中文版 | English
题名

开放环境中的信用分类——基于ARF算法的改进实现

其他题名
CREDIT SCORING IN OPEN ENVIRONMENT, AN UPDATED ALGORITHM BASED ON ARF
姓名
姓名拼音
XIE Baoqing
学号
12133013
学位类型
硕士
学位专业
0701Z1 商务智能与大数据
学科门类/专业学位类别
07 理学
导师
WEI HUANG
导师单位
商学院
论文答辩日期
2023-05-18
论文提交日期
2023-06-29
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

  近年来,政府愈加重视社会信用体系建设,通过高性能、高适应性的信用评分系统来控制与防范信用风险、金融风险的做法,已成为众多信贷平台的选择。目前信用评分模型已有深厚的研究基础,在信用数据集中取得了较高的性能。然而已有的信用评分模型,对信用数据不平衡的特点和时序特征未形成全面的重视。因此,本文在结合了信用数据不平衡的基础上,引入了开放环境的研究视角,从数据流的角度去审视信用数据的产生与信用模型的训练。针对上述特点,本文抽象出一个训练高性能、高适应性信用评分模型的通用框架。

  在通用框架的指引下,本文给出了一种具体的信用分类算法实现。将流式学习框架自适应随机森林(ARF)引入了信用评分系统,以使得模型具有流数据样本学习能力。进一步,引入代价矩阵策略和代价参数自更新算法以解决数据不平衡和参数指定问题,提出概念漂移检测机制和属性空间变化学习算法以适应开放环境。同时在训练方式和投票策略上也有相应的改进。具体而言:

  引入代价矩阵策略解决数据不平衡问题。在信用分类场景中,代价矩阵使模型在多数类和少数类中重新分配注意力,可以在不改变样本分布下学习与训练。进一步,由于数据流的不平衡率持续变化,本文又提出了代价矩阵参数的自更新算法,以适应不同的数据流不平衡状况。

  在开放环境中,针对概念漂移,提出一种概念漂移检测机制,实时检测概念漂移程度,在发生概念漂移后采用背景树替换或REP剪枝策略。针对属性空间变化提出了属性变化学习算法,改造了数据样本表示,引入“占位属性”,在属性空间增加和减少两种情况中分别采用逐步适应的策略,可令模型在不停机的情况下继续训练。

  本文使用了若干真实信用数据集和合成数据集验证了上述策略在真实信用场景中的有效性,通过Friedman检验与Nemenyi后续检验验证了性能提升的统计显著性。本文将信用评分模型拓展到开放环境,在理论和实验上论证了具备一定可行性,性能和鲁棒性的提升也表明本文所提的框架和模型具有一定的实践指导意义。

关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2023-06
参考文献列表

[1] 杨少春, 赵世军. 我国金融安全的影响因素与应对策略研究[J]. 财务与金融, 2021(05): 1-5+21.
[2] 国务院. 国务院关于印发社会信用体系建设规划纲要(2014—2020 年)的通知[EB/OL]. 2014. http://www.gov.cn/zhengce/content/2014-06/27/content_8913.htm.
[3] 国务院. 关于推进社会信用体系建设高质量发展促进形成新发展格局的意见[EB/OL]. 2022. http://www.gov.cn/zhengce/2022-03/29/content_5682283.htm.
[4] 剧锦文, 常耀中. 消费信贷与中国经济转型的实证研究[J]. 经济与管理研究, 2016, 37(07): 29-36.
[5] 王立勇, 石颖. 互联网金融的风险机理与风险度量研究——以 P2P 网贷为例[J]. 东南大学 学报 (哲学社会科学版), 2016, 18(02): 103-112+148.
[6] 王钊. P2P 借贷信用风险动态评价方法研究[D]. 合肥工业大学, 2019.
[7] GUO Y H, ZHOU W J, LUO C Y, et al. Instance-Based Credit Risk Assessment for InvestmentDecisions in P2P Lending[J]. European Journal of Operational Research, 2016, 249(2): 417-426.
[8] 朱俊宇. 基于公共信用信息的高新技术企业信用评价[D]. 北方工业大学, 2021.
