[1] IMMERZEEL W W, VAN BEEK L P H, BIERKENS M F P. Climate change will affect the Asian water towers[J]. Science, 2010, 328(5984): 1382-1385.
[2] 王晓明, 张靖琳, 刘世伟, 等. “亚洲水塔”在高亚地区的社会经济作用[J]. 中国科学院院刊, 2019, 34(11): 1332-1340.
[3] IMMERZEEL W W, LUTZ A F, ANDRADE M, et al. Importance and vulnerability of the world’s water towers. Nature, 2020, 577(7790): 364-369.
[4] YANG K, WU H, QIN J, et al. Recent climate changes over the Qinghai-Tibetan Plateau and their impacts on energy and water cycle: A review[J]. Global and Planetary Change, 2014, 112: 79-91.
[5] YAO T, BOLACH T, CHEN D, et al. The imbalance of the Asian water tower[J]. Nature Reviews Earth & Environment, 2022, 3(1): 618-632.
[6] LIU X, CHEN B. Climatic warming in the Qinghai-Tibetan Plateau during recent decades. International Journal of Climatology: A Journal of the Royal Meteorological Society, 2020, 20(14): 1729-1742.
[7] 孔冬冬, 张强, 黄文琳, 等. 1982-2013年青藏高原植被物候变化及气象因素影响[J]. 地理学报, 2017, 72(1): 39-52.
[8] 李韧, 赵林, 丁永建, 等. 近40a来青藏高原地区总辐射变化特征分析[J]. 冰川冻土, 2012, 34(6): 1319-1327.
[9] YU L, ZHANG M, WANG L, et al. Variability of surface solar radiation under clear skies over Qinghai-Tibetan Plateau: Role of aerosols and water vapor[J]. Atmospheric Environment, 2022, 287: 119286.
[10] ZOU Y, KUANG X, FENG Y, et al. Solid water melt dominates the increase of total groundwater storage in the Qinghai-Tibetan Plateau[J]. Geophysical Research Letters, 2022, 49(18): e2022GL100092.
[11] SYED T H, FAMIGLIETTI J S, RODELL M, et al. Analysis of terrestrial water storage changes from GRACE and GLDAS[J]. Water Resources Research, 2008, 44(2): W02433.
[12] 姚檀栋, 邬光剑, 徐柏青, 等. “亚洲水塔”变化与影响[J]. 中国科学院院刊, 2019, 34(11): 1203-1209.
[13] LI X, LONG D, SCANLON B R, et al. Climate change threatens terrestrial water storage over the Qinghai-Tibetan Plateau[J]. Nature Climate Change, 2022, 12(9): 801-807.
[14] 胡宝怡, 王磊. 陆地水储量变化及其归因: 研究综述及展望[J]. 水利水电技术(中英文), 2021, 52(5):13-25.
[15] BIERKENS M F P. Global hydrology 2015: State, trends, and directions[J]. Water Resources Research, 2015, 51(7): 4923-4947.
[16] XIE J, XU Y P, GUO Y, et al. Understanding the impact of climatic variability on terrestrial water storage in the Qinghai-Tibetan Plateau of China[J]. Hydrological Sciences Journal, 2022, 67(6): 963-978.
[17] WAN J, CHEN X, HU Q, et al. Responses of terrestrial water storage to climate variation in the Qinghai-Tibetan Plateau[J]. Journal of Hydrology, 2020, 584: 124652.
[18] YAN Y, YOU Q, WU F, et al. Surface mean temperature from the observational stations and multiple reanalyses over the Qinghai-Tibetan Plateau[J]. Climate Dynamics, 2020, 55: 2405-2419.
[19] YOU Q, JIANG Z, MOORE G W K, et al. Revisiting the relationship between observed warming and surface pressure in the Qinghai-Tibetan Plateau[J]. Journal of Climate, 2017, 30(5): 1721-1737.
[20] GUO D, WANG H. The significant climate warming in the northern Tibetan Plateau and its possible causes[J]. International Journal of Climatology, 2012, 32(12): 1775-1781.
[21] YOU Q , KANG S , AGUILAR E, et al. Changes in daily climate extremes in China and their connection to the large scale atmospheric circulation during 1961-2003[J]. Climate Dynamics, 2011, 36: 2399-2417.
[22] KANG S, XU Y, YOU Q, et al. Review of climate and cryospheric change in the Qinghai-Tibetan Plateau[J]. Environmental research letters, 2010, 5(1): 015101.
[23] YOU Q, MIN J, JIAO Y, et al. Observed trend of diurnal temperature range in the Qinghai-Tibetan Plateau in recent decades[J]. International Journal of Climatology, 2016, 36(6): 2633-2643.
[24] YOU Q, CAI Z, PEPIN N, et al. Warming amplification over the Arctic Pole and Third Pole: Trends, mechanisms and consequences[J]. Earth-Science Reviews, 2021, 217: 103625.
