[1] BERTSEKAS D P. Dynamic programming and optimal control 3rd edition, volume II[J]. Bel mont, MA: Athena Scientific, 2011.
[2] PAPADIMITRIOU C H, STEIGLITZ K. Combinatorial optimization: algorithms and com plexity[M]. Courier Corporation, 1998.
[3] HALIM A H, ISMAIL I. Combinatorial optimization: comparison of heuristic algorithms intravelling salesman problem[J]. Archives of Computational Methods in Engineering, 2019, 26(2): 367-380.
[4] VAN LAARHOVEN P J, AARTS E H, LENSTRA J K. Job shop scheduling by simulatedannealing[J]. Operations research, 1992, 40(1): 113-125.
[5] HANSEN M P. Use of substitute scalarizing functions to guide a local search based heuristic:The case of moTSP[J]. Journal of heuristics, 2000, 6(3): 419-431.
[6] VINYALS O, FORTUNATO M, JAITLY N. Pointer networks[J]. Advances in neural informa tion processing systems, 2015, 28.
[7] SUTSKEVER I, VINYALS O, LE Q V. Sequence to sequence learning with neural networks[J]. Advances in neural information processing systems, 2014, 27.
[8] BELLO I, PHAM H, LE Q V, et al. Neural combinatorial optimization with reinforcementlearning[A]. 2016.
[9] MNIH V, BADIA A P, MIRZA M, et al. Asynchronous methods for deep reinforcement learning[C]//International conference on machine learning. PMLR, 2016: 1928-1937.
[10] NAZARI M, OROOJLOOY A, SNYDER L, et al. Reinforcement learning for solving the vehiclerouting problem[J]. Advances in neural information processing systems, 2018, 31.
[11] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[J]. Advances inneural information processing systems, 2017, 30.
[12] DEUDON M, COURNUT P, LACOSTE A, et al. Learning heuristics for the TSP by policygradient[C]//International conference on the integration of constraint programming, artificialintelligence, and operations research. Springer, 2018: 170-181.
[13] CROES G A. A method for solving traveling-salesman problems[J]. Operations research, 1958,6(6): 791-812.
[14] KOOL W, VAN HOOF H, WELLING M. Attention, learn to solve routing problems![A]. 2018.
[15] IOFFE S, SZEGEDY C. Batch normalization: Accelerating deep network training by reducinginternal covariate shift[C]//International conference on machine learning. PMLR, 2015: 448-456.
[16] BA J L, KIROS J R, HINTON G E. Layer normalization[A]. 2016.
[17] XIN L, SONG W, CAO Z, et al. Step-wise deep learning models for solving routing problems[J]. IEEE Transactions on Industrial Informatics, 2020, 17(7): 4861-4871.
[18] XIN L, SONG W, CAO Z, et al. Multi-decoder attention model with embedding glimpse forsolving vehicle routing problems[C]//Proceedings of the AAAI Conference on Artificial Intel ligence: volume 35. 2021: 12042-12049.
[19] LI K, ZHANG T, WANG R, et al. Deep reinforcement learning for combinatorial optimization:Covering salesman problems[J]. IEEE Transactions on Cybernetics, in press, 2021.
[20] KWON Y D, CHOO J, KIM B, et al. POMO: Policy optimization with multiple optima for rein forcement learning[J]. Advances in Neural Information Processing Systems, 2020, 33: 21188-21198.
[21] KIM M, PARK J, PARK J. Sym-NCO: Leveraging Symmetricity for Neural CombinatorialOptimization[C]//Advances in Neural Information Processing Systems (NeurIPS). 2022.
[22] HELSGAUN K. An extension of the Lin-Kernighan-Helsgaun TSP solver for constrained trav eling salesman and vehicle routing problems[J]. Roskilde: Roskilde University, 2017: 24-50.
[23] CHEN X, TIAN Y. Learning to perform local rewriting for combinatorial optimization[J].Advances in Neural Information Processing Systems, 2019, 32.
[24] PERRON L, FURNON V. OR-Tools[CP/OL]. Google(2019-7-19). https://developers.google.com/optimization/.
[25] LU H, ZHANG X, YANG S. A learning-based iterative method for solving vehicle routingproblems[C]//International Conference on Learning Representations. 2019.
[26] WU Y, SONG W, CAO Z, et al. Learning improvement heuristics for solving routing problems..[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021.
[27] D O COSTA P R, RHUGGENAATH J, ZHANG Y, et al. Learning 2-opt heuristics for thetraveling salesman problem via deep reinforcement learning[C]//Asian Conference on MachineLearning. PMLR, 2020: 465-480.
