中文版 | English
题名

骨植入镁及镁合金激光表层组织调控及耐腐蚀性能研究

其他题名
LASER SURFACE REGULATION AND CORROSION RESISTANCE PROPERTIES RESEARCH OF BONE IMPLANT MAGNESIUM AND MAGNESIUM ALLOYS
姓名
姓名拼音
YAO Xiyu
学号
11849544
学位类型
博士
学位专业
0805 材料科学与工程
学科门类/专业学位类别
08 工学
导师
严明
导师单位
材料科学与工程系
论文答辩日期
2022-11-08
论文提交日期
2023-06-26
学位授予单位
哈尔滨工业大学
学位授予地点
哈尔滨
摘要

镁及镁合金的密度低、杨氏模量与人体致密骨的杨氏模量接近、比强度较高、生物安全性好,能够提供足够支撑强度的同时还能避免应力屏蔽,十分适合作为生物医用植入体材料。镁及镁合金又能够在体液环境中发生腐蚀而逐渐降解,降解释放的镁离子还能够促进成骨细胞的再生、增殖、修复,因此镁合金又是一种理想的可降解材料,近年来备受关注。但是,镁合金降解速率常常与生物组织生长速率不匹配,过快降解会造成植入体释放过量氢气、局部溶液pH值升高,影响骨组织修复或造成植入体过早失效。因此,调控镁合金在体液环境中的腐蚀速率成为可降解医用镁合金临床应用的关键问题之一。

腐蚀降解通常起始于固液界面处,因此对镁合金表面的微观组织结构进行调控、表面增加耐蚀涂层是增强镁及镁合金耐腐蚀性能的有效方法。激光产生的能量输入可以快速改变材料的表面状态,因此本论文的研究工作从探究激光与镁合金作用的机理出发,分别研究了两种振荡模式激光(连续、脉冲)与镁合金相互作用的机制。并根据激光产生热场的特点在材料表面构建不同成分、不同厚度的耐蚀层,提升镁及镁合金的服役性能。

论文首先选用小束斑、快速移动的连续红外激光作为热源,对Mg-0.6CaMg-0.5Zn-0.3Ca两种镁合金进行了表面改性研究。结果表明,经过激光扫描后材料的表面耐腐蚀性能得到大幅提高,腐蚀速率降低到原始基体的~1/2。激光表面改性后,两种镁合金表面的硬度也都得到了显著的提升,其中Mg-0.6Ca表面的硬度提升了约20%Mg-0.5Zn-0.3Ca表面的硬度提升了约17%采用SEMTEMXRDXPS等技术对材料的表面形貌、微观组织、残余应力等进行了分析,发现耐腐蚀性能提升的主要原因是激光导致的非平衡凝固形成了基面织构,增强了表面的腐蚀抗力,同时基体内部的第二相尺寸减小,并变为弥散分布状态,减弱了电偶腐蚀倾向。激光导致的快速凝固改变了表面的应变场提升了其硬度。

采用连续红外激光在纯镁表面通过逐层打印的方式熔覆了非晶耐蚀层,研究了非晶层的形成过程以及基体与非晶异质界面处的元素扩散状态。结果表明在高能量密度激光作用下,原始非晶粉末发生熔化,凝固后与基体形成具有一定结合强度(~16 N)的非晶态保护层。纯镁同时发生了熔化和凝固,但与非晶相之间没有明显的元素扩散,凝固后形成了清晰的双相界面结构。非晶层的存在,显著提升了耐腐蚀性能,使腐蚀速率从0.89 mm/y降低到了0.11 mm/y。同时,硬度由~0.46 GPa提高到~14.3 GPa。与此同时,非晶合金层不具有明显的细胞毒性,而且其与水的润湿性研究表明,非晶层表面的润湿性要强于纯镁基体,这有利于细胞在非晶层表面的黏附与铺展。

采用纳秒紫外激光分别对Mg68Zn28Ca4镁合金和纯镁进行了表面改性研究。结果表明,纳秒紫外激光改变了Mg68Zn28Ca4合金表面的晶体结构,使其发生了晶态到非晶态的相转变。利用COMSOL软件模拟了该纳秒紫外激光形成的温度场,发现激光的高冷却速率(~106 K/s)是形成非晶层的关键因素。该晶态非晶态的转变提高了原始镁合金基体表面的硬度、杨氏模量以及耐腐蚀性能。原始基体的硬度为~3.1 GPa,转变为非晶状态后硬度提升到~3.6 GPa,提升幅度约为16%。其杨氏模量由~25.3 GPa提升到~44.7 GPa,提升幅度约为76.7%。其腐蚀速率由0.61 mm/y降低到0.24 mm/y。通过TEMXRD、纳米压痕等多种表征手段,进一步证明了单脉冲能量可以在Mg68Zn28Ca4合金表面形成厚度约为2 μm的非晶层,使用多次脉冲作用同一区域不会使已经非晶化的表层再次晶化,但也不会增加非晶层的厚度。尽管紫外脉冲激光在样品表面作用后有高冷却速率,但尚无法直接将晶态纯镁转变为非晶态。纯镁表面经改性后,生成的MgO层提高了其耐腐蚀性能,腐蚀速率由0.82 mm/y降低到0.28 mm/y

论文系统研究了激光与镁及镁合金的作用过程,采用不同振荡模式激光对合金表面进行处理,探究快速凝固下微观组织结构、宏观力学以及腐蚀性能的变化。并根据研究结果设计、搭建能够实现原材料成型、原位改性的双激光系统。本课题的研究内容对于提升镁合金使役性能具有重要意义。

关键词
其他关键词
语种
中文
培养类别
联合培养
入学年份
2018
学位授予年份
2023-06
参考文献列表

[1]刘玉玺. 密质骨多尺度微结构及力学行为研究[D]. 重庆: 重庆大学, 2017: 6-7.[2]Shuai C, Li S, Peng S, et al. Biodegradable metallic bone implants[J]. Materials Chemistry Frontiers, 2019, 3(4): 544-562.[3]Huang J, Song G, Atrens A, et al. What activates the Mg surface—A comparison of Mg dissolution mechanisms[J]. Journal of Materials Science & Technology, 2020, 57: 204-220.[4]Jiang S, Zhang Z, Wang D, et al. ZIF-8-based micro-arc oxidation composite coatings enhanced the corrosion resistance and superhydrophobicity of a Mg alloy[J]. Journal of Magnesium and Alloys, 2021, in press.[5]Peron M, Cogo S, Bjelland M, et al. On the evaluation of ALD TiO2, ZrO2 and HfO2 coatings on corrosion and cytotoxicity performances[J]. Journal of Magnesium and Alloys, 2021, 9(5): 1806-1819.[6]Lujun Z, Hongzhan L, Qingmei M, et al. The mechanism for tuning the corrosion resistance and pore density of plasma electrolytic oxidation (PEO) coatings on Mg alloy with fluoride addition[J]. Journal of Magnesium and Alloys, 2021, in press.[7]Seifzadeh D, Rajabalizadeh Z. Environmentally-friendly method for electroless Ni-P plating on magnesium alloy[J]. Surface and Coatings Technology, 2013, 218(1): 119-126.[8]Wang Z C, Jia F, Yu L, et al. Direct electroless nickel-boron plating on AZ91D magnesium alloy[J]. Surface and Coatings Technology, 2012, 206(17): 3676-3685.[9]梁春林, 刘宜汉, 韩变华, 李红兵, 吉海滨, 姚广春. 镁合金表面处理研究现状及发展趋势[J]. 