[25] YOU Q, CHEN D, WU F, et al. Elevation dependent warming over the Qinghai-Tibetan Plateau: Patterns, mechanisms and perspectives[J]. Earth-Science Reviews, 2020, 210: 103349.
[26] LIU Y, WU G, HONG J, et al. Revisiting Asian monsoon formation and change associated with Tibetan Plateau forcing: II. Change[J]. Climate Dynamics, 2012, 39: 1183-1195.
[27] 许建伟, 高艳红, 彭保发, 等. 1979-2016年青藏高原降水的变化特征及成因分析[J]. 高原气象, 2020, 39(2): 234-244.
[28] YAO T, MASSON-DELMOTTE V, GAO J, et al. A review of climatic controls on δ18O in in precipitation over the Qinghai-Tibetan Plateau: Observations and simulations[J]. Reviews of Geophysics, 2013, 51(4): 525-548.
[29] GAO J, YAO T, MASSON-DELMOTTE V, et al. Collapsing glaciers threaten Asia’s water supplies[J]. Nature, 2019, 565(7737): 19-21.
[30] 汤秋鸿, 刘宇博, 张弛, 等. 青藏高原及其周边地区降水的水汽来源变化研究进展[J]. 大气科学学报, 2020, 43(6): 1002-1009.
[31] YU L, ZHANG M, WANG L, et al. Variability of surface solar radiation under clear skies over Qinghai-Tibetan Plateau: Role of aerosols and water vapor[J]. Atmospheric Environment, 2022, 287: 119286.
[32] 唐信英, 宋云帆, 王鸽, 等. 1970-2020年青藏高原近地面风速时空变化特征[J]. 应用与环境生物学报, 2022, 28(4): 844-850.
[33] LIU Y, ZENG Z, XU R, et al. Increases in China’s wind energy production from the recovery of wind speed since 2012[J]. Environmental Research Letters, 2022, 17(11): 114035.
[34] SWENSON S, YEH P J F, WSHR J, et al. A comparison of terrestrial water storage variations from GRACE with in situ measurements from Illinois[J]. Geophysical Research Letters, 2006, 33(16): L16401.
[35] 曹艳萍, 南卓铜. GRACE重力卫星数据的水文应用综述[J]. 遥感技术与应用, 2011, 26(5): 543-553.
[36] WANG J, CHEN X, HU Q, et al. Responses of terrestrial water storage to climate variation in the Qinghai-Tibetan Plateau[J]. Journal of Hydrology, 2020, 584: 124652.
[37] 文汉江, 黄振威, 王友雷, 等. 青藏高原及其周边地区水储量变化的独立成分分析[J]. 测绘学报, 2016, 45(1): 9-15.
[38] MENG F, SU F, LI Y, et al. Changes in terrestrial water storage during 2003-2014 and possible causes in Tibetan Plateau[J]. Journal of Geophysical Research: Atmospheres, 2019, 124(6): 2909-2931.
[39] 陈鹤, 刘俊国, 王鹏飞, 等. 气候变化对青藏高原陆地水储量的影响[J]. 中国农村水利水电, 2023, (4):152-157.
[40] JING W, ZHANG P, ZHAO X. A comparison of different GRACE solutions in terrestrial water storage trend estimation over Tibetan Plateau[J]. Scientific Reports, 2019, 9(1): 1765.
[41] SYED T H, FAMIGLIETTI J S, RODELL M, et al. Analysis of terrestrial water storage changes from GRACE and GLDAS[J]. Water Resources Research, 2008, 44(2): 2006WR005779.
[42] 韩煜娜, 左德鹏, 王国庆, 等. 变化环境下青藏高原陆地水储量演变格局及归因[J]. 水资源保护, 2022, 38(6): 1-8.
[43] ZHU Z, PIAO S, MYNENI R B, et al. Greening of the Earth and its drivers[J]. Nature Climate Change, 2016, 6(8): 791-795.
[44] 黄春林, 侯金亮, 李维德, 等. 深度学习融合遥感大数据的陆地水文数据同化:进展与关键科学问题[J]. 地球科学进展, 2023, 38(05): 441-452.
[45] 刘时银, 姚晓军, 郭万钦, 等. 基于第二次冰川编目的中国冰川现状[J]. 地理学报, 2015, 70(1): 3-16.
[46] 王宁练, 贺建桥, 蒲健辰, 等. 近50年来祁连山七一冰川平衡线高度变化研究[J]. 科学通报, 2010, 55(32): 3107-3115.
[47] 叶万花, 王飞腾, 李忠勤, 等. 高亚洲定位监测冰川平衡线高度时空分布特征研究[J]. 冰川冻土, 2016, 38(06): 1459-1469.