[28] MA Y, LI J, CAO Z, et al. Learning to iteratively solve routing problems with dual-aspectcollaborative transformer[J]. Advances in Neural Information Processing Systems, 2021, 34:11096-11107.
[29] LI K, ZHANG T, WANG R. Deep reinforcement learning for multiobjective optimization[J].IEEE Transactions on Cybernetics, 2020, 51(6): 3103-3114.
[30] ZHANG Q, LI H. MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decompo sition[J/OL]. IEEE Transactions on Evolutionary Computation, 2007, 11(6): 712-731. DOI:10.1109/TEVC.2007.892759.
[31] DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm:NSGA-II[J/OL]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197. DOI:10.1109/4235.996017.
[32] WU H, WANG J, ZHANG Z. MODRL/D-AM: Multiobjective Deep Reinforcement Learn ing Algorithm Using Decomposition and Attention Model for Multiobjective Optimization[C]//International Symposium on Intelligence Computation and Applications. Springer, 2019: 575-589.
[33] ZHANG Y, WANG J, ZHANG Z, et al. MODRL/D-EL: Multiobjective Deep ReinforcementLearning with Evolutionary Learning for Multiobjective Optimization[C]//2021 InternationalJoint Conference on Neural Networks (IJCNN). IEEE, 2021: 1-8.
[34] SHAO Y, LIN J C W, SRIVASTAVA G, et al. Multi-Objective Neural Evolutionary Algo rithm for Combinatorial Optimization Problems[J]. IEEE Transactions on Neural Networksand Learning Systems, 2021.
[35] ZHANG Z, WU Z, ZHANG H, et al. Meta-Learning-Based Deep Reinforcement Learning forMultiobjective Optimization Problems[J]. IEEE Transactions on Neural Networks and LearningSystems, in press, 2022.
[36] SUTTON R S, BARTO A G. Reinforcement learning: An introduction[M]. MIT press, 2018.
[37] WILLIAMS R J. Simple statistical gradient-following algorithms for connectionist reinforce ment learning[J]. Machine learning, 1992, 8(3): 229-256.
[38] SCHULMAN J, MORITZ P, LEVINE S, et al. High-dimensional continuous control usinggeneralized advantage estimation[A]. 2015.
[39] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedingsof the IEEE conference on computer vision and pattern recognition. 2016: 770-778.
[40] NAIR V, HINTON G E. Rectified linear units improve restricted Boltzmann machines[C]//International Conference on Machine Learning. 2010.
[41] MIETTINEN K. Nonlinear multiobjective optimization: volume 12[M]. Springer Science &Business Media, 2012.
[42] MA X, YU Y, LI X, et al. A Survey of Weight Vector Adjustment Methods for Decomposition Based Multiobjective Evolutionary Algorithms[J/OL]. IEEE Transactions on EvolutionaryComputation, 2020, 24(4): 634-649. DOI: 10.1109/TEVC.2020.2978158.
[43] WANG Z, ONG Y S, SUN J, et al. A generator for multiobjective test problems with difficult to-approximate Pareto front boundaries[J]. IEEE Transactions on Evolutionary Computation,2019, 23(4): 556-571.
[44] ZITZLER E, THIELE L. Multiobjective evolutionary algorithms: a comparative case study andthe strength Pareto approach[J]. IEEE transactions on Evolutionary Computation, 1999, 3(4):257-271.
[45] HANSEN M P, JASZKIEWICZ A. Evaluating the quality of approximations to the non dominated set[M]. Citeseer, 1994.
[46] KORTE B H, VYGEN J, KORTE B, et al. Combinatorial optimization: volume 1[M]. Springer,2011.
[47] BENGIO Y, LODI A, PROUVOST A. Machine learning for combinatorial optimization: amethodological tour d’horizon[J]. European Journal of Operational Research, 2021, 290(2):405-421.
[48] VECERIK M, HESTER T, SCHOLZ J, et al. Leveraging demonstrations for deep reinforcementlearning on robotics problems with sparse rewards[A]. 2017.
[49] HARE J. Dealing with sparse rewards in reinforcement learning[A]. 2019.
[50] LASKIN M, LEE K, STOOKE A, et al. Reinforcement learning with augmented data[J]. Ad vances in neural information processing systems, 2020, 33: 19884-19895.
[51] JOSHI C K, CAPPART Q, ROUSSEAU L M, et al. Learning TSP requires rethinking general ization[A]. 2020.