表面技术, 2006(06): 57-60+64.[10]Leung C, Marussi S, Atwood R, et al. In situ X-ray imaging of defect and molten pool dynamics in laser additive manufacturing[J]. Nature Communications, 2018, 9(1): 1355.[11]Wang J, Xu J, Hopkins C, et al. Biodegradable magnesium-based implants in orthopedics-a general review and perspectives[J]. Advanced Science, 2020, 7(8): 1902443.[12]李世普. 生物医用材料导论[M]. 武汉: 武汉工业大学出版社, 2000: 3-5.[13]浦素云. 金属植入材料及其腐蚀[M]. 北京: 北京航空航天大学出版社, 1990: 20-25.[14]郑玉峰, 李莉. 生物医用材料学[M]. 哈尔滨: 哈尔滨工业大学出版社, 2005: 72-73.[15]Chen Y, Xu Z, Smith C, et al. Recent advances on the development of magnesium alloys for biodegradable implants[J]. Acta Biomaterialia, 2014, 10(11): 4561-4573.[16]Staiger P, Pietak M, Huadmai J, et al. Magnesium and its alloys as orthopedic biomaterials: A review[J]. Biomaterials, 2006, 27(9): 1728-1734.[17]焦国慧,苗晶晶,吴琨.无源外科植入医疗器械不锈钢材料研究进展及审评思考[J]. 中国医疗器械杂志, 2022, 46(03): 312-317.[18]Isik M, Avila J D, Bandyopadhyay A. Alumina and tricalcium phosphate added CoCr alloy for load-bearing implants[J]. Additive Manufacturing, 2020, 36: 101553.[19]Hao Y, Li S, Yang R. Biomedical titanium alloys and their additive manufacturing[J]. Rare Metals, 2016, 35(9): 661-71.[20]Elena I, Kateryna B, Russell J, New functional biomaterials for medicine and healthcare[M]. Woodhead Publishing, Cambridge, 2014: 124-147.[21]刘桂英, 程翔, 曹尤雅, 王芳, 孙英博, 马越, 孙宇. 牙科用锆基非晶合金的组织相容性评价[J]. 口腔医学, 2016, 36(02): 112-115.[22]李文娇, 马春宝, 赵丙辉, 王涛, 金鑫. 镍钛形状记忆合金植入物在骨科的应用[J]. 生物骨科材料与临床研究, 2022, 19(01): 89-91.[23]孙疆, 石章智, 李亚庚, 李相民, 李危石,王鲁宁. 面向骨科植入应用的可降解锌基材料研究进展[J/OL]. 材料工程, 2022(11): 14-25.[24]马仲凯. 模拟口腔环境中304不锈钢腐蚀磨损性能的研究[D]. 青岛, 青岛理工大学, 2020: 5-10.[25]Manam N S, Harun W S W, Shri d N A, et al. Study of corrosion in biocompatible metals for implants: A review[J]. Journal of Alloys and Compounds, 2017, 701: 698-715.[26]Becerikli M, Jaurich H, Wallner C, et al. P2000 - A high-nitrogen austenitic steel for application in bone surgery[J]. PLoS One, 2019, 14(3): e0214384.[27]Zhao J, Zhai Z, Sun D, et al. Antibacterial durability and biocompatibility of antibacterial-passivated 316L stainless steel in simulated physiological environment[J]. Materials Science and Engineering: C, 2019, 100: 396-410.[28]Chen J, Howell C, Haller C A, et al. An immobilized liquid interface prevents device associated bacterial infection in vivo[J]. Biomaterials, 2017, 113: 80-92.[29]Chandrasekhar J, Kok M M, Kalkman D N, et al. 1-year clinical outcomes of all comers treated with 2 bioresorbable polymer-coated sirolimus-eluting stents: propensity score-matched comparison of the COMBO and ultrathin-strut orsiro stents[J]. JACC Cardiovasc Interv, 2020, 13(7): 820-30.[30]刘爽, 马国武. 3D打印钴铬合金和铸造钴铬合金的理化性能和生物相容性的比较[J]. 口腔医学, 2022, 42(03): 210-214.[31]余冬梅, 汤臻, 董晖, 王宁, 李小康, 郭征. 临床医用金属植入体及器械[J]. 金属世界, 2022(04): 49-54.[32]申晟, 代朋乙, 袁延浩. 改良张力带内固定与镍钛聚髌器内固定治疗髌骨横形骨折的比较研究[J]. 中医正骨, 2018, 30(4): 28-31.[33]Zheng Y, Gu X, Witte F. Biodegradable metals[J]. Materials Science and Engineering: R: Reports, 2014, 77: 1-34.[34]Xia D, Qin Y, Guo H, et al. Additively manufactured pure zinc porous scaffolds for critical-sized bone defects of rabbit femur[J]. Bioactive Materials, 2023, 19: 12-23.[35]Yang Y, He C, Dianyu E, et al. Mg bone implant: Features, developments and perspectives[J]. Materials & Design, 2020, 185: 108259.[36]Knochel P. A flash of magnesium[J]. Nature Chemistry, 2009, 1(9): 740-740.[37]Pekguleryuz M, Kainer K, Kaya A. Fundamentals of magnesium alloy metallurgy[M]. 哈尔滨: 哈尔滨工业大学出版社, 2017: 1-5.[38]中国镁业网. 镁的资源[EB/OL].

