[1] CHIMENE D, LENNOX K K, KAUNAS R R, et al. Advanced Bioinks for 3D Printing: A Materials Science Perspective[J]. Annals of Biomedical Engineering, 2016, 44(6): 2090-2102.
[2] 郑玉峰, 夏丹丹, 谌雨农, et al. 增材制造可降解金属医用植入物 %J 金属学报[J]. 2021, 57(11): 1499-1520.
[3] ZHENG Y F, GU X N, WITTE F. Biodegradable metals[J]. Materials Science and Engineering: R: Reports, 2014, 77: 1-34.
[4] ZHAO S, MCNAMARA C T, BOWEN P K, et al. Structural Characteristics and In Vitro Biodegradation of a Novel Zn-Li Alloy Prepared by Induction Melting and Hot Rolling[J]. METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2017, 48A(3): 1204-1215.
[5] ZHU S, WU C, LI G, et al. Microstructure, mechanical properties and creep behaviour of extruded Zn-xLi (x = 0.1, 0.3 and 0.4) alloys for biodegradable vascular stent applications[J]. Materials Science and Engineering A, 2020, 777(Mar.10): 1-7.
[6] LI Z, SHI Z-Z, HAO Y, et al. High-performance hot-warm rolled Zn-0.8Li alloy with nano-sized metastable precipitates and sub-micron grains for biodegradable stents[J]. Journal of Materials Science & Technology, 2019, 35(11): 2618-2624.
[7] LI Z, SHI Z Z, HAO Y, et al. Insight into role and mechanism of Li on the key aspects of biodegradable Zn-Li alloys: Microstructure evolution, mechanical properties, corrosion behavior and cytotoxicity[J]. MATERIALS SCIENCE AND ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2020, 114(89): 111049.
[8] OKAMOTO H. Li-Zn (Lithium-Zinc)[J]. Journal of Phase Equilibria and Diffusion, 2012, 33(4): 345-345.
[9] SOTOUDEH BAGHA P, KHALEGHPANAH S, SHEIBANI S, et al. Characterization of nanostructured biodegradable Zn-Mn alloy synthesized by mechanical alloying[J]. Journal of Alloys and Compounds, 2018, 735: 1319-1327.
[10] LI H F, XIE X H, ZHENG Y F, et al. Development of biodegradable Zn-1X binary alloys with nutrient alloying elements Mg, Ca and Sr[J]. SCIENTIFIC REPORTS, 2015, 5: 10719.
[11] YANG H T, JIA B, ZHANG Z C, et al. Alloying design of biodegradable zinc as promising bone implants for load-bearing applications[J]. NATURE COMMUNICATIONS, 2020, 11(1): 401.
[12] KUBáSEK J, VOJTĚCH D, JABLONSKá E, et al. Structure, mechanical characteristics and in vitro degradation, cytotoxicity, genotoxicity and mutagenicity of novel biodegradable Zn–Mg alloys[J]. Materials Science and Engineering: C, 2016, 58: 24-35.
[13] JARZEBSKA A, BIEDA M, MAJ L, et al. Controlled Grain Refinement of Biodegradable Zn-Mg Alloy: The Effect of Magnesium Alloying and Multi-Pass Hydrostatic Extrusion Preceded by Hot Extrusion[J]. METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2020, 51(12): 6784-6796.
[14] JIN H L, ZHAO S, GUILLORY R, et al. Novel high-strength, low-alloys Zn-Mg (< 0.1 wt% Mg) and their arterial biodegradation[J]. MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2018, 84: 67-79.
[15] LI P, ZHANG W, DAI J, et al. Investigation of zinc‑copper alloys as potential materials for craniomaxillofacial osteosynthesis implants[J]. Materials Science and Engineering: C, 2019, 103: 109826.
[16] JIANG J M, HUANG H, NIU J L, et al. Characterization of nano precipitate phase in an as-extruded Zn-Cu alloy[J]. SCRIPTA MATERIALIA, 2021, 200: 113907.
[17] GUO P, ZHU X, YANG L, et al. Ultrafine- and uniform-grained biodegradable Zn-0.5Mn alloy: Grain refinement mechanism, corrosion behavior, and biocompatibility in vivo[J]. Materials Science and Engineering: C, 2021, 118: 111391.
[18] MOSTAED E, SIKORA-JASINSKA M, ARDAKANI M S, et al. Towards revealing key factors in mechanical instability of bioabsorbable Zn-based alloys for intended vascular stenting[J]. ACTA BIOMATERIALIA, 2020, 105: 319-335.