[9] JIANG C Q, WANG Z, ZHAO H M. A Prediction-Driven Mixture Cure Model and its Appli-cation in Credit Scoring[J]. European Journal of Operational Research, 2019, 277(1): 20-31.
[10] BASTANI K, ASGARI E, NAMAVARI H. Wide and Deep Learning for Peer-to-Peer Lending[J]. Expert Systems with Applications, 2019, 134: 209-224.
[11] CHANG Y C, CHANG K H, WU G J. Application of Extreme Gradient Boosting Trees inthe Construction of Credit Risk Assessment Models for Financial Institutions[J]. Applied Soft Computing, 2018, 73: 914-920.
[12] LIU Y, LI X E, ZHANG Z M. A New Approach in Reject Inference of Using Ensemble Learning Based on Global Semi-Supervised Framework[J]. Future Generation Computer Systems-the International Journal of Escience, 2020, 109: 382-391.
[13] GUNNARSSON B R, BROUCKE S V, BAESENS B, et al. Deep Learning for Credit Scoring: Do or Don’t?[J]. European Journal of Operational Research, 2021, 295(1): 292-305.
[14] TRIPATHI D, EDLA D R, BABLANI A, et al. Experimental Analysis of Machine Learning Methods for Credit Score Classification[J]. Progress in Artificial Intelligence, 2021, 10(3): 217-243.
[15] DASTILE X, CELIK T, POTSANE M. Statistical and Machine Learning Models in Credit Scoring: A Systematic Literature Survey[J]. Applied Soft Computing, 2020, 91: 106263.
[16] BROWN I, MUES C. An experimental comparison of classification algorithms for imbalanced credit scoring data sets[J]. Expert Systems with Applications, 2012, 39(3): 3446-3453.
[17] ZHOU Z H. Open-environment machine learning[J]. National Science Review, 2022, 9(08): 211-221.
[18] DIETTERICH T G. Steps Toward Robust Artificial Intelligence[J]. AI Magazine, 2017, 38(3): 3-24.
[19] 赵鹏, 周志华. 基于决策树模型重用的分布变化流数据学习[J]. 中国科学: 信息科学, 2021, 51(01): 1-12.
[20] PARMAR J, CHOUHAN S S, RAYCHOUDHURY V, et al. Open-world Machine Learning: Applications, Challenges, and Opportunities[J]. ACM computing surveys, 2022.
[21] SEHWAG V, BHAGOJI A, SONG L, et al. Analyzing the Robustness of Open-World Machine Learning[C]//AISec’19: Conference on Computer and Communications Security. ACM, 2019: 105-116.
[22] DIETTERICH T G. Robust Artificial Intelligence and Robust Human Organizations[M]. Cor-nell University Library, arXiv.org, 2018.
[23] ADDO P M, GUEGAN D, HASSANI B. Credit Risk Analysis Using Machine and Deep Learn-ing Models[J]. Risks, 2018, 6(2): 1-38.
[24] HAMORI S, KAWAI M, KUME T, et al. Ensemble learning or deep learning? Application to default risk analysis[J]. Journal of Risk and Financial Management, 2018, 11(1): 12.
[25] GOMES H M, BIFET A, READ J, et al. Adaptive Random Forests for Evolving Data Stream Classification[J]. Machine Learning, 2017, 106(9-10): 1469-1495.
[26] DOMINGOS P, HULTEN G. Mining High-Speed Data Streams[C]//Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Associa-tion for Computing Machinery, 2000: 71–80.
[27] HULTEN G, SPENCER L, DOMINGOS P. Mining Time-Changing Data Streams[C]// Proceedings Of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Association for Computing Machinery, 2001: 97–106.
[28] 胡晶. Logistic 及其改进方法在个人网贷信用评分中的应用[D]. 华中师范大学, 2019.
[29] DEVI S S, RADHIKA Y. A Survey on Machine Learning and Statistical Techniques inBankruptcy Prediction[J]. International Journal of Machine Learning and Computing, 2018, 8(2): 133-139.
[30] HARRIS T. Credit Scoring Using the Clustered Support Vector Machine[J]. Expert Systems with Applications, 2015, 42(2): 741-750.
[31] LESSMANN S, BAESENS B, SEOW H V, et al. Benchmarking State-of-the-Art Classification Algorithms for Credit Scoring: An Update of Research[J]. European Journal of Operational Research, 2015, 247(1): 124-136.