[2022-07-17]. http://www.chinamagnesium.org/index.php?v=listing&cid=98.[39]Mordike L, Ebert T. Magnesium: Properties — applications — potential[J]. Materials Science and Engineering: A, 2001, 302(1): 37-45.[40]Uppal G, Thakur A, Chauhan A, et al. Magnesium based implants for functional bone tissue regeneration – A review[J]. Journal of Magnesium and Alloys, 2022, 10(2): 356-86.[41]Hornberger H, Virtanen S, Boccaccini R. Biomedical coatings on magnesium alloys – A review[J]. Acta Biomaterialia, 2012, 8(7): 2442-2455.[42]尹林, 黄华, 袁广银, 丁文江. 可降解镁合金临床应用的最新研究进展[J].中国材料进展, 2019, 38(02): 126-137.[43]Hernández-escobar D, Champagne S, Yilmazer H, et al. Current status and perspectives of zinc-based absorbable alloys for biomedical applications[J]. Acta Biomaterialia, 2019, 97: 1-22.[44]Gu X, Wang F, Xie X, et al. In vitro and in vivo studies on as-extruded Mg- 5.25wt.%Zn-0.6wt.%Ca alloy as biodegradable metal[J]. Science China Materials, 2018, 61(4): 619-628.[45]Trumbo P, Schlicker S, Yates A, et al. Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein, and amino acids[M]. Journal of the American Dietetic Association, 2002, 102: 1621-1630.[46]Cortizo C, De L, Cortizo M. Metallic dental material biocompatibility in osteoblastlike cells[J]. Biological Trace Element Research, 2004, 100(2): 151-168.[47]Lotscher J, Marti A, Kirchhammer N, et al. Magnesium sensing via LFA-1 regulates CD8+ T cell effector function[J]. Cell, 2022, 185(4): 585-602.e29.[48]Song G. Corrosion behavior and prevention strategies for magnesium (Mg) alloys[M]. Corrosion Prevention of Magnesium Alloys. Woodhead Publishing. 2013: 3-37.[49]Liu M, Uggowitzer J, Nagasekhar A, et al. Calculated phase diagrams and the corrosion of die-cast Mg–Al alloys[J]. Corrosion Science, 2009, 51(3): 602-619.[50]Soltan A, Dargusch M, Shi Z, et al. Influence of commercial corrosion-inhibiting compounds on the atmospheric corrosion of the magnesium alloys EV31A, WE43B, ZE41A and pure magnesium[J]. Materials and Corrosion, 2021, 72(4): 672-693.[51]Cheng Y, Qin T, Wang H, et al. Comparison of corrosion behaviors of AZ31, AZ91, AM60 and ZK60 magnesium alloys[J]. Transactions of Nonferrous Metals Society of China, 2009, 19(3): 517-524.[52]Esmaily M, Svensson J, Fajardo S, et al. Fundamentals and advances in magnesium alloy corrosion[J]. Progress in Materials Science, 2017, 89: 92-193.[53]王从纲. 金属离子和抑制剂对淀粉样β肽聚集及其细胞毒性的影响研究[D]. 大连, 大连理工大学, 2017: 5-12.[54]Gu X, Zheng Y, Cheng Y, et al. In vitro corrosion and biocompatibility of binary magnesium alloys[J]. Biomaterials, 2009, 30(4): 484-498.[55]Jönsson M, Thierry D, Lebozec N. The influence of microstructure on the corrosion behaviour of AZ91D studied by scanning Kelvin probe force microscopy and scanning Kelvin probe[J]. Corrosion Science, 2006, 48(5): 1193-208.[56]Feng B, Liu G, Yang P, et al. Different role of second phase in the micro-galvanic corrosion of WE43 Mg alloy in NaCl and Na2SO4 solution[J]. Journal of Magnesium and Alloys, 2022, 10(6): 1598-608.[57]Bagherifard S, Hickey J, Fintova S, et al. Effects of nanofeatures induced by severe shot peening (SSP) on mechanical, corrosion and cytocompatibility properties of magnesium alloy AZ31[J]. Acta Biomaterialia, 2018, 66: 93-108.[58]Wen Z, Wu C, Dai C, et al. Corrosion behaviors of Mg and its alloys with different Al contents in a modified simulated body fluid[J]. Journal of Alloys and Compounds, 2009, 488(1): 392-399.[59]Zhao Z, Zhao R, Bai P, et al. AZ91 alloy nanocomposites reinforced with Mg-coated graphene: Phases distribution, interfacial microstructure, and property analysis[J]. Journal of Alloys and Compounds, 2022, 902: 163484.[60]Pan F, Yang M, Chen X. A review on casting magnesium alloys: modification of commercial alloys and development of new alloys[J]. Journal of Materials Science & Technology, 2016, 32(12): 1211-21.[61]Witte F, Fischer J, Nellesen J, et al. In vivo corrosion and corrosion protection of magnesium alloy LAE442[J]. Acta Biomaterialia, 2010, 6(5): 1792-9.[62]Mao L, Zhou H, Chen L, et al. Enhanced biocompatibility and long-term durability in vivo of Mg-Nd-Zn-Zr alloy for vascular stent application[J]. Journal of Alloys and Compounds, 2017, 720: 245-253.[63]Zberg B, Uggowitzer J, Jorg F. MgZnCa glasses without clinically observable hydrogen evolution for biodegradable implants[J]. Nature Materials, 2009, 8(11): 887-891.[64]Pardo A, Merino M, Coy A, et al. Influence of microstructure and composition on the corrosion behaviour of Mg/Al alloys in chloride media[J]. Electrochimica Acta, 2008, 53(27): 7890-7902.[65]Anrgrisani N, Reifenrath J, Zimmermann F, et al. Biocompatibility and degradation of LAE442-based magnesium alloys after implantation of up to 3.5 years in a rabbit model[J]. Acta Biomaterialia, 2016, 44: 355-365.[66]Witte F, Fsicher J, Nellesen J, et al. In vitro and in vivo corrosion measurements of magnesium alloys[J]. Biomaterials, 2006, 27(7): 1013-1018.[67]Yang H, Jia B, Zhang Z, et al. Alloying design of biodegradable zinc as promising bone implants for load-bearing applications[J]. Nature Communications, 2020, 11(1): 401.[68]郭战勇, 张宇生, 张宏江. 外源稀土是入动物体内的途径、分布、代射及毒性[J]. 稀土, 1997, (01): 63-66+74.[69]李谦, 周国治. 稀土镁合金中关键相及其界面与性能的相关性[J]. 中国有色金属学报, 2019, 29(09): 1934-1952.[70]曾小勤, 朱庆春, 李扬欣, 丁文江. 镁合金中的第二相颗粒强化[J].中国材料进展, 2019, 38(03): 193-204+250.[71]Zhao X, Shi L, Xu J. Mg–Zn–Y alloys with long-period stacking ordered structure: In vitro assessments of biodegradation behavior[J]. Materials Science and Engineering: C, 2013, 33(7): 3627-3637.