[1] 赵峰, 王要武, 金玲, 等. 2022 年上半年全国建筑业发展统计分析[J]. 建筑, 2022(17): 14-19.
[2] 中华人民共和国住房和城乡建设部. 住房和城乡建设部办公厅关于 2020 年房屋市政工程生产安全事故情况的通报[EB/OL]. (2022-10-27). https://www.mohurd.gov.cn/gongkai/fdzdgknr/zfhcxjsbwj/202210/20221026_768565.html.
[3] 苏展. 建筑安全事故成因分析及预警管理研究[J]. 中华建设, 2022, 299(10): 33-35.
[4] 韦艳, 段重利, 梅丽, 等. 从第七次人口普查数据看新时代中国人口发展[J]. 西安财经大学学报, 2021, 34(05): 107-121.
[5] REBEKKA V, JULIAN S, FRANK S. Building Information Modeling (BIM) for existing buildings —Literature review and future needs[J]. Automation in Construction, 2014, 38: 109-127.
[6] 李朋昊, 李朱锋, 益田正, 等. 建筑机器人应用与发展[J]. 机械设计与研究, 2018, 34(06): 25-29.
[7] 于军琪, 曹建福, 雷小康. 建筑机器人研究现状与展望[J]. 自动化博览, 2016, 268(08):68-75.
[8] WIęCKOWSKI A.“JA-WA”- A wall construction system using unilateral material application with a mobile robot[J]. Automation in Construction, 2017, 83(10): 19-28.
[9] Mobile Robotic Tiling[EB/OL]. https://gramaziokohler.arch.ethz.ch/web/e/forschung/257.html.
[10] ASADI E, LI B, CHEN I. Pictobot: A Cooperative Painting Robot for Interior Finishing of Industrial Developments[J]. IEEE Robotics & Automation Magazine, 2018, 25(2): 82-94.
[11] Hephaestus - Drilling and bracket mounting robot[EB/OL]. https://www.nlinkrobotics.com/projects/hephaestus-drilling-and-bracket-mounting-robot.
[12] Husqvarna DXR 305[EB/OL]. https://www.husqvarnaconstruction.com/us/demolition-equipment/dxr305/.
[13] 周炎生. 建筑机器人发展与关键技术综述[J]. 机电信息, 2022(08): 109+111.
[14] LI B, USHIRODA K, YANG L, et al. Wall-climbing robot for non-destructive evaluation using impact-echo and metric learning SVM[J]. International Journal of Intelligent Robotics and Applications, 2017, 1: 255-270.
[15] LIM R S, LA H M, SHAN Z, et al. Developing a crack inspection robot for bridge maintenance[C]//2011 IEEE International Conference on Robotics and Automation. IEEE, 2011: 6288-6293.
[16] LOUPOS K, DOULAMIS A D, STENTOUMIS C, et al. Autonomous robotic system for tun nel structural inspection and assessment[J]. International Journal of Intelligent Robotics and Applications, 2018, 2: 43-66.
[17] OH J K, JANG G, OH S, et al. Bridge inspection robot system with machine vision[J]. Automation in Construction, 2009, 18(7): 929-941.
[18] XIONG X, ADAN A, AKINCI B, et al. Automatic creation of semantically rich 3D building models from laser scanner data[J]. Automation in construction, 2013, 31: 325-337.
[19] DAVTALAB O, KAZEMIAN A, KHOSHNEVIS B. Perspectives on a BIM-integrated software platform for robotic construction through Contour Crafting[J]. Automation in construction, 2018, 89: 13-23.
[20] DE OLIVEIRA J H E, LAGES W F. Robotized inspection of power lines with infrared vision[C]//2010 1st International Conference on Applied Robotics for the Power Industry. IEEE, 2010: 1-6.
[21] AMMOUCHE A, RISS J, BREYSSE D, et al. Image analysis for the automated study of microcracks in concrete[J]. Cement and Concrete Composites, 2001, 23(2).