[32] CHEN S Q, GUO Z F, ZHAO X L. Predicting mortgage early delinquency with machine learning methods[J]. European Journal of Operational Research, 2021, 290(1): 358-372.
[33] ZHANG D, ZHOU X, LEUNG S C H, et al. Vertical Bagging Decision Trees Model for Credit Scoring[J]. Expert Systems with Applications, 2010, 37(12): 7838-7843.
[34] DU P, SHU H. Exploration of Financial Market Credit Scoring and Risk Management and Prediction Using Deep Learning and Bionic Algorithm[J]. Journal of Global Information Man-agement, 2022, 30(9): 1-29.
[35] DASTILE X, CELIK T. Making Deep Learning-Based Predictions for Credit Scoring Explain-able[J]. Ieee Access, 2021, 9: 50426-50440.
[36] ZHU B, YANG W, WANG H, et al. A Hybrid Deep Learning Model for Consumer Credit Scoring[C]//2018 International Conference on Artificial Intelligence and Big Data (ICAIBD). IEEE, 2018: 205-208.
[37] LUO C C, WU D S, WU D X. A Deep Learning Approach for Credit Scoring Using Credit Default Swaps[J]. Engineering Applications of Artificial Intelligence, 2017, 65: 465-470.
[38] 王灿. 基于不平衡数据与集成学习算法的信用评价模型[J]. 中国新技术新产品, 2022, No.472(18): 10-12.
[39] BAUDER R A, KHOSHGOFTAAR T M, HASANIN T. An Empirical Study on Class Rarity in Big Data[C]//2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA). IEEE, 2018: 785-790.
[40] JOHNSON J M, KHOSHGOFTAAR T M. Survey on Deep Learning with Class Imbalance[J]. Journal of Big Data, 2019, 6(1): 1-54.
[41] KRAWCZYK B. Learning from Imbalanced Data: Open Challenges and Future Directions[J]. Progress in Artificial Intelligence, 2016, 5(4): 221-232.
[42] BUDA M, MAKI A, MAZUROWSKI M A. A Systematic Study of the Class Imbalance Problem in Convolutional Neural Networks[J]. Neural Networks, 2018, 106: 249-259.
[43] CHAWLA N V, BOWYER K W, HALL L O, et al. SMOTE: Synthetic Minority Over-Sampling Technique[J]. Journal of Artificial Intelligence Research, 2002, 16: 321-357.
[44] 夏利宇, 何晓群. 基于重抽样法处理不平衡问题的信用评级模型[J]. 管理评论, 2020, 32 (03): 75-84.
[45] 朱安安. 基于过采样 SVM 的不平衡数据信用评价模型[J]. 软件导刊, 2018, 17(10): 64-67.
[46] NIU K, ZHANG Z, LIU Y, et al. Resampling Ensemble Model Based on Data Distributionfor Imbalanced Credit Risk Evaluation in P2P Lending[J]. Information Sciences, 2020, 536: 120-134.
[47] HAN H, WANG W Y, MAO B H. Borderline-SMOTE: A New Over-Sampling Method in Imbalanced Data Sets Learning[C]//International Conference on Intelligent Computing: volume 3644. 2005: 878-887.
[48] BUNKHUMPORNPAT C, SINAPIROMSARAN K, LURSINSAP C. Safe-Level-SMOTE: Safe-Level-Synthetic Minority Over-Sampling TEchnique for Handling the Class Imbalanced Problem[C]//Advances in Knowledge Discovery and Data Mining, Proceedings: volume 5476. 2009: 475-482.
[49] LEE T, LEE K B, KIM C O. Performance of Machine Learning Algorithms for Class-Imbalanced Process Fault Detection Problems[J]. IEEE Transactions on Semiconductor Man-ufacturing, 2016, 29(4): 436-445.
[50] DHAR S, CHERKASSKY V. Development and Evaluation of Cost-Sensitive Universum-SVM [J]. IEEE Transactions on Cybernetics, 2014, 45(4): 806-818.
[51] GHAZIKHANI A, MONSEFI R, YAZDI H S. Online Cost-Sensitive Neural Network Classi-fiers for Non-Stationary and Imbalanced Data Streams[J]. Neural Computing & Applications, 2013, 23(5): 1283-1295.