[52] JOSHI C K, LAURENT T, BRESSON X. An efficient graph convolutional network techniquefor the travelling salesman problem[A]. 2019.
[53] MILAN A, REZATOFIGHI S H, GARG R, et al. Data-driven approximations to NP-hard prob lems[C]//Thirty-first AAAI conference on artificial intelligence. 2017.
[54] FU Z H, QIU K B, ZHA H. Generalize a Small Pre-trained Model to Arbitrarily Large TSPInstances[C]//AAAI conference on artificial intelligence. 2021.
[55] HUDSON B, LI Q, MALENCIA M, et al. Graph Neural Network Guided Local Search for theTraveling Salesperson Problem[A]. 2021.
[56] KOOL W, VAN HOOF H, GROMICHO J, et al. Deep Policy Dynamic Programming for VehicleRouting Problems[A]. 2021.
[57] KHALIL E, DAI H, ZHANG Y, et al. Learning combinatorial optimization algorithms overgraphs[J]. Advances in Neural Information Processing Systems, 2017, 30.
[58] MA Q, GE S, HE D, et al. Combinatorial optimization by graph pointer networks and hierar chical reinforcement learning[A]. 2019.
[59] KIM M, PARK J, et al. Learning collaborative policies to solve NP-hard routing problems[C]//Advances in Neural Information Processing Systems (NeurIPS). 2021.
[60] SHORTEN C, KHOSHGOFTAAR T M. A survey on image data augmentation for deep learning[J]. Journal of big data, 2019, 6(1): 1-48.
[61] FENG S Y, GANGAL V, WEI J, et al. A survey of data augmentation approaches for NLP[A].2021.
[62] GEISLER S, SOMMER J, SCHUCHARDT J, et al. Generalization of Neural CombinatorialSolvers Through the Lens of Adversarial Robustness[C]//International Conference on LearningRepresentations (ICLR). 2022.
[63] THOMAS N, SMIDT T, KEARNES S, et al. Tensor field networks: Rotation-and translation equivariant neural networks for 3d point clouds[A]. 2018.
[64] SATORRAS V G, HOOGEBOOM E, WELLING M. E (n) equivariant graph neural networks[C]//International Conference on Machine Learning (ICML). 2021: 9323-9332.
[65] APPLEGATE D, BIXBY R, CHVATAL V, et al. Concorde TSP solver[Z]. 2006.
[66] KOTARY J, FIORETTO F, VAN HENTENRYCK P. Learning hard optimization problems: Adata generation perspective[J]. Advances in Neural Information Processing Systems, 2021, 34:24981-24992.
[67] REINELT G. TSPLIB—A traveling salesman problem library[J]. ORSA journal on computing,1991, 3(4): 376-384.
[68] Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual[EB/OL]. 2022. https://www.gurobi.com.
[69] HOTTUNG A, BHANDARI B, TIERNEY K. Learning a latent search space for routing prob lems using variational autoencoders[C]//International Conference on Learning Representations.2020.
[70] MANCHANDA S, MITTAL A, DHAWAN A, et al. Learning heuristics over large graphs viadeep reinforcement learning[A]. 2019.
[71] BELOBORODOV D, ULANOV A E, FOERSTER J N, et al. Reinforcement learning enhancedquantum-inspired algorithm for combinatorial optimization[J]. Machine Learning: Science andTechnology, 2020, 2(2): 025009.
[72] FENG L, HUANG Y, ZHOU L, et al. Explicit evolutionary multitasking for combinatorialoptimization: A case study on capacitated vehicle routing problem[J]. IEEE Transactions onCybernetics, 2020, 51(6): 3143-3156.
[73] XU Y, FANG M, CHEN L, et al. Reinforcement Learning With Multiple Relational Attentionfor Solving Vehicle Routing Problems[J]. IEEE Transactions on Cybernetics, 2021.
[74] WANG H, JIN Y. A random forest-assisted evolutionary algorithm for data-driven constrainedmultiobjective combinatorial optimization of trauma systems[J]. IEEE Transactions on Cyber netics, 2018, 50(2): 536-549.
[75] CAI X, XIA C, ZHANG Q, et al. The collaborative local search based on dynamic-constraineddecomposition with grids for combinatorial multiobjective optimization[J]. IEEE Transactionson Cybernetics, 2019, 51(5): 2639-2650.
[76] WANG Z, ZHEN H L, DENG J, et al. Multiobjective optimization-aided decision-makingsystem for large-scale manufacturing planning[J]. IEEE Transactions on Cybernetics, 2022, 52(8): 8326-8339.