[19] TANG Z B, HUANG H, NIU J L, et al. Design and characterizations of novel biodegradable Zn-Cu-Mg alloys for potential biodegradable implants[J]. MATERIALS & DESIGN, 2017, 117: 84-94.
[20] BOWEN P K, DRELICH J, GOLDMAN J. Zinc Exhibits Ideal Physiological Corrosion Behavior for Bioabsorbable Stents[J]. 2013, 25(18): 2577-2582.
[21] LIU X W, SUN J K, QIU K J, et al. Effects of alloying elements (Ca and Sr) on microstructure, mechanical property and in vitro corrosion behavior of biodegradable Zn-1.5Mg alloy[J]. Journal of Alloys and Compounds, 2016, 664: 444-452.
[22] GUO H, HU J L, SHEN Z Q, et al. In vitro and in vivo studies of biodegradable Zn-Li-Mn alloy staples designed for gastrointestinal anastomosis[J]. ACTA BIOMATERIALIA, 2021, 121: 713-723.
[23] JIA B, YANG H T, HAN Y, et al. In vitro and in vivo studies of Zn-Mn biodegradable metals designed for orthopedic applications[J]. ACTA BIOMATERIALIA, 2020, 108: 358-372.
[24] MA J, ZHAO N, ZHU D H. Endothelial Cellular Responses to Biodegradable Metal Zinc[J]. ACS BIOMATERIALS SCIENCE & ENGINEERING, 2015, 1(11): 1174-1182.
[25] JABLONSKA E, VOJTECH D, FOUSOVA M, et al. Influence of surface pre-treatment on the cytocompatibility of a novel biodegradable ZnMg alloy[J]. MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2016, 68: 198-204.
[26] SHEARIER E R, BOWEN P K, HE W L, et al. In Vitro Cytotoxicity, Adhesion, and Proliferation of Human Vascular Cells Exposed to Zinc[J]. ACS BIOMATERIALS SCIENCE & ENGINEERING, 2016, 2(4): 634-642.
[27] ZHU D, COCKERILL I, SU Y, et al. Mechanical Strength, Biodegradation, and in Vitro and in Vivo Biocompatibility of Zn Biomaterials[J]. ACS Applied Materials & Interfaces, 2019, 11(7): 6809-6819.
[28] BOWEN P K, GUILLORY R J, SHEARIER E R, et al. Metallic zinc exhibits optimal biocompatibility for bioabsorbable endovascular stents[J]. MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2015, 56: 467-472.
[29] DRELICH A J, ZHAO S, GUILLORY R J, et al. Long-term surveillance of zinc implant in murine artery: Surprisingly steady biocorrosion rate[J]. ACTA BIOMATERIALIA, 2017, 58: 539-549.
[30] ZHAO S, SEITZ J M, EIFLER R, et al. Zn-Li alloy after extrusion and drawing: Structural, mechanical characterization, and biodegradation in abdominal aorta of rat[J]. MATERIALS SCIENCE AND ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2017, 76: 301-312.
[31] KAFRI A, OVADIA S, GOLDMAN J, et al. The Suitability of Zn-1.3% Fe Alloy as a Biodegradable Implant Material[J]. Metals, 2018, 8(3): 153.
[32] GUILLORY R J, BOWEN P K, HOPKINS S P, et al. Corrosion Characteristics Dictate the Long-Term Inflammatory Profile of Degradable Zinc Arterial Implants[J]. ACS BIOMATERIALS SCIENCE & ENGINEERING, 2016, 2(12): 2355-2364.
[33] QU X H, YANG H T, JIA B, et al. Zinc alloy-based bone internal fixation screw with antibacterial and anti-osteolytic properties[J]. Bioactive Materials, 2021, 6(12): 4607-4624.
[34] NIU J L, TANG Z B, HUANG H, et al. Research on a Zn-Cu alloy as a biodegradable material for potential vascular stents application[J]. MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2016, 69: 407-413.
[35] KANG J-W, MA Q-X. The role and impact of 3D printing technologies in casting[J]. China Foundry, 2017, 14(3): 157-168.
[36] GAO W, ZHANG Y, RAMANUJAN D, et al. The status, challenges, and future of additive manufacturing in engineering[J]. Computer-Aided Design, 2015, 69: 65-89.
[37] PUTRA N E, MIRZAALI M J, APACHITEI I, et al. Multi-material additive manufacturing technologies for Ti-, Mg-, and Fe-based biomaterials for bone substitution[J]. ACTA BIOMATERIALIA, 2020, 109: 1-20.