[48] 王宁练, 姚檀栋, 徐柏青, 等. 全球变暖背景下青藏高原及周边地区冰川变化的时空格局与趋势及影响[J]. 中国科学院院刊, 2019, 34(11): 1220-1232.
[49] HEWITT K. The Karakoram anomaly? Glacier expansion and the elevation effect, Karakoram Himalaya[J]. Mountain Research and Development, 2005, 25(4): 332-340.
[50] ZEMP M, NUSSBAUMER S U, GARTNER-ROER I, et al. Global glacier change bulletin no. 2[M]. Switzerland, World Glacier Monitoring Service, 2017.
[51] NECKEL N, KROPČEK J, BOLCH T, et al. Glacier mass changes on the Qinghai-Tibetan Plateau 2003-2009 derived from ICESat laser altimetry measurements[J]. Environmental Research Letters, 2014, 9(9): 468-475.
[52] MAURER J M, SCHAEFER J M, RUPPER S, et al. Acceleration of ice loss across the Himalayas over the past 40 years[J]. Science Advance, 2019, 5(6): eaav7266.
[53] CHEN A, WANG N, LI Z, et al. Region-wide glacier mass budgets for the Tanggula Mountains between 1969 and 2015 derived from remote sensing data[J]. Arctic Antarctic & Alpine Research, 2017, 49(4): 551-568.
[54] GARDELLE J, BERTHIER E, ARNAUD Y, et al. Region-wide glacier mass balances over the Pamir-Karakoram-Himalaya during 1999-2011[J]. The Cryosphere, 2013, 7(4): 1263-1286.
[55] ZHOU Y, LI Z, LI J, et al. Geodetic glacier mass balance (1975- 1999) in the central Pamir using the SRTM DEM and KH-9 imagery[J]. Journal of Glaciology, 2019, 65(250): 309-320.
[56] ZHOU Y, LI Z, LI J, et al. Glacier mass balance in the Qinghai Tibet Plateau and its surroundings from the mid-1970s to 2000 based on Hexagon KH-9 and SRTM DEMs[J]. Remote Sensing of Environment, 2018, 210: 96-112.
[57] 车涛, 郝晓华, 戴礼云, 等. 青藏高原积雪变化及其影响[J]. 中国科学院院刊, 2019, 34(11): 1247-1253.
[58] CHE T, LI X, JIN R, et al. Snow depth derived from passive microwave remote-sensing data in China[J]. Annals of Glaciology, 2008, 49: 145-154.
[59] 姜琪, 罗斯琼, 文小航, 等. 1961-2014年青藏高原积雪时空特征及其影响因[J]. 高原气象, 2020, 39(1): 24-36.
[60] 张廷军, 车涛, 等. 北半球积雪及其变化[M], 北京: 科学出版社, 2019.
[61] 肖林. 北半球雪深数据时空一致性与精度评估及其融合研究[D], 中国科学院大学, 2019: 1-13.
[62] HALL A. The role of surface albedo feedback in climate[J]. Journal of Climate, 2004, 17(7): 1550-1568.
[63] XIAO L, CHE T, CHEN L, et al. Quantifying snow albedo radiative forcing and its Feedback during 2003-2016[J]. Remote Sensing, 2017, 9(9): 883.
[64] HADDELAND I, HEINKE J, BIEMANS H, et al. Global water resources affected by human interventions and climate change[J]. Proceedings of the National Academy of Sciences, 2014, 111(9): 3251-3256.
[65] ZHAO Q, ZHANG S, DING Y J, et al. Modeling hydrologic response to climate change and shrinking glaciers in the highly glacierized Kunma Like River Catchment, Central Tian Shan[J]. Journal of Hydrometeorology, 2015, 16(6): 2383-2402.
[66] 秦大河, 姚檀栋, 丁永建, 等. 冰冻圈科学体系的建立及其意义[J]. 中国科学院院刊, 2020, 35(04): 394-406.
[67] 秦大河. 冰冻圈科学概论(修订版)[M]. 北京: 科学出版社, 2018.
[68] 丁永建, 张世强, 吴锦奎, 等. 中国冰冻圈水文过程变化研究新进展[J]. 水科学进展, 2020, 31(05): 690-702.
[69] CUO L, ZHAN Y, ZHU F, et al. Characteristics and changes of streamflow on the Qinghai-Tibetan Plateau: A review[J]. Journal of Hydrology: Regional Studies, 2014, 2: 49-68.
[70] OERLEMANS J, ANDRESON B, HUBBARD A, et al. Modelling the response of glaciers to climate warming[J]. Climate Dynamics, 1998, 14: 267-274.
[71] 张勇, 刘时银. 度日模型在冰川与积雪研究中的应用进展[J]. 冰川冻土, 2006, (01): 101-107.