[52] 杨莲, 石宝峰, 董轶哲. 基于 Class Balanced Loss 修正交叉熵的非均衡样本信用风险评价 模型[J]. 系统管理学报, 2022, 31(02): 255-269+289.
[53] SUN Z B, SONG Q B, ZHU X Y, et al. A Novel Ensemble Method for Classifying Imbalanced Data[J]. Pattern Recognition, 2015, 48(5): 1623-1637.
[54] FERREIRA L E B, GOMES H M, BIFET A, et al. Adaptive Random Forests with Resam-pling for Imbalanced Data Streams[C]//2019 International Joint Conference on Neural Networks (IJCNN). IEEE, 2019.
[55] 李小娟, 韩萌, 王乐, 等. 监督与半监督学习下的数据流集成分类综述[J]. 计算机应用研 究, 2021, 38(07): 1921-1929.
[56] AGGARWAL C C. A Survey of Stream Classification Algorithms[J]. Data Classification: Algorithms and Applications, 2014, 245: 273-302.
[57] KREMPL G, ŽLIOBAITE I, BRZEZIńSKI D, et al. Open Challenges for Data Stream Mining Research[J]. ACM SIGKDD Explorations Newsletter, 2014, 16(1): 1-10.
[58] 翟婷婷, 高阳, 朱俊武. 面向流数据分类的在线学习综述[J]. 软件学报, 2020, 31(04): 912-931.
[59] ANGLUIN D. Queries and Concept Learning[J]. Machine learning, 1988, 2(4): 319-342.
[60] 孙大为, 张广艳, 郑纬民. 大数据流式计算: 关键技术及系统实例[J]. 软件学报, 2014, 25(04): 839-862.
[61] BIFET A, HOLMES G, KIRKBY R, et al. MOA: Massive Online Analysis[J]. Journal ofMachine Learning Research, 2010, 11: 1601-1604.
[62] 许冠英, 韩萌, 王少峰, 等. 数据流集成分类算法综述[J]. 计算机应用研究, 2020, 37(01):1-8+15.
[63] BIGGIO B, CORONA I, NELSON B, et al. Security Evaluation of Support Vector Machinesin Adversarial Environments[M]. Springer, 2014: 105-153.
[64] CAUWENBERGHS G, POGGIO T. Incremental and Decremental Support Vector MachineLearning[J]. Advances in Neural Information Processing Systems, 2000, 13: 409-415.
[65] LU Y, BOUKHAROUBA K, BOONæRT J, et al. Application of An Incremental SVM Algo-rithm for On-line Human Recognition from Video Surveillance Using Texture and Color Fea-tures[J]. Neurocomputing, 2014, 126: 132-140.
[66] OZA N C. Online Bagging and Boosting[C]//2005 IEEE International Conference on Systems, Man and Cybernetics: volume 3. IEEE, 2005: 2340-2345.
[67] SAFFARI A, LEISTNER C, SANTNER J, et al. On-line Random Forests[C]//2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops. IEEE, 2009: 1393-1400.62
[68] LOEZER L, ENEMBRECK F, BARDDAL J P, et al. Cost-sensitive learning for imbalanced data streams[C]//Proceedings of the 35th Annual Acm Symposium on Applied Computing. 2020: 498-504.
[69] LOSING V, HAMMER B, WERSING H. Interactive Online Learning for Obstacle Classifica-tion on A Mobile Robot[C]//2015 International Joint Conference on Neural Networks (IJCNN). IEEE, 2015: 1-8.
[70] ELWELL R, POLIKAR R. Incremental Learning of Variable Rate Concept Drift[C]//Multiple Classifier Systems, Proceedings: volume 5519. 2009: 142-151.
[71] DITZLER G, POLIKAR R. Incremental Learning of Concept Drift from Streaming Imbalanced Data[J]. IEEE Transactions on Knowledge and Data Engineering, 2013, 25(10): 2283-2301.
[72] DITZLER G, POLIKAR R. An Ensemble Based Incremental Learning Framework for Concept Drift and Class Imbalance[C]//The 2010 International Joint Conference on Neural Networks (IJCNN). IEEE, 2010: 1-8.