[38] ABUABIAH M, MBODJ N G, SHAQOUR B, et al. Advancements in Laser Wire-Feed Metal Additive Manufacturing: A Brief Review[J]. 2023, 16(5): 2030.
[39] FARAG M M, YUN H-S. Effect of gelatin addition on fabrication of magnesium phosphate-based scaffolds prepared by additive manufacturing system[J]. Materials Letters, 2014, 132: 111-115.
[40] WEI K W, GAO M, WANG Z M, et al. Effect of energy input on formability, microstructure and mechanical properties of selective laser melted AZ91D magnesium alloy[J]. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2014, 611: 212-222.
[41] LI Y, ZHOU J, PAVANRAM P, et al. Additively manufactured biodegradable porous magnesium[J]. ACTA BIOMATERIALIA, 2018, 67: 378-392.
[42] DENG Q, WU Y, ZHU W, et al. Effect of heat treatment on microstructure evolution and mechanical properties of selective laser melted Mg-11Gd-2Zn-0.4Zr alloy[J]. Materials Science and Engineering: A, 2022, 829: 142139.
[43] ZUMDICK N A, JAUER L, KERSTING L C, et al. Additive manufactured WE43 magnesium: A comparative study of the microstructure and mechanical properties with those of powder extruded and as-cast WE43[J]. Materials Characterization, 2019, 147: 384-397.
[44] WEI K, ZENG X, WANG Z, et al. Selective laser melting of Mg-Zn binary alloys: Effects of Zn content on densification behavior, microstructure, and mechanical property[J]. Materials Science and Engineering: A, 2019, 756: 226-236.
[45] ZHANG Y F, XU J K, RUAN Y C, et al. Implant-derived magnesium induces local neuronal production of CGRP to improve bone-fracture healing in rats[J]. NATURE MEDICINE, 2016, 22(10): 1160-1169.
[46] MONTANI M, DEMIR A G, MOSTAED E, et al. Processability of pure Zn and pure Fe by SLM for biodegradable metallic implant manufacturing[J]. Rapid Prototyping Journal, 2017, 23(3): 514-523.
[47] SONG B, DONG S, DENG S, et al. Microstructure and tensile properties of iron parts fabricated by selective laser melting[J]. Optics & Laser Technology, 2014, 56: 451-460.
[48] SONG B, DONG S, LIU Q, et al. Vacuum heat treatment of iron parts produced by selective laser melting: Microstructure, residual stress and tensile behavior[J]. Materials & Design (1980-2015), 2014, 54: 727-733.
[49] LI Y, JAHR H, LIETAERT K, et al. Additively manufactured biodegradable porous iron[J]. ACTA BIOMATERIALIA, 2018, 77: 380-393.
[50] O’CONNOR J P, KANJILAL D, TEITELBAUM M, et al. Zinc as a Therapeutic Agent in Bone Regeneration[J]. Materials, 2020, 13(10): 2211.
[51] DEMIR A G, MONGUZZI L, PREVITALI B. Selective laser melting of pure Zn with high density for biodegradable implant manufacturing[J]. ADDITIVE MANUFACTURING, 2017, 15: 20-28.
[52] GRASSO M, DEMIR A G, PREVITALI B, et al. In situ monitoring of selective laser melting of zinc powder via infrared imaging of the process plume[J]. ROBOTICS AND COMPUTER-INTEGRATED MANUFACTURING, 2018, 49: 229-239.
[53] WEN P, JAUER L, VOSHAGE M, et al. Densification behavior of pure Zn metal parts produced by selective laser melting for manufacturing biodegradable implants[J]. Journal of Materials Processing Technology, 2018, 258: 128-137.
[54] CHEN Y, WEN P, VOSHAGE M, et al. Laser additive manufacturing of Zn metal parts for biodegradable implants: Effect of gas flow on evaporation and formation quality[J]. 2019, 31(2): 022304.
[55] WEN P, VOSHAGE M, JAUER L, et al. Laser additive manufacturing of Zn metal parts for biodegradable applications: Processing, formation quality and mechanical properties[J]. MATERIALS & DESIGN, 2018, 155: 36-45.
[56] MOSTAED E, SIKORA-JASINSKA M, MOSTAED A, et al. Novel Zn-based alloys for biodegradable stent applications: Design, development and in vitro degradation[J]. JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS, 2016, 60: 581-602.
[57] LIU X, SUN J, ZHOU F, et al. Micro-alloying with Mn in Zn–Mg alloy for future biodegradable metals application[J]. MATERIALS & DESIGN, 2016, 94: 95-104.
[58] KATARIVAS LEVY G, GOLDMAN J, AGHION E. The Prospects of Zinc as a Structural Material for Biodegradable Implants—A Review Paper[J]. Metals, 2017, 7(10): 402.