[72] HOCK R. A distributed temperature-index ice-and snowmelt model including potential direct solar radiation[J]. Journal of glaciology. 1999, 45(149): 101-111.
[73] PELLICCIOTTI F, BROCK B, STRASSER U, et al. An enhanced temperature-index glacier melt model including the shortwave radiation balance: development and testing for Haut Glacier d’Arolla, Switzerland[J]. Journal of Glaciology, 2005, 51(175): 573-587.
[74] ARENDT A, SHARP M. Energy balance measurements on a Canadian high Arctic glacier and their implications for mass[C]//Interactions Between the Cryosphere, Climate and Greenhouse Gases: Proceedings of an International Symposium Held During IUGG 99, the XXII General Assembly of the International Union of Geodesy and Geophysics, at Birmingham, UK 18-30 July 1999. IAHS, 1999 (256): 165-172.
[75] MARTINEC J. Snowmelt runoff model for stream flow forecasts[J]. Nordic Hydrology, 1975, 6(3): 145-154.
[76] ABUDU S, CUI C, SAYDI M, et al. Application of snowmelt runoff model (SRM) in mountainous watersheds: A review[J]. Water Science and Engineering, 2012, 5(2): 123-136.
[77] ANGSTROM A. On the dependence of melting on air temperature, radiation and wind[J]. Geografiska Annaler, 1933, 15(4): 264-295.
[78] SVERDRUP H U. Scientific results of the Norwegian-Spitzbergen expedition 1934. Part IV. The melting on Isachsen’s plateau and on the Fourteenth of July Glacier in relation to radiation ad meteorological conditions[J]. Geografiska Annaler, 1935, 17: 145-166.
[79] ANDERSON E A. Techniques for predicting snow cover runoff [C]. In The role of snow and ice in hydrology, Proceedings of the Banff Symposium 1972, Wallingford: IAHS Publication, 1972, 107: 840-863.
[80] CRAWFORD N. Computer simulation techniques for forecasting snowmelt runoff [C]. In The role of snow and ice in hydrology, Proceedings of the Banff Symposium 1972, Wallingford: IAHS Publication, 1973, 107: 1062-1072.
[81] World Meteorology Organization (WMO). Intercomparison of models for snowmelt runoff [M]. Operational Hydrology Report 23(WMO no. 646), 1986.
[82] BRUN E, MARTIN E, SIMON V, et al. An energy and mass model of snow cover suitable for operational avalanche forecasting[J]. Journal of Glaciology, 1989, 35(121): 333-342.
[83] BADER H, WEILENMANN P. Modeling temperature distribution, energy and mass flow in a (phase-changing) snowpack. I. Model and case studies[J]. Cold Regions Science and Technology, 1992, 20(2): 157-181.
[84] OERLEMANS J. Climate sensitivity of glaciers in southern Norway: application of an energy-balance model to Nigardsbreen, Hellstugubreen and Alfotbreen[J]. Journal of Glaciology, 1992, 38(129): 223-232.
[85] OERLEMANS J. The mass balance of the Greenland ice sheet: sensitivity to climate change as revealed by energy-balance modelling[J]. The Holocene, 1991, 1(1): 40-48.
[86] FUJITA K, AGETA Y. Effect of summer accumulation on glacier mass balance on the Qinghai-Tibetan Plateau revealed by mass-balance model[J]. Journal of Glaciology, 2000, 46(153): 244-252.
[87] HOCK R, HOLMGREN B. A distributed surface energy-balance model for complex topography and its application to Storglaciaren, Sweden[J]. Journal of Glaciology, 2005, 51(172): 25-36.
[88] MOLG T, CULLEN N J, HARDY D R, et al. Mass balance of a slope glacier on Kilimanjaro and its sensitivity to climate[J]. International Journal of Climatology: A Journal of the Royal Meteorological Society, 2008, 28(7): 881-892.
[89] 蒋熹. 祁连山七一冰川暖季能量-物质平衡观测与模拟研究[D].中国科学院大学, 2008: 53-72.
[90] 康尔泗, Ohmura A. 天山冰川消融参数化能量平衡模型[J]. 地理学报, 1994, 49(5): 467-476.
[91] JIANG X, WANG N, HE J, et al. A distributed surface energy and mass balance model and its application to a mountain glacier in China[J]. Chinese Science Bulletin, 2010, 55(20): 2079-2087.
[92] 赵求东. 寒区流域陆面水文过程模拟研究[D].中国科学院大学, 2008: 66-69.
[93] YANG W, YAO T, GUO X, et al. Mass balance of a maritime glacier on the southeast Tibetan Plateau and its climatic sensitivity. Journal of Geophysical Research: Atmospheres, 2013, 118(17), 9579-9594.