[72]Kawamura Y, Yamasaki M. Formation and mechanical properties of Mg97Zn1RE2 alloys with long-period stacking ordered structure[J]. Materials Transactions, 2007, 48(11): 2986-2992.[73]Takenaka T, Ono T, Narazaki Y, et al. Improvement of corrosion resistance of magnesium metal by rare earth elements[J]. Electrochimica Acta, 2007, 53(1): 117-121.[74]Aljarrah M, Medraj M. Thermodynamic modelling of the Mg–Ca, Mg–Sr, Ca–Sr and Mg–Ca–Sr systems using the modified quasichemical model[J]. Calphad, 2008, 32(2): 240-251.[75]Wasiur-rahman S, Medraj M. Critical assessment and thermodynamic modeling of the binary Mg–Zn, Ca–Zn and ternary Mg–Ca–Zn systems[J]. Intermetallics, 2009, 17(10): 847-864.[76]Li N, Zheng Y. Novel magnesium alloys developed for biomedical application: a review[J]. Journal of Materials Science & Technology, 2013, 29(6): 489-502.[77]Prabhu D, Gopalakrishnan P, Ravi K. Morphological studies on the development of chemical conversion coating on surface of Mg–4Zn alloy and its corrosion and bio mineralisation behaviour in simulated body fluid[J]. Journal of Alloys and Compounds, 2020, 812: 152146.[78]Wang H, Bai M, Yuan H, et al. Zn content mediated fibrinogen adsorption on biodegradable Mg-Zn alloys surfaces[J]. Journal of Magnesium and Alloys, 2021, 9(6): 2145-2154.[79]Seong J, Kim W. Mg-Ca binary alloy sheets with Ca contents of ≤1wt.% with high corrosion resistance and high toughness[J]. Corrosion Science, 2015, 98: 372-381.[80]Li Z, Gu X, Lou S, et al. The development of binary Mg–Ca alloys for use as biodegradable materials within bone[J]. Biomaterials, 2008, 29(10): 1329-1344.[81]Bin S J B, Fong K S, Chua B W, et al. Mg-based bulk metallic glasses: A review of recent developments[J]. Journal of Magnesium and Alloys, 2022, 10(4): 899-914.[82]Wang Y, Xie X, Li H, et al. Biodegradable CaMgZn bulk metallic glass for potential skeletal application[J]. Acta Biomaterialia, 2011, 7(8): 3196-3208.[83]Inoue A, Takeuchi A. Recent development and application products of bulk glassy alloys[J]. Acta Materialia, 2011, 59(6): 2243-2267.[84]张博, 赵勇, 白海洋. 金属玻璃的稳定性[J]. 物理, 2022, 51(10): 709.[85]汪卫华. 非晶态物质的本质和特性[J]. 物理学进展, 2013, 33(05): 177-351.[86]Inoue A, Kato A, Zhang T, et al. Mg-Cu-Y Amorphous alloys with high mechanical strengths produced by a metallic mold casting method[J]. Materials Transactions, JIM, 1991, 32(7): 609-616.[87]Zhang X, Chen G, Bauer T. Mg-based bulk metallic glass composite with high bio-corrosion resistance and excellent mechanical properties[J]. Intermetallics, 2012, 29: 56-60.[88]Chen G, Ferry M. Crystallization of Mg-based bulk metallic glass[J]. Transactions of Nonferrous Metals Society of China, 2006, 16(4): 833-837.[89]Baulin O, Fabrègue D, Kato H, et al. A new, toxic element-free Mg-based metallic glass for biomedical applications[J]. Journal of Non-Crystalline Solids, 2018, 481: 397-402.[90]Wu X F, Kang Y, Wu F F, et al. Formation of ternary Mg-Cu-Dy bulk metallic glasses[J]. Bulletin of Materials Science, 2011, 34(7): 1507-1510.[91]Soubeyroux J-L, Puech S, Blandin J-J. Synthesis of new Mg-based bulk metallic glasses with high glass forming ability[J]. Materials Science and Engineering: A, 2007, 449-451: 253-256.[92]Monfared A, Ghaee A, Ebrahimi-barough S. Preparation and characterization of crystallized and relaxed amorphous Mg-Zn-Ca alloy ribbons for nerve regeneration application[J]. Journal of Non-Crystalline Solids, 2018, 489: 71-76.[93]Wang J, Huang S, Wei Y, et al. Enhanced mechanical properties and corrosion resistance of a Mg–Zn–Ca bulk metallic glass composite by Fe particle addition[J]. Materials Letters, 2013, 91: 311-314.[94]K.S A, Rajeshwari A, Kundu S, et al. Magnesium glassy alloy laminated nanofibrous polymer as biodegradable scaffolds[J]. Journal of Non-Crystalline Solids, 2018, 502: 210-217.[95]Gu X, Zheng Y, Zhong S, et al. Corrosion of, and cellular responses to Mg–Zn–Ca bulk metallic glasses[J]. Biomaterials, 2010, 31(6): 1093-1103.[96]Wong C C, Wong P C, Tsai P H, et al. Biocompatibility and Osteogenic Capacity of Mg-Zn-Ca Bulk Metallic Glass for Rabbit Tendon-Bone Interference Fixation[J]. International Journal of Molecular Sciences, 2019, 20(9): 2191.[97]徐春杰, 路瑶涵, 马东, 张凯军, 王银玉, 杨怡, 屠涛, 田军, 张忠明. 镁合金半固态流变成形技术的发展与应用[J]. 铸造技术, 2021, 42(07): 625-630+646.[98]Dong X, Feng L, Wang S, et al. A new die-cast magnesium alloy for applications at higher elevated temperatures of 200–300 °C[J]. Journal of Magnesium and Alloys, 2021, 9(1): 90-101.[99]Zeng Z, Salehi M, Kopp A, et al. Recent progress and perspectives in additive manufacturing of magnesium alloys[J]. Journal of Magnesium and Alloys, 2022, 10(06): 1511-1541.[100]陈慧聪. 镁合金塑性变形中孪生行为的研究[D]. 重庆: 重庆大学, 2017: 2-5.[101]William D. Callister, Jr. Fundamentals of materials science and engineering Fifth Edition 材料科学基础 影印本[M]. 北京: 化学工业出版社, 2002, 12 (2015.6重印): 38-41.[102]Chapuis A, Driver J. Temperature dependency of slip and twinning in plane strain compressed magnesium single crystals[J]. Acta Materialia, 2011, 59(5): 1986-1994.[103]Sun J, Zhang X, Shi Z Z, et al. Development of a high-strength Zn-Mn-Mg alloy for ligament reconstruction fixation[J]. Acta Biomaterialia, 2021, 119: 485-98.[104]张李超, 胡祺, 王森林, 张楠, 史玉升. 金属增材制造数据处理与工艺规划研究综述[J]. 航空制造技术, 2021, 64(03): 22-31.[105]Hwang H, Zhu W, Victorine G, et al. 3D-Printing of functional biomedical microdevices via light- and extrusion-based approaches[J]. Small Methods, 2018, 2(2): 1700277.