masking[C]//International conference on learning representations. 2020.
[175] YUAN J, RAN X, LIU K, et al. Machine Learning Applications on Neuroimaging for Diagnosis and Prognosis of Epilepsy: A Review[J]. Journal of neuroscience methods, 2021: 109441.
[176] HUTCHISON R M, WOMELSDORF T, ALLEN E A, et al. Dynamic functional connectivity: promise, issues, and interpretations[J]. Neuroimage, 2013, 80: 360-378.
[177] GONZALEZ-CASTILLO J, BANDETTINI P A. Task-based dynamic functional connectivity: Recent findings and open questions[J]. Neuroimage, 2018, 180: 526-533.
[178] ZHENG S, LIANG Z, QU Y, et al. Kuramoto model-based analysis reveals oxytocin effects on brain network dynamics[J]. International journal of neural systems, 2022, 32(02): 2250002.
[179] YING C, CAI T, LUO S, et al. Do transformers really perform badly for graph representation? [C]//Advances in neural information processing systems: volume 34. 2021: 28877-28888.
[180] SORGER B, DAHMEN B, REITHLER J, et al. Another kind of ‘BOLD Response’: answering multiple-choice questions via online decoded single-trial brain signals[J]. Progress in brain research, 2009, 177: 275-292.
[181] MIRKOVIC B, DEBENER S, JAEGER M, et al. Decoding the attended speech stream with multi-channel EEG: implications for online, daily-life applications[J]. Journal of neural engineering, 2015, 12(4): 046007.
[182] TAYEB Z, FEDJAEV J, GHABOOSI N, et al. Validating deep neural networks for online decoding of motor imagery movements from EEG signals[J]. Sensors, 2019, 19(1): 210.
[183] SU E, CAI S, XIE L, et al. STAnet: A spatiotemporal attention network for decoding auditory spatial attention from EEG[J]. IEEE Transactions on biomedical engineering, 2022, 69(7): 2233-2242.
[184] MARTINEZ-MONTES E, VALDÉS-SOSA P A, MIWAKEICHI F, et al. Concurrent EEG/fMRI analysis by multiway partial least squares[J]. NeuroImage, 2004, 22(3): 1023-1034.
[185] HUSTER R J, DEBENER S, EICHELE T, et al. Methods for simultaneous EEG-fMRI: an introductory review[J]. Journal of neuroscience, 2012, 32(18): 6053-6060.
[186] CICHY R M, OLIVA A. AM/EEG-fMRI fusion primer: resolving human brain responses in space and time[J]. Neuron, 2020, 107(5): 772-781.
修改评论