[22] 耿飞, 解建光, 钱春香. 图像分析技术对混凝土裂缝的定量评价[J]. 混凝土, 2005(05): 78-80+87-94.
[23] ZHAO H, QIN G, WANG X. Improvement of canny algorithm based on pavement edge detection[J]. International Congress on Image and Signal Processing, 2010, 2: 964-967.
[24] ZALAMA E, GÓMEZ-GARCÍA-BERMEJO J, MEDINA R, et al. Road crack detection using visual features extracted by Gabor filters[J]. Computer-Aided Civil and Infrastructure Engineering, 2014, 29(5): 342-358.
[25] YAN R, KAYACAN E, CHEN I, et al. QuicaBot: Quality inspection and assessment robot[J].IEEE Transactions on Automation Science and Engineering, 2018, 16(2): 506-517.
[26] ZHANG L, YANG F, ZHANG Y D, et al. Road crack detection using deep convolutional neural network[J]. IEEE International Conference on Image Processing (ICIP), 2016: 3708-3712.
[27] WANG T, CHEN Y, QIAO M, et al. A fast and robust convolutional neural network-based defect detection model in product quality control[J]. The International Journal of Advanced Manufacturing Technology, 2018, 94(9): 3465-3471.
[28] LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[J]. IEEE Conference on Computer Vision and Pattern Recognition, 2015: 3431-3440.
[29] YANG X, LI H, YU Y, et al. Automatic pixel-level crack detection and measurement using fully convolutional network[J]. Computer-Aided Civil and Infrastructure Engineering, 2018, 33(12): 1090-1109.
[30] QIU L, WU X, YU Z. A high-efficiency fully convolutional networks for pixel-wise surface defect detection[J]. IEEE Access, 2019, 7: 15884-15893.
[31] BANG S, PARK S, KIM H. Encoder–decoder network for pixel-level road crack detection in black-box images[J]. Computer-Aided Civil and Infrastructure Engineering, 2019, 34(8): 713-727.
[32] XU L, HATSUTANI T, LIU X, et al. Pushing the Envelope of Thin Crack Detection[J]. CoRR, 2021, abs/2101.03326.
[33] REDMON J, DIVVALA S K, GIRSHICK R B, et al. You Only Look Once: Unified, Real-Time Object Detection[J]. CoRR, 2015, abs/1506.02640.
[34] 关于加快新型建筑工业化发展的若干意见[J]. 上海建材, 2021, 219(05): 1-4.
[35] CAMILLA F, VALERIO M, KILIAN F, et al. BIM-Integrated Collaborative Robotics for Application in Building Construction and Maintenance[J]. Robotics, 2020, 10(1): 2.
[36] SUZUKI S, et al. Topological structural analysis of digitized binary images by border following[J]. Computer Vision, Graphics, and Image Processing, 1985, 30(1): 32-46.
[37] 杨璟, 朱雷. 基于 RGB 颜色空间的彩色图像分割方法[J]. 计算机与现代化, 2010, 108(08):147-149+171.
[38] CANNY J. A computational approach to edge detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986(6): 679-698.
[39] MCCULLOCH W, PITTS W. A logical calculus of the ideas immanent in nervous activity[J]. The bulletin of mathematical biophysics, 1943, 5: 115-133.
[40] RUMELHART D, HINTON G, WILLIAMS R. Learning representations by back-propagating errors[J]. nature, 1986, 323: 533–536.
[41] CORTES C, VAPNIK V. Support-vector networks[J]. Machine Learning, 1995, 20: 273–297.
[42] GU J, WANG Z, KUEN J, et al. Recent advances in convolutional neural networks[J]. Pattern Recognition, 2018, 77: 354-377.
[43] HUBEL D, WIESEL T. Receptive fields and functional architecture of monkey striate cortex[J]. The Journal of physiology, 1968: 215-243.
[44] FUKUSHIMA K. Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position[J]. Biological Cybernetics, 1980, 36: 193–202.