[106]周炳琨. 激光原理(第7版)[M]. 北京: 国防工业出版社, 2014, 11: 21-157.[107]Ng C, Savalani M, Man H, et al. Layer manufacturing of magnesium and its alloy structures for future application[J]. Virtual and Physical Prototyping, 2010, 5(1): 13-19.[108]Ng C, Savalani M, Lau M, et al. Microstructure and mechanical properties of selective laser melted magnesium[J]. Applied Surface Science, 2011, 257(17): 7447-7454.[109]Wei K, Gao M, Wang Z, et al. Effect of energy input on formability, microstructure and mechanical properties of selective laser melted AZ91D magnesium alloy[J]. Materials Science and Engineering: A, 2014, 611: 212-222.[110]Hu D, Wang Y, Zhang D, et al. Experimental investigation on selective laser melting of bulk net-shape pure magnesium[J]. Materials and Manufacturing Processes, 2015, 30(11): 1298-1304.[111]Li Y, Zhou J, Pavanram P, et al. Additively manufactured biodegradable porous magnesium[J]. Acta Biomaterialia, 2018, 67: 378-392.[112]Niu X, Shen H, Fu J. Microstructure and mechanical properties of selective laser melted Mg-9 wt%Al powder mixture[J]. Materials Letters, 2018, 221: 4-7.[113]Niu X, Shen H, Fu J, et al. Corrosion behaviour of laser powder bed fused bulk pure magnesium in hank’s solution[J]. Corrosion Science, 2019, 157: 284-294.[114]Dong J, Tümer N, Leeflang M, et al. Extrusion-based additive manufacturing of Mg-Zn alloy scaffolds[J]. Journal of Magnesium and Alloys, 2022, 10(9): 2491-2509.[115]Yang Y, Lu C, Shen L, et al. In-situ deposition of apatite layer to protect Mg-based composite fabricated via laser additive manufacturing[J]. Journal of Magnesium and Alloys, 2023, 11(2): 629-640.[116]Salehi M, Maleksaeedi S, Farnoush H, et al. An investigation into interaction between magnesium powder and Ar gas: Implications for selective laser melting of magnesium[J]. Powder Technology, 2018, 333: 252-261.[117]Unocic R, Dupont J. Process efficiency measurements in the laser engineered net shaping process[J]. Metallurgical and Materials Transactions B, 2004, 35(1): 143-152.[118]Tenbrock C, Kelliger T, Praetzsch N, et al. Effect of laser-plume interaction on part quality in multi-scanner laser powder bed fusion[J]. Additive Manufacturing, 2021, 38: 101810.[119]钟兵, 刘芯宇, 吴旺, 刘永胜, 卢东. 电子束3D打印循环使用Ti-6Al-4V合金粉体特性研究[J]. 钛工业进展, 2020, 37(02): 39-42.[120]Montelione A, Ghods S, Schur R, et al. Powder reuse in electron beam melting additive manufacturing of Ti6Al4V: Particle microstructure, oxygen content and mechanical properties[J]. Additive Manufacturing, 2020, 35: 101216.[121]Cordova L, Bor T, De S, et al. Effects of powder reuse on the microstructure and mechanical behaviour of Al–Mg–Sc–Zr alloy processed by laser powder bed fusion (LPBF)[J]. Additive Manufacturing, 2020, 36: 101625.[122]Debroy T, Wei H, Zuback J, et al. Additive manufacturing of metallic components - Process, structure and properties[J]. Progress in Materials Science, 2018, 92: 112-224.[123]Motta M, Demir A, Previtali B. High-speed imaging and process characterization of coaxial laser metal wire deposition[J]. Additive Manufacturing, 2018, 22: 497-507.[124]果春焕, 严家印, 王泽昌, 袁丁, 王建东, 牛中毅, 姜风春. 金属激光熔丝增材制造工艺的研究进展[J]. 热加工工艺, 2020, 49(16): 5-10.[125]HICLAD® enables resilient laser cladding with high-power laser[EB/OL] (2022-04-07)

[2022-07-17] https://www.iws.fraunhofer.de/en/newsandmedia/press_releases/2022/press-release_2022-06_hiclad_laserline.html.[126]Gerashi E, Alizadeh R, Langdon T. Effect of crystallographic texture and twinning on the corrosion behavior of Mg alloys: A review[J]. Journal of Magnesium and Alloys, 2022, 10(2): 313-325.[127]Atrens A, Shi Z, Mehreen S, et al. Review of Mg alloy corrosion rates[J]. Journal of Magnesium and Alloys, 2020, 8(4): 989-998.[128]Yin Z, Qi W, Zeng R, et al. Advances in coatings on biodegradable magnesium alloys[J]. Journal of Magnesium and Alloys, 2020, 8(1): 42-65.[129]Zhang D, Peng F, Liu X. Protection of magnesium alloys: From physical barrier coating to smart self-healing coating[J]. Journal of Alloys and Compounds, 2021, 853: 157010.[130]Tsai P H, Lee C I, Song S M, et al. Improved mechanical properties and corrosion resistance of Mg-based bulk metallic glass composite by coating with Zr-based metallic glass thin film[J]. Coatings, 2020, 10(12): 1212.[131]Fattah-alhosseini A, Molaei M, Nouri M, et al. Antibacterial activity of bioceramic coatings on Mg and its alloys created by plasma electrolytic oxidation (PEO): A review[J]. Journal of Magnesium and Alloys, 2022, 10(1): 81-96.[132]Guo H F, An M Z, Huo H B, et al. Microstructure characteristic of ceramic coatings fabricated on magnesium alloys by micro-arc oxidation in alkaline silicate solutions[J]. Applied Surface Science, 2006, 252(22): 7911-6.[133]Chen Y, Dou J, Pang Z, et al. Ag-containing antibacterial self-healing micro-arc oxidation coatings on Mg–Zn–Sr alloys[J]. Surface Engineering, 2021, 37(7): 926-941.[134]Chen J, Zhang Y, Ibrahim M, et al. In vitro degradation and antibacterial property of a copper-containing micro-arc oxidation coating on Mg-2Zn-1Gd-0.5Zr alloy[J]. Colloids and Surfaces B: Biointerfaces, 2019, 179: 77-86.[135]Betts J. Laser surface modification of aluminium and magnesium alloys[M]//Dong H. Surface Engineering of Light Alloys. UK, Woodhead Publishing, 2010: 444-474.[136]刘琳, 刘宏微, 吕俊鹏. 聚焦激光束在微纳材料中的应用[J]. 物理, 2019, 48(12): 809-816.[137]秦真波, 吴忠, 胡文彬. 表面工程技术的应用及其研究现状[J]. 中国有色金属学报, 2019, 29(09): 2192-2216.