[94] ZHU M, YAO T, YANG W, et al. Energy-and mass-balance comparison between Zhadang and Parlung No. 4 glaciers on the Qinghai-Tibetan Plateau[J]. Journal of Glaciology, 2015, 61(227): 595-607.
[95] ZHU M, YAO T, YANG W, et al. Reconstruction of the mass balance of Muztag Ata No. 15 glacier, eastern Pamir, and its climatic drivers[J]. Journal of Glaciology, 2018, 64(244): 259-274.
[96] ZHU M, THOMPSON L G, ZHAO H, et al. Influence of atmospheric circulation on glacier mass balance in western Tibet: an analysis based on observations and modeling[J]. Journal of Climate, 2021, 34(16): 6743-6757.
[97] ZHANG G, KANG S, FUJITA K, et al. Energy and mass balance of Zhadang glacier surface, central Tibetan Plateau[J]. Journal of Glaciology, 2013, 59(213): 137-148.
[98] SHRESTHA M, KOIKE T, HIRABAYASHI Y, et al. Integrated simulation of snow and glacier melt in water and energy balance‐based, distributed hydrological modeling framework at Hunza River Basin of Pakistan Karakoram region[J]. Journal of Geophysical Research: Atmospheres, 2015, 120(10): 4889-4919.
[99] GAO B, QIN Y, WANG Y, et al. Modeling ecohydrological processes and spatial patterns in the upper Heihe basin in China[J]. Forests, 2015, 7(1): 10.
[100] GREUELL W, KONZELMANN T. Numerical modelling of the energy balance and the englacial temperature of the Greenland Ice Sheet. Calculations for the ETH-Camp location (West Greenland, 1155 m a.s.l.)[J]. Global and Planetary Change, 1994, 9: 91-114.
[101] BROCK B W, ARNOLD N S. A spreadsheet-based (Microsoft Excel) point surface energy balance model for glacier and snow melt studies[J]. Earth Surface Processes and Landforms, 2000, 25: 649-658.
[102] HEENEKEN E A C, MEESTERS A, BINK N J, et al. Melting near the equilibrium line on the Greenland ice sheet, southwest Greenland, July 1991[J]. Zeitschrift fur Gletscherkunde and Glazialgeologie, 1997, 33: 173-184.
[103] KLOK E, OERLEMANS J. Modelled climate sensitivity of the mass balance of Morteratschgletscher and its dependence on albedo parameterization[J]. International Journal of Climatology, 2004, 24(2): 231-245.
[104] KONZELMANN T, VAN-DE-WAL R S W, GREUELL W, et al. Parameterization of global and longwave incoming radiation for the Greenland ice sheet[J]. Global and Planetary Change, 1994, 9: 143-164.
[105] MOLG T, CULLEN N J, KASER G. Solar radiation, cloudiness and longwave radiation over low-latitude glaciers: implications for mass-balance modelling[J]. Journal of Glaciology, 2009, 55: 292-302.
[106] ARNOLD N S, REES W G, HODEON A J, et al. Topographic controls on the surface energy balance of a high Arctic valley glacier[J]. Journal of Geophysical Research, 2006, 111: F02011.
[107] 朱美林. 青藏高原西风区与季风区典型冰川物质—能量平衡变化差异及其机制研究[D].中国科学院大学, 2015: 37-43.
[108] KONDO J, YAMAZAWA H. Aerodynamic roughness over an inhomogeneous ground surface[J]. Boundary-Layer Meteorology, 1986, 35: 331-348.
[109] GREUELL W, OERLEMANS J. Sensitivity studies with a mass balance model including temperature profile calculations inside the glacier[J]. Zeitschrift für Gletscherkunde und Glazialgeologie, 1986, 22(2): 101-124.
[110] ARNOLD N S, WILLIS I, SHARP M, et al. A distributed surface energy-balance model for a small valley glacier. I. Development and testing for Haut Glacier d'Arolla, Valais, Switzerland[J]. Journal of Glaciology, 1996, 42(140): 77-89.
[111] KLOK E, OERLEMANS J. Model study of the spatial distribution of the energy and mass balance of Morteratschgletscher, Switzerland[J]. Journal of Glaciology, 2002, 48(163): 505-518.
[112] BRAUN M, HOCK R. Spatially distributed surface energy balance and melting modelling on the ice cap of King George Island (Antarctica)[J]. Global and Planetary Change, 2004, 42(1): 45-58.
[113] ZHAO Q, DING Y, WANG J, et al. Projecting climate change impacts on hydrological processes on the Qinghai-Tibetan Plateau with model calibration against the glacier inventory data and observed streamflow[J]. Journal of Hydrology, 2019, 573: 60-81.
[114] KRAAIJENBRINK P D A, BIERKENS M F P, LUTZ A F, et al. Impact of a global temperature rise of 1.5 degrees Celsius on Asia’s glaciers[J]. Nature, 2017, 549(7671): 257-260.
