[1] TOMAR N, DE R K. A brief outline of the immune system [J]. Methods Mol Biol, 2014, 1184: 3-12.
[2] NAKAHAMA T, KAWAHARA Y. Adenosine-to-inosine RNA editing in the immune system: friend or foe? [J]. Cell Mol Life Sci, 2020, 77(15): 2931-48.
[3] NISHIKURA K. Functions and regulation of RNA editing by ADAR deaminases [J]. Annu Rev Biochem, 2010, 79: 321-49.
[4] LI T, YANG X, LI W, et al. ADAR1 Stimulation by IFN-alpha Downregulates the Expression of MAVS via RNA Editing to Regulate the Anti-HBV Response [J]. Mol Ther, 2021, 29(3): 1335-48.
[5] HEALE B S, KEEGAN L P, MCGURK L, et al. Editing independent effects of ADARs on the miRNA/siRNA pathways [J]. EMBO J, 2009, 28(20): 3145-56.
[6] KARKI R, KANNEGANTI T D. ADAR1 and ZBP1 in innate immunity, cell death, and disease [J]. Trends Immunol, 2023.
[7] ISHIZUKA J J, MANGUSO R T, CHERUIYOT C K, et al. Loss of ADAR1 in tumours overcomes resistance to immune checkpoint blockade [J]. Nature, 2019, 565(7737): 43-8.
[8] MARCU-MALINA V, GOLDBERG S, VAX E, et al. ADAR1 is vital for B cell lineage development in the mouse bone marrow [J]. Oncotarget, 2016, 7(23)(1949-2553 (Electronic)): 54370-9.
[9] COOPER M D, PETERSON R D, GOOD R A. Delineation of the Thymic and Bursal Lymphoid Systems in the Chicken [J]. Nature, 1965, 205: 143-6.
[10] LEWIS S M, WILLIAMS A, EISENBARTH S C. Structure and function of the immune system in the spleen [J]. Sci Immunol, 2019, 4(33).
[11] ISE W, KUROSAKI T. Plasma cell differentiation during the germinal center reaction [J]. Immunol Rev, 2019, 288(1): 64-74.
[12] TAMAYO E, ALVAREZ P, MERINO R. TGFbeta Superfamily Members as Regulators of B Cell Development and Function-Implications for Autoimmunity [J]. Int J Mol Sci, 2018, 19(12).
[13] ROLINK A, MELCHERS F. B-cell development in the mouse [J]. Immunol Lett, 1996, 54(2-3): 157-61.
[14] HARDY R R, HAYAKAWA K. B cell development pathways [J]. Annu Rev Immunol, 2001, 19: 595-621.
[15] SCHATZ D G, JI Y. Recombination centres and the orchestration of V(D)J recombination [J]. Nat Rev Immunol, 2011, 11(4): 251-63.
[16] ALT F W, OLTZ E M, YOUNG F, et al. VDJ recombination [J]. Immunol Today, 1992, 13(8): 306-14.
[17] GRAWUNDER U, WEST R B, LIEBER M R. Antigen receptor gene rearrangement [J]. Curr Opin Immunol, 1998, 10(2): 172-80.
[18] HOFFMANN A, KERR S, JELLUSOVA J, et al. Siglec-G is a B1 cell-inhibitory receptor that controls expansion and calcium signaling of the B1 cell population [J]. Nat Immunol, 2007, 8(7): 694-704.
[19] WANG Y, LIU J, BURROWS P D, et al. B Cell Development and Maturation [J]. Adv Exp Med Biol, 2020, 1254: 1-22.
[20] CHI X, LI Y, QIU X. V(D)J recombination, somatic hypermutation and class switch recombination of immunoglobulins: mechanism and regulation [J]. Immunology, 2020, 160(3): 233-47.
[21] RETH M, NIELSEN P. Signaling circuits in early B-cell development [J]. Adv Immunol, 2014, 122: 129-75.