[138]Zhu Z, Nguyen B, Ng F L, et al. Hierarchical microstructure and strengthening mechanisms of a CoCrFeNiMn high entropy alloy additively manufactured by selective laser melting[J]. Scripta Materialia, 2018, 154: 20-4.[139]Aung N, Zhou W. Effect of grain size and twins on corrosion behaviour of AZ31B magnesium alloy[J]. Corrosion Science, 2010, 52(2): 589-594.[140]Hakimi O, Aghion E, Goldman J. Improved stress corrosion cracking resistance of a novel biodegradable EW62 magnesium alloy by rapid solidification, in simulated electrolytes[J]. Materials Science and Engineering: C, 2015, 51: 226-232.[141]Wang W, Pan Q, Wang X, et al. Effect of laser shock peening on corrosion behaviors of ultra-high strength Al-Zn-Mg-Cu alloys prepared by spray forming and ingot metallurgy[J]. Corrosion Science, 2022, 205: 110458.[142]Abbas G, Liu Z, Skeldon P. Corrosion behaviour of laser-melted magnesium alloys[J]. Applied Surface Science, 2005, 247(1): 347-353.[143]Guan Y, Zhou W, Zheng H. Effect of laser surface melting on corrosion behaviour of AZ91D Mg alloy in simulated-modified body fluid[J]. Journal of Applied Electrochemistry, 2009, 39(9): 1457-1464.[144]Liu C, Liang J, Zhou J, et al. Effect of laser surface melting on microstructure and corrosion characteristics of AM60B magnesium alloy[J]. Applied Surface Science, 2015, 343: 133-140.[145]Ma C, Peng G, Nie L, et al. Laser surface modification of Mg-Gd-Ca alloy for corrosion resistance and biocompatibility enhancement[J]. Applied Surface Science, 2018, 445: 211-6.[146]Guo Y, Sealy M P, Guo C. Significant improvement of corrosion resistance of biodegradable metallic implants processed by laser shock peening[J]. CIRP Annals, 2012, 61(1): 583-586.[147]Pou-álvarez P, Riveiro A, Nóvoa X, et al. Nanosecond, picosecond and femtosecond laser surface treatment of magnesium alloy: role of pulse length[J]. Surface and Coatings Technology, 2021, 427: 127802.[148]杨亚琴, 王金娥. 铸造冷却速度对AZ91镁合金凝固组织与性能的影响[J]. 热加工工艺, 2019, 48(03): 116-118.[149]Liu H, Tse J S, Hu M Y, et al. Mechanisms for pressure-induced crystal-crystal transition, amorphization, and devitrification of SnI4[J]. The Journal of Chemical Physics, 2015, 143(16): 164508.[150]Ding S, Liu Y, Li Y, et al. Combinatorial development of bulk metallic glasses[J]. Nature Materials, 2014, 13(5): 494-500.[151]Cardinal S, Pelletier J M, Qiao J C, et al. Influence of spark plasma sintering parameters on the mechanical properties of Cu50Zr45Al5 bulk metallic glass obtained using metallic glass powder[J]. Materials Science and Engineering: A, 2016, 677: 116-24.[152]Asmatulu R, Khan W S. Chapter 1 - Introduction to electrospun nanofibers [M]//Asmatulu R, Khan W S. Synthesis and Applications of Electrospun Nanofibers. Elsevier. 2019: 1-15.[153]Olugbade T O, Abioye T E, Farayibi P K, et al. Electrochemical properties of MgZnCa-based thin film metallic glasses fabricated by magnetron sputtering Deposition Coated on a Stainless Steel Substrate[J]. Analytical Letters, 2020, 54(10): 1588-1602.[154]Qin F, Ji C, Dan Z, et al. Corrosion behavior of MgZnCa bulk amorphous alloys fabricated by spark plasma sintering[J]. Acta Metallurgica Sinica (English Letters), 2016, 29(9): 793-799.[155]Zhang D, Feng W, Wang X, et al. Fabrication of Mg65Zn30Ca5 amorphous coating by laser remelting[J]. Journal of Non-Crystalline Solids, 2018, 500: 205-209.[156]Pinomaa T, Laukkanen A, Provatas N. Solute trapping in rapid solidification[J]. MRS Bulletin, 2020, 45(11): 910-5.[157]Wang C, Shuai Y, Yang Y, et al. Amorphous magnesium alloy with high corrosion resistance fabricated by laser powder bed fusion[J]. Journal of Alloys and Compounds, 2022, 897: 163247.[158]虞钢, 赵树森, 张永杰, 何秀丽, 庞铭. 异种金属激光焊接关键问题研究[J]. 中国激光, 2009,36(02): 261-268.[159]Wang L, Gao M, Zhang C, et al. Effect of beam oscillating pattern on weld characterization of laser welding of AA6061-T6 aluminum alloy[J]. Materials & Design, 2016, 108: 707-717.[160]Liu J, Yu H, Chen C, et al. Research and development status of laser cladding on magnesium alloys: A review[J]. Optics and Lasers in Engineering, 2017, 93: 195-210.[161]Ignat S, Sallamand P, Grevey D, et al. Magnesium alloys laser (Nd: YAG) cladding and alloying with side injection of aluminium powder[J]. Applied Surface Science, 2004, 225(1): 124-134.[162]Gao Y, Wang C, Lin Q, et al. Broad-beam laser cladding of Al–Si alloy coating on AZ91HP magnesium alloy[J]. Surface and Coatings Technology, 2006, 201(6): 2701-2706.[163]Yue T, Hu Q, Mei Z, et al. Laser cladding of stainless steel on magnesium ZK60/SiC composite[J]. Materials Letters, 2001, 47(3): 165-170.[164]Gao Y, Wang C, Yao M, et al. The resistance to wear and corrosion of laser-cladding Al2O3 ceramic coating on Mg alloy[J]. Applied Surface Science, 2007, 253(12): 5306-5311.[165]Yue T, Xie H, Lin X, et al. Solidification behaviour in laser cladding of AlCoCrCuFeNi high-entropy alloy on magnesium substrates[J]. Journal of Alloys and Compounds, 2014, 587: 588-593.[166]Li H X, Lu Z C, Wang S L, et al. Fe-based bulk metallic glasses: Glass formation, fabrication, properties and applications[J]. Progress in Materials Science, 2019, 103: 235-318.[167]高涵, 魏先顺, 梁丹丹, 江浩然, 应承希, 沈军. 超音速火焰喷涂Fe基非晶合金涂层材料的摩擦磨损性能研究[J]. 表面技术, 2018, 47(02): 55-63.[168]Katakam S, Kumar V, Santhanakrishnan S, et al. Laser assisted Fe-based bulk amorphous coating: Thermal effects and corrosion[J]. Journal of Alloys and Compounds, 2014, 604: 266-272.