[73] CHAWLA N V, BOWYER K W, HALL L O, et al. SMOTE: Synthetic Minority Over-Sampling Technique[J]. Journal of Artificial Intelligence Research, 2002, 16(1): 321–357.
[74] WEBB G I, HYDE R, CAO H, et al. Characterizing Concept Drift[J]. Data Mining and Knowl-edge Discovery, 2016, 30(4): 964-994.
[75] 文益民, 刘帅, 缪裕青, 等. 概念漂移数据流半监督分类综述[J]. 软件学报, 2022, 33(04): 1287-1314.
[76] KELLY M G, HAND D J, ADAMS N M. The Impact of Changing Populations on Classifier Per-formance[C]//Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 1999: 367-371.
[77] WARES S, ISAACS J, ELYAN E. Data Stream Mining: Methods and Challenges for Handling Concept Drift[J]. Sn Applied Sciences, 2019, 1(11): 1-19.
[78] 陈志强, 韩萌, 李慕航, 等. 数据流概念漂移处理方法研究综述[J]. 计算机科学, 2022: 1-19.
[79] GAMA J, MEDAS P, CASTILLO G, et al. Learning with Drift Detection[C]//Brazilian Sym-posium on Artificial Intelligence: volume 3171. 2004: 286-295.
[80] BIFET A, GAVALDA R. Learning from Time-Changing Data with Adaptive Windowing[C]//Proceedings of the 2007 SIAM International Conference on Data Mining. SIAM, 2007: 443-448.
[81] SUN Y G, WANG Z H, LIU H Y, et al. Online Ensemble Using Adaptive Windowing for Data Streams with Concept Drift[J]. International Journal of Distributed Sensor Networks, 2016, 12 (5): 4218973.
[82] ZHOU Z H, CHEN Z Q. Hybrid decision tree[J]. KNOWLEDGE-BASED SYSTEMS, 2002, 15(8): 515-528.
[83] KHALID S, KHALIL T, NASREEN S. A Survey of Feature Selection and Feature Extraction Techniques in Machine Learning[J]. 2014 Science and Information Conference (Sai), 2014: 372-378.
[84] ZHOU G, SOHN K, LEE H. Online incremental feature learning with denoising autoencoders [C]//Artificial intelligence and statistics. PMLR, 2012: 1453-1461.63
[85] KAWEWONG A, HASEGAWA O. Fast and Incremental Attribute Transferring and Classifying System for Detecting Unseen Object Classes: volume 6354[Z]. 2010: 563-568.
[86] KANKUEKUL P, KAWEWONG A, TANGRUAMSUB S, et al. Online Incremental Attribute-based Zero-shot Learning[Z]. 2012: 3657-3664.
[87] HOU C P, ZHOU Z H. One-Pass Learning with Incremental and Decremental Features[J]. Ieee Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(11): 2776-2792.
[88] HOU B J, ZHANG L J, ZHOU Z H. Learning With Feature Evolvable Streams[J]. Ieee Trans-actions on Knowledge and Data Engineering, 2021, 33(6): 2602-2615.
[89] BREIMAN L. Random Forests[J]. Machine Learning, 2001, 45(1): 5-32.
[90] IVERSON L R, PRASAD A M. Predicting Abundance of 80 Tree Species Following ClimateChange in the Eastern United States[J]. Ecological Monographs, 1998, 68(4): 465-485.
[91] OZA N C, RUSSELL S J. Online Bagging and Boosting[C]//International Workshop on Arti-ficial Intelligence and Statistics. PMLR, 2001: 229-236.
[92] OZA N C, RUSSELL S. Experimental Comparisons of Online and Batch Versions of Bag-ging and Boosting[C]//Proceedings Of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2001: 359-364.
[93] BIFET A, HOLMES G, PFAHRINGER B. Leveraging Bagging for Evolving Data Streams[C]// Machine Learning and Knowledge Discovery in Databases: volume 6321. 2010: 135-150.
[94] CATLETT J. Megainduction: Machine Learning on Very Large Databases[D]. University of Sydney, 1991.
[95] MARON O, MOORE A. Hoeffding Races: Accelerating Model Selection Search for Classifi-cation and Function Approximation[J]. Advances in Neural Information Processing Systems, 1993, 6(1): 59-66.