[22] KWAK K, AKKAYA M, PIERCE S K. B cell signaling in context [J]. Nat Immunol, 2019, 20(8): 963-9.
[23] TIMBLIN G A, SCHLISSEL M S. Ebf1 and c-Myb repress rag transcription downstream of Stat5 during early B cell development [J]. J Immunol, 2013, 191(9): 4676-87.
[24] NUTT S L, URBANEK P, ROLINK A, et al. Essential functions of Pax5 (BSAP) in pro-B cell development: difference between fetal and adult B lymphopoiesis and reduced V-to-DJ recombination at the IgH locus [J]. Genes Dev, 1997, 11(4): 476-91.
[25] TANAKA S, BABA Y. B Cell Receptor Signaling [M]//WANG J-Y. B Cells in Immunity and Tolerance. Singapore; Springer Singapore. 2020: 23-36.
[26] SZYDLOWSKI M, JABLONSKA E, JUSZCZYNSKI P. FOXO1 transcription factor: a critical effector of the PI3K-AKT axis in B-cell development [J]. Int Rev Immunol, 2014, 33(2): 146-57.
[27] PILLAI S, CARIAPPA A. The follicular versus marginal zone B lymphocyte cell fate decision [J]. Nat Rev Immunol, 2009, 9(11): 767-77.
[28] MURAMATSU M, KINOSHITA K, FAGARASAN S, et al. Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme [J]. Cell, 2000, 102(5): 553-63.
[29] CIUCCI T, VACCHIO M S, CHEN T, et al. Dependence on Bcl6 and Blimp1 drive distinct differentiation of murine memory and follicular helper CD4+ T cells [J]. J Exp Med, 2022, 219(1).
[30] SUAN D, SUNDLING C, BRINK R. Plasma cell and memory B cell differentiation from the germinal center [J]. Curr Opin Immunol, 2017, 45: 97-102.
[31] FISCHER U, YANG J J, IKAWA T, et al. Cell Fate Decisions: The Role of Transcription Factors in Early B-cell Development and Leukemia [J]. Blood Cancer Discov, 2020, 1(3): 224-33.
[32] TASSINARI V, CESARINI V, TOMASELLI S, et al. ADAR1 is a new target of METTL3 and plays a pro-oncogenic role in glioblastoma by an editing-independent mechanism [J]. Genome Biol, 2021, 22(1): 51.
[33] ZHAO C, XU G, ZHANG X, et al. RNA m(6)A modification orchestrates the rhythm of immune cell development from hematopoietic stem cells to T and B cells [J]. Front Immunol, 2022, 13: 839291.
[34] ZHENG Z, ZHANG L, CUI X L, et al. Control of Early B Cell Development by the RNA N(6)-Methyladenosine Methylation [J]. Cell Rep, 2020, 31(13): 107819.
[35] HUANG H, ZHANG G, RUAN G X, et al. Mettl14-Mediated m6A Modification Is Essential for Germinal Center B Cell Response [J]. J Immunol, 2022, 208(8): 1924-36.
[36] GRENOV A C, MOSS L, EDELHEIT S, et al. The germinal center reaction depends on RNA methylation and divergent functions of specific methyl readers [J]. J Exp Med, 2021, 218(10).
[37] BLANC V, DAVIDSON N O. APOBEC-1-mediated RNA editing [J]. Wiley Interdiscip Rev Syst Biol Med, 2010, 2(5): 594-602.
[38] PESTAL K, FUNK C C, SNYDER J M, et al. Isoforms of RNA-Editing Enzyme ADAR1 Independently Control Nucleic Acid Sensor MDA5-Driven Autoimmunity and Multi-organ Development [J]. Immunity, 2015, 43(5): 933-44.
[39] HERAUD-FARLOW J E, CHALK A M, LINDER S E, et al. Protein recoding by ADAR1-mediated RNA editing is not essential for normal development and homeostasis [J]. Genome Biol, 2017, 18(1): 166.