[169]Yue T, Su Y, Yang H. Laser cladding of Zr65Al7.5Ni10Cu17.5 amorphous alloy on magnesium[J]. Materials Letters, 2007, 61(1): 209-212.[170]Cheng B, Shrestha S, Chou K. Stress and deformation evaluations of scanning strategy effect in selective laser melting[J]. Additive Manufacturing, 2016, 12: 240-251.[171]Ma E, Xu J. The glass window of opportunities[J]. Nature Materials, 2009, 8(11): 855-857.[172]Motazedian F, Wu Z, Zhang J, et al. Determining intrinsic stress and strain state of fibre-textured thin films by X-ray diffraction measurements using combined asymmetrical and Bragg-Brentano configurations[J]. Materials & Design, 2019, 181: 108063.[173]Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity?[J]. Biomaterials, 2006, 27(15): 2907-2915.[174]Song G, Atrens A, Stjohn D. An hydrogen evolution method for the estimation of the corrosion rate of magnesium alloys[M]. Magnesium Technology 2001, 2001: 254-262.[175]Neelameggham N, Brown B. Magnesium[M]. Critical metals handbook. UK, British Geological Survey, 2014: 261-283.[176]Wang L, Wang H, Liu Y, et al. Selective laser melting helps fabricate record-large bulk metallic glass: Experiments, simulation and demonstrative part[J]. Journal of Alloys and Compounds, 2019, 808: 151731.[177]Ouyang D, Xing W, Li N, et al. Structural evolutions in 3D-printed Fe-based metallic glass fabricated by selective laser melting[J]. Additive Manufacturing, 2018, 23: 246-252.[178]Thampy V, Fong A, Calta N, et al. Subsurface cooling rates and microstructural response during laser based metal additive manufacturing[J]. Scientific Reports, 2020, 10(1): 1981.[179]Luo X, Zhang K, Cao J, et al. Effect of line energy density of the laser beam on the microstructure and wear resistance properties of the obtained Fe3Al laser cladding coatings[J]. Optik, 2022, 261: 169256.[180]Khairallah S A, Martin A A, Lee J R I, et al. Controlling interdependent meso-nanosecond dynamics and defect generation in metal 3D printing[J]. Science, 2020, 368(6491): 660-665.[181]Zeng R, Qi W, Cui H, et al. In vitro corrosion of as-extruded Mg–Ca alloys—The influence of Ca concentration[J]. Corrosion Science, 2015, 96: 23-31.[182]Zander D, Zumdick N. Influence of Ca and Zn on the microstructure and corrosion of biodegradable Mg–Ca–Zn alloys[J]. Corrosion Science, 2015, 93: 222-233.[183]Sun Y, Zhang B, Wang Y, et al. Preparation and characterization of a new biomedical Mg–Zn–Ca alloy[J]. Materials & Design, 2012, 34: 58-64.[184]Liu Y, Liu X, Zhang Z, et al. Comparative, real-time in situ monitoring of galvanic corrosion in Mg-Mg2Ca and Mg-MgZn2 couples in Hank’s solution[J]. Corrosion Science, 2019, 161: 108185.[185]Corneille J, He J, Goodman D. XPS characterization of ultra-thin MgO films on a Mo(100) surface[J]. Surface Science, 1994, 306(3): 269-278.[186]Ellingham H T. Transactions and communications[J]. Journal of The Society of Chemical Industry, 1944, 63 (5): 125.[187]李美栓, 钱余海, 辛丽. 合金上氧化物的体积比的分析[J]. 腐蚀科学与防护技术, 1999(05): 284-289.[188]Riemer A, Leuders S, Thöne M, et al. On the fatigue crack growth behavior in 316L stainless steel manufactured by selective laser melting[J]. Engineering Fracture Mechanics, 2014, 120: 15-25.[189]Gladush G , Smurov I. Physics of laser materials processing[M]. Springer, Berlin Heidelberg, 2011, 45–54.[190]Liu M, Qiu D, Zhao M, et al. The effect of crystallographic orientation on the active corrosion of pure magnesium[J]. Scripta Materialia, 2008, 58(5): 421-424.[191]Fu B, Liu W, Li Z. Calculation of the surface energy of hcp-metals with the empirical electron theory[J]. Applied Surface Science, 2009, 255(23): 9348-9357.[192]Gao Y, Xiong D, Wang C, et al. Influences of laser powers on microstructure and properties of the coatings on the AZ91HP magnesium alloy[J]. Acta Metallurgica Sinica (English Letters), 2009, 22(3): 167-173.[193]Jeong Y, Kim W. Enhancement of mechanical properties and corrosion resistance of Mg–Ca alloys through microstructural refinement by indirect extrusion[J]. Corrosion Science, 2014, 82: 392-403.[194]Ibrahim H, Luo A, Dean D, et al. Effect of Zn content and aging temperature on the in-vitro properties of heat-treated and Ca/P ceramic-coated Mg-0.5%Ca-x%Zn alloys[J]. Materials Science and Engineering: C, 2019, 103: 109700.[195]De la cruz P, Odén M, Ericsson T. Effect of laser hardening on the fatigue strength and fracture of a B–Mn steel[J]. International Journal of Fatigue, 1998, 20(5): 389-398.[196]Carlsson S, Larsson P. On the determination of residual stress and strain fields by sharp indentation testing.: Part I: theoretical and numerical analysis[J]. Acta Materialia, 2001, 49(12): 2179-2191.[197]Kondoh K, Takei R, Kariya S, et al. Local galvanic corrosion analysis on cast Mg-Ca binary alloy using scanning Kelvin probe force microscopy[J]. Materials Letters, 2022, 319: 132266.[198]Song Y, Shan D, Han E-H. Pitting corrosion of a Rare Earth Mg alloy GW93[J]. Journal of Materials Science & Technology, 2017, 33(9): 954-60.[199]曾荣昌, 郭小龙, 刘成龙, 崔洪芝, 陶武, 刘云逸, 李博文. 医用Mg-Ca和Mg-Li-Ca合金腐蚀研究[J]. 金属学报, 2011, 47(11): 1477-1482.[200]曹楚南, 腐蚀电化学原理[M]. 北京: 化学工业出版社, 2008, 2: 105-109.[201]Wang C, Tong Y, Wang Q, et al. In-situ growth of Mg(OH)2 coating on AZ31B magnesium alloy with the assistance of Ti3C2Tx MXene[J]. Materials Letters, 2022, 327: 133013.[202]黄伯云, 李成功, 石力开, 邱冠周, 左铁镛. 中国材料大典 第四卷 有色金属材料工程(上)[M]. 北京: 化学工业出版社, 2005, 8: 203-205.[203]Gebert A, Haehnel V, Park S, et al. Corrosion behaviour of Mg65Cu7.5Ni7.5Ag5Zn5Gd5Y5 bulk metallic glass in aqueous environments[J]. Electrochimica Acta, 2008, 53(8): 3403-3411.