[45] RUSSAKOVSKY O, DENG J, SU H, et al. ImageNet Large Scale Visual Recognition Challenge[J]. International Journal of Computer Vision, 2014, 115: 211-252.
[46] ZHENG Y, LIU Q, CHEN E, et al. Time Series Classification Using Multi-Channels Deep Convolutional Neural Networks[M]. Cham: Springer, 2014: 298–310.
[47] YU F, KOLTUN V. Multi-scale context aggregation by dilated convolutions[C]//International Conference on Learning Representations. 2016.
[48] MONTAVON G, ORR G B, MüLLER K R. Neural Networks: Tricks of the Trade[M]. 2nd ed.Berlin, Heidelberg: Springer, 2012: 9–48.
[49] NAIR V, HINTON G E. Rectified Linear Units Improve Restricted Boltzmann Machines[C]//Proceedings of the 27th International Conference on International Conference on Machine Learning. Madison, WI, USA: Omnipress, 2010: 807–814.
[50] MAAS A L, HANNUN A Y, NG A Y. Rectifier Nonlinearities Improve Neural Network Acous tic Models[C]//Proceedings of the International Conference on Machine Learning. 2013.
[51] WANG T, WU D J, COATES A, et al. End-to-end text recognition with convolutional neural networks[C]//Proceedings of the 21st International Conference on Pattern Recognition. 2012: 3304-3308.
[52] BOUREAU Y L, PONCE J, LECUN Y. A Theoretical Analysis of Feature Pooling in Visual Recognition[C]//Proceedings of the 27th International Conference on International Conference on Machine Learning. Madison, WI, USA: Omnipress, 2010: 111–118.
[53] HINTON G E, SRIVASTAVA N, KRIZHEVSKY A, et al. Improving neural networks by preventing co-adaptation of feature detectors[J]. CoRR, 2012, abs/1207.0580.
[54] IOFFE S, SZEGEDY C. Batch Normalization: Accelerating Deep Network Training by Reduc ing Internal Covariate Shift[C]//Lille, France: JMLR.org, 2015: 448–456.
[55] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[M]//IEEE Conference on Computer Vision and Pattern Recognition. 2016: 770-778.
[56] HE K, ZHANG X, REN S. Identity mappings in deep residual networks[C]//European conference on computer vision. Springer, 2016: 630-645.
[57] ZEILER M D, KRISHNAN D, TAYLOR G W, et al. Deconvolutional networks[C]//2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2010: 2528-2535.
[58] PyTorch[EB/OL]. https://pytorch.org/.
[59] WIJNHOVEN R, DE WITH P. Fast Training of Object Detection Using Stochastic Gradient Descent[C]//2010 20th International Conference on Pattern Recognition. 2010: 424-427.
[60] KINGMA D P, BA J. Adam: A Method for Stochastic Optimization[C]//BENGIO Y, LECUN Y. 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings. 2015.
[61] NEUBECK A, VAN GOOL L. Efficient Non-Maximum Suppression[C]//18th International Conference on Pattern Recognition: volume 3. 2006: 850-855.
[62] AGGARWAL N, KARL W C. Line detection in images through regularized Hough transform[J]. IEEE Transactions on Image Processing, 2006, 15(3): 582-591.
[63] DONG C, LOY C C, HE K, et al. Image Super-Resolution Using Deep Convolutional Networks[J]. CoRR, 2015, abs/1501.00092.
[64] GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative Adversarial Networks[J]. Commun. ACM, 2020, 63(11): 139–144.
[65] LEDIG C, THEIS L, HUSZAR F, et al. Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network[J]. CoRR, 2016, abs/1609.04802.
[66] WANG X, YU K, WU S, et al. ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks[J]. CoRR, 2018, abs/1809.00219.
[67] WANG X, XIE L, DONG C, et al. Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data[J]. 2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW), 2021: 1905-1914.
[68] FISCHLER M A, BOLLES R C. Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography[J]. Commun. ACM, 1981, 24(6): 381–395.
修改评论