[40] CORNETH O B J, NEYS S F H, HENDRIKS R W. Aberrant B Cell Signaling in Autoimmune Diseases [J]. Cells, 2022, 11(21).
[41] SAIJO K, SCHMEDT C, SU I H, et al. Essential role of Src-family protein tyrosine kinases in NF-kappaB activation during B cell development [J]. Nat Immunol, 2003, 4(3): 274-9.
[42] ZHOU Q, TENG Y, PAN J, et al. Identification of four novel mutations in BTK from six Chinese families with X-linked agammaglobulinemia [J]. Clin Chim Acta, 2022, 531: 48-55.
[43] KUROSAKI T, TSUKADA S. BLNK: connecting Syk and Btk to calcium signals [J]. Immunity, 2000, 12(1): 1-5.
[44] HARWOOD N E, BATISTA F D. Early events in B cell activation [J]. Annu Rev Immunol, 2010, 28: 185-210.
[45] RAWLINGS D J, METZLER G, WRAY-DUTRA M, et al. Altered B cell signalling in autoimmunity [J]. Nat Rev Immunol, 2017, 17(7): 421-36.
[46] NEMAZEE D. Mechanisms of central tolerance for B cells [J]. Nat Rev Immunol, 2017, 17(5): 281-94.
[47] ZOUALI M. The epigenetic landscape of B lymphocyte tolerance to self [J]. (1873-3468 (Electronic)).
[48] GARAUD S, LE DANTEC C, JOUSSE-JOULIN S, et al. IL-6 modulates CD5 expression in B cells from patients with lupus by regulating DNA methylation [J]. J Immunol, 2009, 182(9): 5623-32.
[49] BELVER L, DE YEBENES V G, RAMIRO A R. MicroRNAs prevent the generation of autoreactive antibodies [J]. Immunity, 2010, 33(5): 713-22.
[50] LUO Q, BHAMIDIPALLI S S, ECKERT G J, et al. Hypermethylation of miRNA-17-92 cluster in peripheral blood mononuclear cells in diabetic retinopathy [J]. Diabetes Metab Syndr, 2022, 16(2): 102390.
[51] WANG Y Z, TIAN F F, YAN M, et al. Delivery of an miR155 inhibitor by anti-CD20 single-chain antibody into B cells reduces the acetylcholine receptor-specific autoantibodies and ameliorates experimental autoimmune myasthenia gravis [J]. Clin Exp Immunol, 2014, 176(2): 207-21.
[52] BAO Y, CAO X. Epigenetic Control of B Cell Development and B-Cell-Related Immune Disorders [J]. Clin Rev Allergy Immunol, 2016, 50(3): 301-11.
[53] VELICHUTINA I, SHAKNOVICH R, GENG H, et al. EZH2-mediated epigenetic silencing in germinal center B cells contributes to proliferation and lymphomagenesis [J]. Blood, 2010, 116(24): 5247-55.
[54] CAGANOVA M, CARRISI C, VARANO G, et al. Germinal center dysregulation by histone methyltransferase EZH2 promotes lymphomagenesis [J]. J Clin Invest, 2013, 123(12): 5009-22.
[55] THOMAS K R, ALLENSPACH E J, CAMP N D, et al. Activated interleukin-7 receptor signaling drives B-cell acute lymphoblastic leukemia in mice [J]. Leukemia, 2022, 36(1): 42-57.
[56] IACOBUCCI I, PAPAYANNIDIS C, LONETTI A, et al. Cytogenetic and molecular predictors of outcome in acute lymphocytic leukemia: recent developments [J]. Curr Hematol Malig Rep, 2012, 7(2): 133-43.
[57] FRAUENFELD L, CASTREJON-DE-ANTA N, RAMIS-ZALDIVAR J E, et al. Diffuse large B-cell lymphomas in adults with aberrant coexpression of CD10, BCL6, and MUM1 are enriched in IRF4 rearrangements [J]. Blood Adv, 2022, 6(7): 2361-72.