[59] QIN Y, WEN P, XIA D, et al. Effect of grain structure on the mechanical properties and in vitro corrosion behavior of additively manufactured pure Zn[J]. ADDITIVE MANUFACTURING, 2020, 33: 101134.
[60] WANG C, HU Y, ZHONG C, et al. Microstructural evolution and mechanical properties of pure Zn fabricated by selective laser melting[J]. Materials Science and Engineering: A, 2022, 846: 143276.
[61] SHUAI C-J, YANG M-L, DENG F, et al. Forming quality, mechanical properties, and anti-inflammatory activity of additive manufactured Zn-Nd alloy[J]. Journal of Zhejiang University-SCIENCE A, 2020, 21(11): 876-891.
[62] YANG Y, YANG M, HE C, et al. Rare earth improves strength and creep resistance of additively manufactured Zn implants[J]. Composites Part B: Engineering, 2021, 216: 108882.
[63] NING J, MA Z-X, ZHANG L-J, et al. Effects of magnesium on microstructure, properties and degradation behaviors of zinc-based alloys prepared by selective laser melting[J]. Materials Research Express, 2022, 9(8): 086511.
[64] QIN Y, YANG H, LIU A, et al. Processing optimization, mechanical properties, corrosion behavior and cytocompatibility of additively manufactured Zn-0.7Li biodegradable metals[J]. ACTA BIOMATERIALIA, 2022, 142: 388-401.
[65] LI Y, PAVANRAM P, ZHOU J, et al. Additively manufactured biodegradable porous zinc[J]. ACTA BIOMATERIALIA, 2020, 101: 609-623.
[66] LI Y, PAVANRAM P, ZHOU J, et al. Additively manufactured functionally graded biodegradable porous zinc[J]. BIOMATERIALS SCIENCE, 2020, 8(9): 2404-2419.
[67] QIN Y, LIU A, GUO H, et al. Additive manufacturing of Zn-Mg alloy porous scaffolds with enhanced osseointegration: In vitro and in vivo studies[J]. ACTA BIOMATERIALIA, 2022, 145: 403-415.
[68] OLAKANMI E O. Effect of mixing time on the bed density, and microstructure of selective laser sintered (sls) aluminium powders[J]. Materials Research, 2012, 15(2): 167-176.
[69] MANAKARI V, PARANDE G, GUPTA M. Selective Laser Melting of Magnesium and Magnesium Alloy Powders: A Review[J]. Metals, 2017, 7(1): 2.
[70] HU D, WANG Y, ZHANG D F, et al. Experimental Investigation on Selective Laser Melting of Bulk Net-Shape Pure Magnesium[J]. MATERIALS AND MANUFACTURING PROCESSES, 2015, 30(11): 1298-1304.
[71] QIN Y, WEN P, GUO H, et al. Additive manufacturing of biodegradable metals: Current research status and future perspectives[J]. ACTA BIOMATERIALIA, 2019, 98: 3-22.
[72] LEUNG C L A, MARUSSI S, TOWRIE M, et al. The effect of powder oxidation on defect formation in laser additive manufacturing[J]. Acta Materialia, 2019, 166: 294-305.
[73] ANTONY K, ARIVAZHAGAN N. Studies on energy penetration and marangoni effect during laser melting process[J]. Journal of Engineering Science and Technology, 2015, 10(4): 509-525.
[74] OH J M, LEE B G, CHO S W, et al. Oxygen effects on the mechanical properties and lattice strain of Ti and Ti-6Al-4V[J]. Metals and Materials International, 2011, 17(5): 733-736.
[75] SIMCHI A. The role of particle size on the laser sintering of iron powder[J]. Metallurgical and Materials Transactions B, 2004, 35(5): 937-948.
[76] 邱冠周 黄 李 石. 中国材料工程大典. 第4卷, 有色金属材料工程.上[M]. 中国材料工程大典. 第4卷, 有色金属材料工程.上, 2006.
[77] WRIEDT H A. The O−Zn (Oxygen-Zinc) system[J]. Journal of Phase Equilibria, 1987, 8(2): 166-176.
[78] ZHOU Y H, LIN S F, HOU Y H, et al. Layered surface structure of gas-atomized high Nb-containing TiAl powder and its impact on laser energy absorption for selective laser melting[J]. Applied Surface Science, 2018, 441: 210-217.
[79] YAN M, YU P, KIM K B, et al. The surface structure of gas-atomized metallic glass powders[J]. SCRIPTA MATERIALIA, 2010, 62(5): 266-269.