[77] HICHAM E H, SAID B, JAMAL B. Multi-objective optimization using genetic algorithms inMOTSP (CO2 Emissions)[J]. International Journal of Artificial Intelligence and Application(IJAIA), 2015, 6(5): 35-50.
[78] TEZCANER D, KÖKSALAN M. An interactive algorithm for multi-objective route planning[J]. Journal of optimization theory and applications, 2011, 150(2): 379-394.
[79] GARCÍA-MARTÍNEZ C, CORDÓN O, HERRERA F. A taxonomy and an empirical analysisof multiple objective ant colony optimization algorithms for the bi-criteria TSP[J]. EuropeanJournal of Operational Research, 2007, 180(1): 116-148.
[80] PAQUETE L, CHIARANDINI M, STÜTZLE T. Pareto local optimum sets in the biobjec tive traveling salesman problem: An experimental study[M]//Metaheuristics for MultiobjectiveOptimisation. Springer, 2004: 177-199.
[81] PAQUETE L, STÜTZLE T. A two-phase local search for the biobjective traveling salesmanproblem[C]//International Conference on Evolutionary Multi-Criterion Optimization. Springer,2003: 479-493.
[82] LUST T, TEGHEM J. The multiobjective traveling salesman problem: a survey and a newapproach[M]//Advances in Multi-Objective Nature Inspired Computing. Springer, 2010: 119-141.
[83] JASZKIEWICZ A. Genetic local search for multi-objective combinatorial optimization[J]. Eu ropean journal of operational research, 2002, 137(1): 50-71.
[84] KUMAR R, SINGH P. Pareto evolutionary algorithm hybridized with local search for biobjec tive TSP[M]//Hybrid Evolutionary Algorithms. Springer, 2007: 361-398.
[85] JASZKIEWICZ A, ZIELNIEWICZ P. Pareto memetic algorithm with path relinking for bi objective traveling salesperson problem[J]. European Journal of Operational Research, 2009,193(3): 885-890
[86] JIANG S, YANG S. A strength Pareto evolutionary algorithm based on reference direction formultiobjective and many-objective optimization[J]. IEEE Transactions on Evolutionary Com putation, 2017, 21(3): 329-346.
[87] BADER J, ZITZLER E. HypE: An algorithm for fast hypervolume-based many-objective opti mization[J]. Evolutionary computation, 2011, 19(1): 45-76.
[88] HERNÁNDEZ GÓMEZ R, COELLO COELLO C A. Improved metaheuristic based on theR2 indicator for many-objective optimization[C]//Proceedings of the 2015 annual conferenceon genetic and evolutionary computation. 2015: 679-686.
[89] LI K, DEB K, ZHANG Q, et al. An evolutionary many-objective optimization algorithm basedon dominance and decomposition[J]. IEEE transactions on evolutionary computation, 2014, 19(5): 694-716.
[90] WANG R, ZHOU Z, ISHIBUCHI H, et al. Localized weighted sum method for many-objectiveoptimization[J]. IEEE Transactions on Evolutionary Computation, 2016, 22(1): 3-18.
[91] CHENG R, JIN Y, OLHOFER M, et al. A reference vector guided evolutionary algorithm formany-objective optimization[J]. IEEE Transactions on Evolutionary Computation, 2016, 20(5):773-791.
[92] CAI X, XIAO Y, LI M, et al. A grid-based inverted generational distance for multi/many objective optimization[J]. IEEE Transactions on Evolutionary Computation, 2020, 25(1): 21-34.
[93] LIU H L, GU F, ZHANG Q. Decomposition of a multiobjective optimization problem into anumber of simple multiobjective subproblems[J]. IEEE transactions on evolutionary computa tion, 2013, 18(3): 450-455.
[94] TIAN Y, FENG Y, WANG C, et al. A large-scale combinatorial many-objective evolutionaryalgorithm for intensity-modulated radiotherapy planning[J]. IEEE Transactions on EvolutionaryComputation, 2022, 26(6): 1511-1525.
[95] AN Y, CHEN X, GAO K, et al. Multiobjective flexible job-shop rescheduling with new jobinsertion and machine preventive maintenance[J]. IEEE Transactions on Cybernetics, in press,2022.
[96] HOU Y, WU Y, HAN H. Multi-Objective Differential Evolution Algorithm Balancing MultipleStakeholders for Low-Carbon Order Scheduling in E-Waste Recycling[J]. IEEE Transactionson Evolutionary Computation, in press, 2023.