[204]Li J, Qiu Y, Yang J, et al. Effect of grain refinement induced by wire and arc additive manufacture (WAAM) on the corrosion behaviors of AZ31 magnesium alloy in NaCl solution[J]. Journal of Magnesium and Alloys, 2023, 11(1): 217-229.[205]Liu R, Wang J, Wang L, et al. Cluster hardening effects on twinning in Mg-Zn-Ca Alloys[J]. Metals, 2022, 12(4): 693.[206]Fang Z, Paramore J, Sun P, et al. Powder metallurgy of titanium – past, present, and future[J]. International Materials Reviews, 2018, 63(7): 407-459.[207]Yu Z, Liu Z, Ye F, et al. The degradation mechanism of 304, 310S, 316L and 321 stainless steels in E-scrap smelting slag[J]. Corrosion Science, 2022, 197: 110098.[208]Moravej M, Mantovani D. Biodegradable metals for cardiovascular stent application: interests and new opportunities[J]. International Journal of Molecular Sciences, 2011, 12(7): 4250-4270.[209]Krischak G D, Gebhard F, Mohr W, et al. Difference in metallic wear distribution released from commercially pure titanium compared with stainless steel plates[J]. Arch Orthop Trauma Surg, 2004, 124(2): 104-113.[210]Zhao G Y, Zhao L P, He Y F, et al. A comparison of the biological activities of human osteoblast hFOB1.19 between iron excess and iron deficiency[J]. Biological Trace Element Research, 2012, 150(1): 487-95.[211]Wang W, Dong C, Shek C. Bulk metallic glasses[J]. Materials Science and Engineering: R: Reports, 2004, 44(2): 45-89.[212]Khanna A S. 5 - High temperature oxidation[M]//Kutz M. Handbook of environmental degradation of materials (second edition). Oxford; William Andrew Publishing. 2012: 127-94.[213]Takeuchi A, Inoue A. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element[J]. Materials Transactions, 2005, 46: 2817-29.[214]张天阳, 段永宏, 朱澍, 朱锦宇, 朱庆生. 羟基磷灰石涂层人工假体的涂层附着力及其生物力学行为研究[J]. 解放军医学杂志, 2011, 36(05): 431-436.[215]Archard J F. Contact and rubbing of flat surfaces[J]. Journal of Applied Physics, 1953, 24(8): 981-988.[216]Bowden F P, Tabor D. Friction, lubrication and wear: A survey of work during the last decade[J]. British Journal of Applied Physics, 1966, 17(12): 1521-1544.[217]延黎, 吴昊年, 田乐, 徐培文, 邓涛, 聂祥樊. 激光冲击强化MB8镁合金的工艺分析及摩擦磨损性能研究[J]. 表面技术, 2022, 51(11): 45-57.[218]张强, 李春燕, 李春玲, 侯少杰, 陈佳欣, 程志强, 寇生中. 法向载荷对Fe基块体非晶复合材料摩擦磨损性能的影响[J]. 功能材料, 2023, 54(01):1133-1137+1170.[219]Pang S J, Zhang T, Asami K, et al. Synthesis of Fe–Cr–Mo–C–B–P bulk metallic glasses with high corrosion resistance[J]. Acta Materialia, 2002, 50(3): 489-497.[220]Li X, Qin C, Kato H, et al. Mo microalloying effect on the glass-forming ability, magnetic, mechanical and corrosion properties of (Fe0.76Si0.096B0.084P0.06)100-xMox bulk glassy alloys[J]. Journal of Alloys and Compounds, 2011, 509(29): 7688-7691.[221]Pang S J, Zhang T, Asami K, et al. Bulk glassy Fe–Cr–Mo–C–B alloys with high corrosion resistance[J]. Corrosion Science, 2002, 44(8): 1847-1856.[222]Yoshizawa S, Brown A, Barchowsky A, et al. Magnesium ion stimulation of bone marrow stromal cells enhances osteogenic activity, simulating the effect of magnesium alloy degradation[J]. Acta Biomaterialia, 2014, 10(6): 2834-42.[223]Rethfeld B, Ivanov D S, Garcia M E, et al. Modelling ultrafast laser ablation[J]. Journal of Physics D: Applied Physics, 2017, 50(19): 193001.[224]Buividas R, Mikutis M, Juodkazis S. Surface and bulk structuring of materials by ripples with long and short laser pulses: Recent advances[J]. Progress in Quantum Electronics, 2014, 38(3): 119-56.[225]Falsaperla P, Giacobbe A, Lombardo S, et al. Stability of hydromagnetic laminar flows in an inclined heated layer[J]. Ricerche di Matematica, 2017, 66(1): 125-40.[226]Bonarski J T. X-ray texture tomography of near-surface areas[J]. Progress in Materials Science, 2006, 51(1): 61-149.[227]Cook P S, Murphy A B. Simulation of melt pool behaviour during additive manufacturing: Underlying physics and progress[J]. Additive Manufacturing, 2020, 31: 100909.[228]Hughes T J R, Engel G, Mazzei L, et al. The continuous galerkin method is locally conservative[J]. Journal of Computational Physics, 2000, 163(2): 467-88.[229]Sudnik W, Radaj D, Erofeew W. Computerized simulation of laser beam welding, modelling and verification[J]. Journal of Physics D: Applied Physics, 1996, 29(11): 2811-2817.[230]Lampa C, Kaplan A, Powell J, et al. An analytical thermodynamic model of laser welding[J]. Journal of Physics D: Applied Physics, 1997, 30(9): 1293-1299.[231]Gu X, Shiflet G J, Guo F Q, et al. Mg–Ca–Zn bulk metallic glasses with high strength and significant ductility[J]. Journal of Materials Research, 2005, 20(8): 1935-8.[232]Jiang Z, Chen X, Li H, et al. Grain refinement and laser energy distribution during laser oscillating welding of Invar alloy[J]. Materials & Design, 2020, 186: 108195.[233]Jund P, Caprion D, Jullien R. Is there an ideal quenching rate for an ideal glass?[J]. Physical Review Letters, 1997, 79(1): 91-4.[234]Bhat M, Molinero V, Soignard E, et al. Vitrification of a monatomic metallic liquid[J]. Nature, 2007, 448(7155): 787-790.

所在学位评定分委会
材料科学与工程
国内图书分类号
TG146.2
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/544656
专题工学院_材料科学与工程系
推荐引用方式
GB/T 7714
姚锡禹. 骨植入镁及镁合金激光表层组织调控及耐腐蚀性能研究[D]. 哈尔滨. 哈尔滨工业大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11849544-姚锡禹-材料科学与工程(6724KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[姚锡禹]的文章
百度学术
百度学术中相似的文章
[姚锡禹]的文章
必应学术
必应学术中相似的文章
[姚锡禹]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。