[115] LUTZ A F, IMMERZEEL W W, SHRESTHA A B, et al. Consistent increase in High Asia's runoff due to increasing glacier melt and precipitation[J]. Nature Climate Change, 2014, 4(7): 587-592.
[116] LUTZ A F, IMMERZEEL W W, KRAIJENBRINK P D A, et al. Climate change impacts on the upper indus hydrology: Sources, shifts and extremes[J]. PloS one, 2016, 11(11): e0165630.
[117] KIM H, YEH P J F, OKI T, et al. Role of rivers in the seasonal variations of terrestrial water storage over global basins[J]. Geophysical Research Letters, 2009, 36(17): L17402.
[118] 许民, 叶柏生, 赵求东. 2002-2010年长江流域GRACE水储量时空变化特征[J]. 地理科学进展, 2013, 32(1): 68-77.
[119] JING W, ZHANG P, ZHAO X. A comparison of different GRACE solutions in terrestrial water storage trend estimation over Tibetan Plateau[J]. Scientific Reports, 2019, 9(1): 1765.
[120] 杨建平, 丁永建, 叶柏生, 等.长江源区小冬克玛底冰川区积雪消融特征及对气候的响应[J]. 冰川冻土, 2007, 29(2): 258-264.
[121] 张寅生, 蒲健辰, 大畑哲夫.青藏高原中部唐古拉山口邻近地区气候特征[J]. 冰川冻土, 1994, 6(1): 41-48.
[122] 张健, 何晓波, 叶柏生, 等.近期小冬克玛底冰川物质平衡变化及其影响因素分析[J]. 冰川冻土, 2013, 35(2): 263-271.
[123] 冯紫荆, 何天豪, 汪少勇, 等. 反照率对冬克玛底冰川径流及物质平衡模拟影响研究[J]. 冰川冻土, 2022, 44(03): 1053-1062.
[124] LI W, WANG W, ZHANG C, et al. Bridging terrestrial water storage anomaly during GRACE/GRACE-FO gap using SSA method: A case study in China[J]. Sensors, 2019, 19(19): 4144.
[125] CLEVELAND R B, CLEVELAND W S, MCRAE J E, et al. STL: A seasonal-trend decomposition[J]. Journal of Official Statistics, 1990, 6(1): 3-73.
[126] WARSZAWSKI L, FRIELER K, HUBER V, et al. The inter-sectoral impact model intercomparison project (ISI–MIP): project framework[J]. Proceedings of the National Academy of Sciences, 2014, 111(9): 3228-3232.
[127] CHEN H, LIU J, MAO G, et al. Intercomparison of ten ISIMIP models in simulating discharges along the Lancang-Mekong River basin[J]. Science of The Total Environment, 2021, 765: 144494.
[128] BUREK P, SATOH Y, KAHIL T, et al. Development of the Community Water Model (CWatM v1. 04) A high-resolution hydrological model for global and regional assessment of integrated water resources management[J]. Geoscientific Model Development, 2020, 13(7): 3267-3298.
[129] HANANSAKI N, KANAE S, OKI T, et al. An integrated model for the assessment of global water resources–Part 1: Model description and input meteorological forcing[J]. Hydrology and Earth System Sciences, 2008, 12(4): 1007-1025.
[130] ROST S, GERTEN D, BONDEAU A, et al. Agricultural green and blue water consumption and its influence on the global water system[J]. Water Resources Research, 2008, 44(9): 2007WR006331.
[131] STACKE T, HAGEMANN S. Development and evaluation of a global dynamical wetlands extent scheme[J]. Hydrology and Earth System Sciences, 2012, 16(8): 2915-2933.
[132] WADA Y, WISSER D, BIERKENS M F P. Global modeling of withdrawal, allocation and consumptive use of surface water and groundwater resources[J]. Earth System Dynamics, 2014, 5(1): 15-40.
[133] Müller SCHMIED H, ADAM L, EISNER S, et al. Variations of global and continental water balance components as impacted by climate forcing uncertainty and human water use[J]. Hydrology and Earth System Sciences, 2016, 20(7): 2877-2898.
[134] SANDERSON B M, WEHNER M, KNUTTI R. Skill and independence weighting for multi-model assessments[J]. Geoscientific Model Development, 2017, 10(6): 2379-2395.
[135] POKHREL Y, FELFELANI F, SATOH Y, et al. Global terrestrial water storage and drought severity under climate change[J]. Nature Climate Change, 2021, 11(3): 226-233.
[136] MANN H B. Nonparametric tests against trend[J]. Econometrica: Journal of the Econometric society, 1945, 13: 245-259.
[137] 刘虎, 王磊. 第三极地区冰川径流研究进展[J]. 冰川冻土, 2022, 44(3): 737-752.