[58] CERCHIETTI L C, HATZI K, CALDAS-LOPES E, et al. BCL6 repression of EP300 in human diffuse large B cell lymphoma cells provides a basis for rational combinatorial therapy [J]. J Clin Invest, 2010, 120(12): 4569-82.
[59] BASS B L, WEINTRAUB H. A Developmentally Regulated Activity That Unwinds Rna Duplexes [J]. Cell, 1987, 48(4): 607-13.
[60] EISENBERG E, LEVANON E Y. A-to-I RNA editing - immune protector and transcriptome diversifier [J]. Nat Rev Genet, 2018, 19(8): 473-90.
[61] LAMERS M M, VAN DEN HOOGEN B G, HAAGMANS B L. ADAR1: "Editor-in-Chief" of Cytoplasmic Innate Immunity [J]. Front Immunol, 2019, 10: 1763.
[62] LICHT K, JANTSCH M F. The Other Face of an Editor: ADAR1 Functions in Editing-Independent Ways [J]. Bioessays, 2017, 39(11).
[63] UGGENTI C, CROW Y J. Sort Your Self Out! [J]. Cell, 2018, 172(4): 640-2.
[64] ATHANASIADIS A, PLACIDO D, MAAS S, et al. The crystal structure of the Zbeta domain of the RNA-editing enzyme ADAR1 reveals distinct conserved surfaces among Z-domains [J]. J Mol Biol, 2005, 351(3): 496-507.
[65] MARSHALL P R, ZHAO Q, LI X, et al. Dynamic regulation of Z-DNA in the mouse prefrontal cortex by the RNA-editing enzyme Adar1 is required for fear extinction [J]. Nat Neurosci, 2020, 23(6): 718-29.
[66] SONG B, SHIROMOTO Y, MINAKUCHI M, et al. The role of RNA editing enzyme ADAR1 in human disease [J]. Wiley Interdiscip Rev RNA, 2021: e1665.
[67] SUN T, YU Y, WU X, et al. Decoupling expression and editing preferences of ADAR1 p150 and p110 isoforms [J]. Proc Natl Acad Sci U S A, 2021, 118(12).
[68] PATTERSON J B, SAMUEL C E. Expression and regulation by interferon of a double-stranded-RNA-specific adenosine deaminase from human cells: evidence for two forms of the deaminase [J]. Mol Cell Biol, 1995, 15(10): 5376-88.
[69] KAWAKUBO K, SAMUEL C E. Human RNA-specific adenosine deaminase (ADAR1) gene specifies transcripts that initiate from a constitutively active alternative promoter [J]. (0378-1119 (Print)).
[70] SINIGAGLIA K, WIATREK D, KHAN A, et al. ADAR RNA editing in innate immune response phasing, in circadian clocks and in sleep [J]. Biochim Biophys Acta Gene Regul Mech, 2019, 1862(3): 356-69.
[71] KEEGAN L P, MCGURK L, PALAVICINI J P, et al. Functional conservation in human and Drosophila of Metazoan ADAR2 involved in RNA editing: loss of ADAR1 in insects [J]. Nucleic Acids Res, 2011, 39(16): 7249-62.
[72] YANG L, ZHAO L, GAN Z, et al. Deficiency in RNA editing enzyme ADAR2 impairs regulated exocytosis [J]. FASEB J, 2010, 24(10): 3720-32.
[73] COSTA CRUZ P H, KATO Y, NAKAHAMA T, et al. A comparative analysis of ADAR mutant mice reveals site-specific regulation of RNA editing [J]. RNA, 2020, 26(4): 454-69.
[74] HERAUD-FARLOW J E, WALKLEY C R. What do editors do? Understanding the physiological functions of A-to-I RNA editing by adenosine deaminase acting on RNAs [J]. Open Biol, 2020, 10(7): 200085.
[75] ZHANG Y, WANG K, ZHAO Z, et al. ADAR3 expression is an independent prognostic factor in lower-grade diffuse gliomas and positively correlated with the editing level of GRIA2(Q607R) [J]. Cancer Cell Int, 2018, 18: 196.