[97] CAI X, SUN Q, LI Z, et al. Cooperative coevolution with knowledge-based dynamic variabledecomposition for bilevel multiobjective optimization[J]. IEEE Transactions on EvolutionaryComputation, 2022, 26(6): 1553-1565.
[98] WAN Y, ZHONG Y, MA A, et al. An accurate UAV 3-D path planning method for disas ter emergency response based on an improved multiobjective swarm intelligence algorithm[J].IEEE Transactions on Cybernetics, in press, 2022.
[99] WANG S, MEI Y, ZHANG M. A Multi-Objective Genetic Programming Algorithm with 𝛼dominance and Archive for Uncertain Capacitated Arc Routing Problem[J]. IEEE Transactionson Evolutionary Computation, in press, 2022.
[100] LIU W, WANG R, ZHANG T, et al. Hybridization of evolutionary algorithm and deep re inforcement learning for multi-objective orienteering optimization[J]. IEEE Transactions onEvolutionary Computation, in press, 2022.
[101] HOU Y, WU Y, HAN H. Multistate-constrained multiobjective differential evolution algorithmwith variable neighborhood strategy[J]. IEEE Transactions on Cybernetics, in press, 2022.
[102] CAI X, WANG K, MEI Y, et al. Decomposition-based Lin-Kernighan Heuristic with Neigh borhood Structure Transfer for Multi/Many-objective Traveling Salesman Problem[J]. IEEETransactions on Evolutionary Computation, in press, 2022.
[103] ISHIBUCHI H, SETOGUCHI Y, MASUDA H, et al. Performance of decomposition-basedmany-objective algorithms strongly depends on Pareto front shapes[J]. IEEE Transactions onEvolutionary Computation, 2017, 21(2): 169-190.
[104] ROSENBAUM C, KLINGER T, RIEMER M. Routing networks: Adaptive selection of non linear functions for multi-task learning[A]. 2017.
[105] SHI J, ZHANG Q, SUN J. PPLS/D: Parallel Pareto local search based on decomposition[J].IEEE Transactions on Cybernetics, 2018, 50(3): 1060-1071.
[106] DAVIS L, et al. Applying adaptive algorithms to epistatic domains.[C]//IJCAI: volume 85.Citeseer, 1985: 162-164.
[107] TIAN Y, CHENG R, ZHANG X, et al. PlatEMO: A MATLAB platform for evolutionarymulti-objective optimization [educational forum][J]. IEEE Computational Intelligence Mag azine, 2017, 12(4): 73-87.
[108] LI J, XIN L, CAO Z, et al. Heterogeneous attentions for solving pickup and delivery problemvia deep reinforcement learning[J]. IEEE Transactions on Intelligent Transportation Systems,2021, 23(3): 2306-2315.
[109] ZHAO J, MAO M, ZHAO X, et al. A hybrid of deep reinforcement learning and local searchfor the vehicle routing problems[J]. IEEE Transactions on Intelligent Transportation Systems,2020, 22(11): 7208-7218.
[110] JAMES J, YU W, GU J. Online vehicle routing with neural combinatorial optimization and deepreinforcement learning[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(10): 3806-3817.
[111] SHI J, GAO Y, WANG W, et al. Operating electric vehicle fleet for ride-hailing services withreinforcement learning[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 21(11): 4822-4834.
[112] PAULO R D O, RHUGGENAATH J, ZHANG Y, et al. Learning 2-opt Local Search for theTraveling Salesman Problem[J]. BNAIC/BeneLearn 2020, 2020: 390.
[113] EHRGOTT M, GANDIBLEUX X. Multiobjective combinatorial optimization—theory,methodology, and applications[M]//Multiple criteria optimization: State of the art annotatedbibliographic surveys. Springer, 2003: 369-444.
[114] GHORAI C, SHAKHARI S, BANERJEE I. A SPEA-based multimetric routing protocol forintelligent transportation systems[J]. IEEE Transactions on Intelligent Transportation Systems,2020, 22(11): 6737-6747.
[115] SARKER A, SHEN H, STANKOVIC J A. MORP: Data-driven multi-objective route plan ning and optimization for electric vehicles[J]. Proceedings of the ACM on Interactive, Mobile,Wearable and Ubiquitous Technologies, 2018, 1(4): 1-35.
[116] KINGMA D P, BA J. Adam: A method for stochastic optimization[A]. 2014.
[117] JASZKIEWICZ A. On the performance of multiple-objective genetic local search on the 0/1knapsack problem-a comparative experiment[J]. IEEE Transactions on Evolutionary Computa tion, 2002, 6(4): 402-412
修改评论