[138] YE Q, ZONG J, TIAN L, et al. Glacier changes on the Qinghai-Tibetan Plateau derived from Landsat imagery: mid-1970s-2000-13[J]. Journal of Glaciology, 2017, 63(238): 273-287.
[139] CHE T, LI X, JIN R, et al, Snow depth derived from passive microwave remote-sensing data in China[J]. Annals of Glaciology, 2008, 49: 145-154.
[140] DAI L, CHE T, DING Y. Inter-calibrating SMMR, SSM/I and SSMI/S data to improve the consistency of snow-depth products in China[J]. Remote Sensing, 2015, 7(6): 7212-7230.
[141] DAI L, CHE T. Cross-platform calibration of SMMR, SSM/I and AMSR-E passive microwave brightness temperature[C]//Sixth International Symposium on Digital Earth: Data Processing and Applications. SPIE, 2010, 7841: 45-54.
[142] 白淑英, 史建桥, 高吉喜, 等. 1979-2010年青藏高原积雪深度时空变化遥感分析[J]. 地球信息科学学报, 2014, 16(4): 628-637.
[143] HE J, YANG K, TANG W, et al. The first high-resolution meteorological forcing dataset for land process studies over China[J]. Scientific Data, 2020, 7(1): 1-11.
[144] 王留杰, 张行南, 方园皓, 等. 中国区域地面气象要素数据集在长江上游流域的适用性评估[J]. 水力发电, 2017, 43(3): 18-22.
[145] 郭禹含, 王中根, 伍玉良. 多源再分析降水数据在拉萨河流域应用对比研究[J]. 地理科学进展, 2017, 36(8): 1033-1039.
[146] 徐柏青. 小冬克玛底冰川温度(2012-2015)[DS]. 国家青藏高原科学数据中心, 2018, 10.11888/Glacio.tpdc.270019.
[147] 何晓波. 2012-2016年青藏高原唐古拉小冬克玛底冰川气象站[DB]. 国家冰川冻土沙漠科学数据中心, 2020, 10.12072/ncdc.CCI.db0045.2020.
[148] FARR T G, ROAEN P A, CARO E, et al. The shuttle radar topography mission[J]. Reviews of Geophysics, 2007, 45(2): RG2004.
[149] 刘晓婉. 青藏高原七条冰川长时间序列物质平衡重构数据集(1975-2013)[DS]. 国家青藏高原科学数据中心, 2020, 10.11888/Glacio.tpdc.270382.
[150] LIU X, XU Z, YANG H. Responses of the glacier mass balance to climate change in the Qinghai-Tibetan Plateau during 1975-2013[J]. Journal of Geophysical Research: Atmospheres, 2021, 126(7): e2019JD032132.
[151] REN Z, SU F, XU B, et al. A coupled glacier-hydrology model and its application in eastern Pamir[J]. Journal of Geophysical Research: Atmospheres, 2018, 123(24): 13692-13723.
[152] 赵求东, 叶柏生, 丁永建, 等.典型寒区流域水文过程模拟及分析[J]. 冰川冻土, 2011, 33(03): 95-605.
[153] MELLOR M. Engineering properties of snow[J]. Journal of Glaciology, 1978, 19(81): 15-66.
[154] HOBBS P V. Ice physics[M]. Oxford: Clarendon Press, 1974.
[155] FUJITA K, SEKO K, AGETA Y, et al. Superimposed ice in glacier mass balance on the Qinghai-Tibetan Plateau[J]. Journal of Glaciology, 1996, 42(142): 454-460.
[156] CUFFEY K M, THORSTEINSSON T, WADDINGTON E D. A renewed argument for crystal size control of ice sheet strain rates[J]. Journal of Geophysical Research: Solid Earth, 2000, 105(B12): 27889-27894.
[157] 张国帅. 青藏高原纳木错流域扎当冰川能量物质平衡和冰川径流过程研究[D]. 中国科学院大学, 2013: 33-34.
[158] SCHNEIDER T, JANSSON P. Internal accumulation in firn and its significance for the mass balance of Storglaciären, Sweden[J]. Journal of Glaciology, 2004, 50(168): 25-34.
[159] Radić V, HOCK R. Regional and global volumes of glaciers derived from statistical upscaling of glacier inventory data[J]. Journal of Geophysical Research: Earth Surface, 2010, 115: F01010.
[160] 张佳怡, 伦玉蕊, 刘浏, 等. CMIP6多模式在青藏高原的适应性评估及未来气候变化预估[J]. 北京师范大学学报(自然科学版), 2022, 58(1): 77-89.
[161] CHEN H, ZENG Z, WU J, et al. Large uncertainty on forest area change in the early 21st century among widely used global land cover datasets[J]. Remote Sensing, 2020, 12(21):3502.
[162] JI Z, KANG S. Projection of snow cover changes over China under RCP scenarios[J]. Climate Dynamics, 2013, 41: 589-600.