[76] RAGHAVA KURUP R, OAKES E K, MANNING A C, et al. RNA binding by ADAR3 inhibits adenosine-to-inosine editing and promotes expression of immune response protein MAVS [J]. J Biol Chem, 2022, 298(9): 102267.
[77] SONG C, SAKURAI M, SHIROMOTO Y, et al. Functions of the RNA Editing Enzyme ADAR1 and Their Relevance to Human Diseases [J]. Genes (Basel), 2016, 7(12).
[78] CHUNG H, CALIS J J A, WU X, et al. Human ADAR1 Prevents Endogenous RNA from Triggering Translational Shutdown [J]. Cell, 2018, 172(4): 811-24 e14.
[79] SAMUEL C E. Adenosine deaminase acting on RNA (ADAR1), a suppressor of double-stranded RNA-triggered innate immune responses [J]. J Biol Chem, 2019, 294(5): 1710-20.
[80] TOMASELLI S, BONAMASSA B, ALISI A, et al. ADAR enzyme and miRNA story: a nucleotide that can make the difference [J]. Int J Mol Sci, 2013, 14(11): 22796-816.
[81] UEHATA T, TAKEUCHI O. RNA Recognition and Immunity-Innate Immune Sensing and Its Posttranscriptional Regulation Mechanisms [J]. Cells, 2020, 9(7).
[82] SOLOMON O, DI SEGNI A, CESARKAS K, et al. RNA editing by ADAR1 leads to context-dependent transcriptome-wide changes in RNA secondary structure [J]. Nat Commun, 2017, 8(1): 1440.
[83] KUNG C P, MAGGI L B, JR., WEBER J D. The Role of RNA Editing in Cancer Development and Metabolic Disorders [J]. Front Endocrinol (Lausanne), 2018, 9: 762.
[84] XU L D, OHMAN M. ADAR1 Editing and its Role in Cancer [J]. Genes (Basel), 2018, 10(1).
[85] SAGREDO E A, BLANCO A, SAGREDO A I, et al. ADAR1-mediated RNA-editing of 3'UTRs in breast cancer [J]. Biol Res, 2018, 51(1): 36.
[86] ZHANG T, YIN C, FEDOROV A, et al. ADAR1 masks the cancer immunotherapeutic promise of ZBP1-driven necroptosis [J]. Nature, 2022, 606(7914): 594-602.
[87] NAKANO M, NAKAJIMA M. Significance of A-to-I RNA editing of transcripts modulating pharmacokinetics and pharmacodynamics [J]. Pharmacol Ther, 2018, 181: 13-21.
[88] SONG Y, YANG W, FU Q, et al. irCLASH reveals RNA substrates recognized by human ADARs [J]. Nat Struct Mol Biol, 2020, 27(4): 351-62.
[89] CROW M K, OLFERIEV M, KIROU K A. Type I Interferons in Autoimmune Disease [J]. Annu Rev Pathol, 2019, 14: 369-93.
[90] LI Y A-O X, BANERJEE S, GOLDSTEIN S A, et al. Ribonuclease L mediates the cell-lethal phenotype of double-stranded RNA editing enzyme ADAR1 deficiency in a human cell line. LID - e25687 [pii] LID - 10.7554/eLife.25687 [doi] [J]. (2050-084X (Electronic)).
[91] VOGEL O A, HAN J, LIANG C Y, et al. The p150 Isoform of ADAR1 Blocks Sustained RLR signaling and Apoptosis during Influenza Virus Infection [J]. PLoS Pathog, 2020, 16(9): e1008842.
[92] ZHAO K, DU J, PENG Y, et al. LINE1 contributes to autoimmunity through both RIG-I- and MDA5-mediated RNA sensing pathways [J]. J Autoimmun, 2018, 90: 105-15.
[93] FITZGERALD K A, KAGAN J C. Toll-like Receptors and the Control of Immunity [J]. Cell, 2020, 180(6): 1044-66.