[96] 褚耀奇. 基于自适应随机森林的非平衡数据流分类方法[D]. 中国矿业大学, 2021.
[97] FRIEDMAN M. The use of ranks to avoid the assumption of normality implicit in the analysisof variance[J]. Journal of the american statistical association, 1937, 32(200): 675-701.
[98] NEMENYI P B. Distribution-free multiple comparisons[D]. Princeton University, 1963.
[99] BEYGELZIMER A, KALE S, LUO H. Optimal and Adaptive Algorithms for Online Boosting [C]//International Conference on Machine Learning. PMLR, 2015: 2323-2331.
[100] CHEN S T, LIN H T, LU C J. An Online Boosting Algorithm with Theoretical Justifications [C]//Proceedings of the 29th International Conference on Machine Learning. Omnipress, 2012.
[101] PELOSSOF R, JONES M, VOVSHA I, et al. Online Coordinate Boosting[C]//2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops. IEEE, 2009:1354-1361.
[102] ELKAN C. The foundations of cost-sensitive learning[C]//International joint conference onartificial intelligence: volume 17. Lawrence Erlbaum Associates Ltd, 2001: 973-978.
[103] PICEK S, HEUSER A, JOVIC A, et al. The Curse of Class Imbalance and Conflicting Metricswith Machine Learning for Side-Channel Evaluations[J]. IACR Transactions on Cryptographic Hardware and Embedded Systems, 2019, 2019(1): 1-29.64
[104] BALDI P, BRUNAK S, CHAUVIN Y, et al. Assessing the Accuracy of Prediction Algorithms for Classification: An Overview[J]. Bioinformatics, 2000, 16(5): 412-424.
[105] CHICCO D, JURMAN G. The Advantages of the Matthews Correlation Coefficient (MCC) over F1 Score and Accuracy in Binary Classification Evaluation[J]. BMC Genomics, 2020, 21 (1): 1-13.
[106] ERHAN D, BENGIO Y, COURVILLE A, et al. Why Does Unsupervised Pre-training Help Deep Learning?[J]. Journal of Machine Learning Research, 2010, 11: 625-660.
[107] HE X, PAN J, JIN O, et al. Practical Lessons from Predicting Clicks on Ads at Facebook[C]// Proceedings of The Eighth International Workshop on Data Mining for Online Advertising. 2014: 1-9.
[108] KARUMBAIAH S, LAN A, NAGPAL S, et al. Using Past Data to Warm Start Active Ma-chine Learning: Does Context Matter?[C]//11th International Learning Analytics and Knowl-edge Conference. 2021: 151-160.
[109] SUTSKEVER I, MARTENS J, DAHL G, et al. On the Importance of Initialization and Mo-mentum in Deep Learning[C]//International Conference on Machine Learning. PMLR, 2013: 1139-1147.
[110] SRIVASTAVA R K, GREFF K, SCHMIDHUBER J. Training Very Deep Networks[J]. Ad-vances in Neural Information Processing Systems, 2015, 28: 2377-2385.
[111] BERNARDO A, GOMES H M, MONTIEL J, et al. C-SMOTE: Continuous Synthetic Minority Oversampling for Evolving Data Streams[J]. 2020 Ieee International Conference on Big Data (Big Data), 2020: 483-492.
[112] BIFET A, HOLMES G, PFAHRINGER B, et al. New ensemble methods for evolving data streams[C]//KDD ’09: International Conference on Knowledge Discovery and Data Mining. ACM, 2009: 139-148.
[113] VLACHOS M, DOMENICONI C, GUNOPULOS D, et al. Non-linear dimensionality reduc-tion techniques for classification and visualization[C]//KDD ’02: International Conference on Knowledge Discovery and Data Mining. ACM, 2002: 645-651.

所在学位评定分委会
数学
国内图书分类号
TP391,F83
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/544662
专题商学院_信息系统与管理工程系
推荐引用方式
GB/T 7714
谢宝庆. 开放环境中的信用分类——基于ARF算法的改进实现[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12133013-谢宝庆-信息系统与管理(3066KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[谢宝庆]的文章
百度学术
百度学术中相似的文章
[谢宝庆]的文章
必应学术
必应学术中相似的文章
[谢宝庆]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。