[80] JAMDAGNI P, KHATRI P, RANA J S. Green synthesis of zinc oxide nanoparticles using flower extract of Nyctanthes arbor-tristis and their antifungal activity[J]. Journal of King Saud University - Science, 2016, 30(2): 168-175.
[81] ZHOU Y H, ZHANG Z H, WANG Y P, et al. Selective laser melting of typical metallic materials: An effective process prediction model developed by energy absorption and consumption analysis[J]. ADDITIVE MANUFACTURING, 2019, 25: 204-217.
[82] BROWN M S, ARNOLD C B. Fundamentals of Laser-Material Interaction and Application to Multiscale Surface Modification[M]//SUGIOKA K, MEUNIER M, PIQUé A. Laser Precision Microfabrication. Berlin, Heidelberg; Springer Berlin Heidelberg. 2010: 91-120.
[83] SWINEHART D F. The Beer-Lambert Law[J]. Journal of Chemical Education, 1962, 39(7): 333.
[84] PENG G, YAN H, LIU F, et al. Oxidation effect for laser irradiating the metal[J]. Infrared and Laser engineering, 2013, 42(5): 1253-1257.
[85] PECK E R, FISHER D J. Dispersion of Argon[J]. Journal of the Optical Society of America, 1964, 54(11): 1362-1364.
[86] AGUILAR O, DE CASTRO S, GODOY M P F, et al. Optoelectronic characterization of Zn1-xCdxO thin films as an alternative to photonic crystals in organic solar cells[J]. Optical Materials Express, 2019, 9(9): 3638-3648.
[87] WERNER W S M, GLANTSCHNIG K, AMBROSCH-DRAXL C. Optical Constants and Inelastic Electron-Scattering Data for 17 Elemental Metals[J]. Journal of Physical and Chemical Reference Data, 2009, 38(4): 1013-1092.
[88] YADROITSEV I, GUSAROV A, YADROITSAVA I, et al. Single track formation in selective laser melting of metal powders[J]. Journal of Materials Processing Technology, 2010, 210(12): 1624-1631.
[89] SIH S S, BARLOW J W. The Prediction of the Emissivity and Thermal Conductivity of Powder Beds[J]. Particulate Science and Technology, 2004, 22(4): 427-440.
[90] ALLMEN M V, BLATTER A. Laser-beam interactions with materials: physical principles and applications[M]. Springer Science & Business Media, 2013.
[91] 张博, 李小波, 李旦. 纯金属热膨胀系数的评估; proceedings of the 第十六届全国相图学术会议暨相图与材料设计国际研讨会, 中国江苏常州, F, 2012 [C].
[92] MEAD-HUNTER R, KING A J C, MULLINS B J. Plateau Rayleigh Instability Simulation[J]. Langmuir, 2012, 28(17): 6731-6735.
[93] BICHAT M P, PASCAL J L, GILLOT F, et al. Electrochemical lithium insertion in Zn3P2 zinc phosphide[J]. Journal of Physics and Chemistry of Solids, 2006, 67(5-6): 1233-1237.
[94] XIAO Z, LEI Y, HU Z, et al. Influence of rescanning parameters on selective laser melting of Ti6Al4V[J]. Journal of Manufacturing Processes, 2022, 82: 530-542.
[95] CHMIELEWSKA A, WYSOCKI B A, GADALIŃSKA E, et al. Laser powder bed fusion (LPBF) of NiTi alloy using elemental powders: the influence of remelting on printability and microstructure[J]. Rapid Prototyping Journal, 2022, 28(10): 1845-1868.
[96] KELLER C, MOKHTARI M, VIEILLE B, et al. Influence of a rescanning strategy with different laser powers on the microstructure and mechanical properties of Hastelloy X elaborated by powder bed fusion[J]. Materials Science and Engineering: A, 2021, 803: 140474.
[97] YANG Y W, YANG M L, HE C X, et al. Rare earth improves strength and creep resistance of additively manufactured Zn implants[J]. COMPOSITES PART B-ENGINEERING, 2021, 216(Jul.1): 108882.
[98] 印永嘉. 物理化学简明教程(第4版)[M]. 物理化学简明教程(第4版), 2007.
[99] FU K, JIANG X, GUO Y, et al. Experimental investigation and thermodynamic assessment of the yttrium-hydrogen binary system[J]. Progress in Natural Science: Materials International, 2018, 28(3): 332-336.
[100]ELLINGHAM H J T. Transactions and Communications[J]. Journal of the Society of Chemical Industry, 1944, 63(5): 125-160.
修改评论