[94] KIM Y, PARK J, KIM S, et al. PKR Senses Nuclear and Mitochondrial Signals by Interacting with Endogenous Double-Stranded RNAs [J]. (1097-4164 (Electronic)).
[95] DRAPPIER M, SORGELOOS F, MICHIELS T. The OAS/RNaseL pathway and its inhibition by viruses [J]. Virologie (Montrouge), 2014, 18(5): 264-77.
[96] LI Y, BANERJEE S, GOLDSTEIN S A, et al. Ribonuclease L mediates the cell-lethal phenotype of double-stranded RNA editing enzyme ADAR1 deficiency in a human cell line [J]. Elife, 2017, 6.
[97] HARTNER J C, SCHMITTWOLF C, KISPERT A, et al. Liver disintegration in the mouse embryo caused by deficiency in the RNA-editing enzyme ADAR1 [J]. J Biol Chem, 2004, 279(6): 4894-902.
[98] MANNION N M, GREENWOOD S M, YOUNG R, et al. The RNA-editing enzyme ADAR1 controls innate immune responses to RNA [J]. Cell Rep, 2014, 9(4): 1482-94.
[99] LIDDICOAT B J, PISKOL R, CHALK A M, et al. RNA editing by ADAR1 prevents MDA5 sensing of endogenous dsRNA as nonself [J]. Science, 2015, 349(6252): 1115-20.
[100] LIDDICOAT B J, HARTNER J C, PISKOL R, et al. Adenosine-to-inosine RNA editing by ADAR1 is essential for normal murine erythropoiesis [J]. Exp Hematol, 2016, 44(10): 947-63.
[101] WALKLEY C R, KILE B T. Cell death following the loss of ADAR1 mediated A-to-I RNA editing is not effected by the intrinsic apoptosis pathway [J]. Cell Death Dis, 2019, 10(12): 913.
[102] BAJAD P, EBNER F, AMMAN F, et al. An internal deletion of ADAR rescued by MAVS deficiency leads to a minute phenotype [J]. Nucleic Acids Res, 2020, 48(6): 3286-303.
[103] MALATHI K, DONG B, GALE M, JR., et al. Small self-RNA generated by RNase L amplifies antiviral innate immunity [J]. Nature, 2007, 448(7155): 816-9.
[104] COSTA-REIS P, SULLIVAN K E. Monogenic lupus: it's all new! [J]. Curr Opin Immunol, 2017, 49: 87-95.
[105] HARTNER J C, WALKLEY C R, LU J, et al. ADAR1 is essential for the maintenance of hematopoiesis and suppression of interferon signaling [J]. Nat Immunol, 2008, 10(1): 109-15.
[106] DAOU S, TALUKDAR M, TANG J, et al. A phenolic small molecule inhibitor of RNase L prevents cell death from ADAR1 deficiency [J]. Proc Natl Acad Sci U S A, 2020, 117(40): 24802-12.
[107] VONGPIPATANA T, NAKAHAMA T, SHIBUYA T, et al. ADAR1 Regulates Early T Cell Development via MDA5-Dependent and -Independent Pathways [J]. J Immunol, 2020, 204(8): 2156-68.
[108] BAAL N, CUNNINGHAM S, OBERMANN H L, et al. ADAR1 Is Required for Dendritic Cell Subset Homeostasis and Alveolar Macrophage Function [J]. J Immunol, 2019, 202(4): 1099-111.
[109] KARKI R, SUNDARAM B, SHARMA B R, et al. ADAR1 restricts ZBP1-mediated immune response and PANoptosis to promote tumorigenesis [J]. Cell Rep, 2021, 37(3): 109858.
[110] YANG S, DENG P, ZHU Z, et al. Adenosine deaminase acting on RNA 1 limits RIG-I RNA detection and suppresses IFN production responding to viral and endogenous RNAs [J]. J Immunol, 2014, 193(7): 3436-45.
[111] OTA H, SAKURAI M, GUPTA R, et al. ADAR1 forms a complex with Dicer to promote microRNA processing and RNA-induced gene silencing [J]. Cell, 2013, 153(3): 575-89.
[112] YUTING K, DING D, IIZASA H. Adenosine-to-Inosine RNA Editing Enzyme ADAR and microRNAs [J]. Methods Mol Biol, 2021, 2181: 83-95.
[113] BAHN J H, AHN J, LIN X, et al. Genomic analysis of ADAR1 binding and its involvement in multiple RNA processing pathways [J]. Nat Commun, 2015, 6: 6355.
[114] SAKURAI M, SHIROMOTO Y, OTA H, et al. ADAR1 controls apoptosis of stressed cells by inhibiting Staufen1-mediated mRNA decay [J]. Nat Struct Mol Biol, 2017, 24(6): 534-43.
[115] RICE G I, KASHER P R, FORTE G M, et al. Mutations in ADAR1 cause Aicardi-Goutieres syndrome associated with a type I interferon signature [J]. Nat Genet, 2012, 44(11): 1243-8.
[116] NAKAHAMA T, KATO Y, SHIBUYA T, et al. Mutations in the adenosine deaminase ADAR1 that prevent endogenous Z-RNA binding induce Aicardi-Goutières-syndrome-like encephalopathy [J]. (1097-4180 (Electronic)).
[117] SONG B, SHIROMOTO Y, MINAKUCHI M, et al. The role of RNA editing enzyme ADAR1 in human disease [J]. Wiley Interdiscip Rev RNA, 2022, 13(1): e1665.
[118] VLACHOGIANNIS N I, GATSIOU A, SILVESTRIS D A, et al. Increased adenosine-to-inosine RNA editing in rheumatoid arthritis [J]. J Autoimmun, 2020, 106: 102329.
[119] ROTH S H, DANAN-GOTTHOLD M, BEN-IZHAK M, et al. Increased RNA Editing May Provide a Source for Autoantigens in Systemic Lupus Erythematosus [J]. Cell Rep, 2018, 23(1): 50-7.
[120] JIANG Q, ISQUITH J, ZIPETO M A, et al. Hyper-Editing of Cell-Cycle Regulatory and Tumor Suppressor RNA Promotes Malignant Progenitor Propagation [J]. Cancer Cell, 2019, 35(1): 81-94 e7.
[121] LIU H, GOLJI J, BRODEUR L K, et al. Tumor-derived IFN triggers chronic pathway agonism and sensitivity to ADAR loss [J]. Nat Med, 2019, 25(1): 95-102.
[122] BOUILLET P, METCALF D, HUANG D C, et al. Proapoptotic Bcl-2 relative Bim required for certain apoptotic responses, leukocyte homeostasis, and to preclude autoimmunity [J]. Science, 1999, 286(5445): 1735-8.
[123] MAURANO M, SNYDER J M, CONNELLY C, et al. Protein kinase R and the integrated stress response drive immunopathology caused by mutations in the RNA deaminase ADAR1 [J]. Immunity, 2021, 54(9): 1948-60 e5.
[124] WANG Q, MIYAKODA M, YANG W, et al. Stress-induced apoptosis associated with null mutation of ADAR1 RNA editing deaminase gene [J]. J Biol Chem, 2004, 279(6): 4952-61.
[125] KESAVARDHANA S, MALIREDDI R K S, KANNEGANTI T D. Caspases in Cell Death, Inflammation, and Pyroptosis [J]. (1545-3278 (Electronic)).
[126] OKUDA S, YAMADA T, HAMAJIMA M, et al. KEGG Atlas mapping for global analysis of metabolic pathways [J]. Nucleic Acids Res, 2008, 36(Web Server issue): W423-6.
[127] RUAN G X, LI Y, CHEN W, et al. The spliceosome component Usp39 controls B cell development by regulating immunoglobulin gene rearrangement [J]. Cell Rep, 2022, 38(6): 110338.
修改评论