[163] 孙燕华, 黄晓东, 王玮, 等. 2003-2010年青藏高原积雪及雪水当量的时空变化[J]. 冰川冻土, 2014, 36(06): 1337-1344.
[164] HUGONNET R, MCNABB R, BERTHIER E, et al. Accelerated global glacier mass loss in the early twenty-first century[J]. Nature, 2021, 592(7856): 726-731.
[165] 刘时银, 丁永建, 王宁练, 等. 天山乌鲁木齐河源1号冰川物质平衡对气候变化的敏感性研究[J]. 冰川冻土, 1998, 1: 10-14.
[166] DYURGEROV M B, MEIER M F. Twentieth century climate change: evidence from small glaciers[J]. Proceedings of the National Academy of Sciences, 2000, 97(4): 1406-1411.
[167] BRAITHWARTE R, ZHANG Y, RAPER S. Temperature sensitivity of the mass balance of mountain glaciers and ice caps as a climatological characteristic[J]. Zeitschrift für Gletscherkunde und Glazialgeologie, 2002, 38(1): 35-61.
[168] XIE Y, WANG F, XU C, et al. Applying Artificial Cover to Reduce Melting in Dagu Glacier in the Eastern Qinghai-Tibetan Plateau[J]. Remote Sensing, 2023, 15(7): 1755.
[169] IPCC. Climate change 2021: the physical science basis [M]// Lee J Y, Marotzke J, Bala G, et al. Future global climate: scenario-42 based projections and near-term information. Cambridge: Cambridge University Press, 2021, 1-195.
[170] 周天军, 陈梓明, 陈晓龙, 等. IPCC AR6报告解读: 未来的全球气候-基于情景的预估和近期信息[J]. 气候变化研究进展, 2021, 17(6): 652-663.
[171] FAN X, DUAN Q, SHEN C, et al. Global surface air temperatures in CMIP6: historical performance and future changes[J]. Environmental Research Letters, 2020, 15(10): 104056.
[172] YAZDANDOOST F, MORADIAN S, IZADI A, et al. Evaluation of CMIP6 precipitation simulations across different climatic zones: Uncertainty and model intercomparison[J]. Atmospheric Research, 2021, 250: 105369.
[173] 陈炜, 姜大膀, 王晓欣. CMIP6模式对青藏高原气候的模拟能力评估与预估研究[J]. 高原气象, 2021, 40(6): 1455-1469.
[174] 周天军, 张文霞, 陈晓龙, 等. 青藏高原气温和降水近期、中期与长期变化的预估及其不确定性来源[J]. 气象科学, 2020, 40(05): 697-710.
[175] 陈荣, 段克勤, 尚溦, 等. 基于CMIP6模式数据的1961-2099年青藏高原降水变化特征分析[J]. 高原气象, 2023, 42(02): 294-304.
[176] SUN C, ZUO J, SHI X, et al. Diverse inter-annual variations of winter Siberian high and link with Eurasian snow in observation and BCC-CSM2-MR coupled model simulation[J]. Frontiers in Earth Science, 2021, 9: 761311.
[177] JIN J, ZHANG H, DONG X, et al. CAS-ESM2. 0 Model datasets for the CMIP6 flux-anomaly-forced model intercomparison project (FAFMIP)[J]. Advances in Atmospheric Sciences, 2021, 38(2): 296-306.
[178] LOVATO T, PEANO D, Butenschön M, et al. CMIP6 Simulations With the CMCC Earth System Model (CMCC-ESM2)[J]. Journal of Advances in Modeling Earth Systems, 2022, 14(3): e2021MS002814.
[179] BAO Y, SONG Z, QIAO F. FIO‐ESM version 2.0: Model description and evaluation[J]. Journal of Geophysical Research: Oceans, 2020, 125(6): e2019JC016036.
[180] TOLLEFSON J. COVID curbed 2020 carbon emissions-but not by much[J]. Nature, 2021, 589: 343.
[181] 温婷婷, 郭英香, 董少睿, 等. 1979-2017年CRU、ERA5、CMFD格点降水数据在青藏高原适用性评估[J]. 干旱区研究, 2022, 39(3): 684-697.
[182] 高黎明, 张乐乐, 沈永平, 等. ERA-Interim和CMFD气象驱动数据在新疆额尔齐斯河流域的适用性评价[J]. 冰川冻土, 2022, 44(1): 179-187.
[183] 赵静学, 郭枝虾, 和鑫磊, 等. 黑河流域气温和降水再分析数据的不确定性评估[J]. 干旱气象, 2019, 37(04): 529-539.
[184] 孟雅丽, 段克勤, 尚溦, 等. 基于CMIP6模式数据的1961—2100年青藏高原地表气温时空变化分析[J]. 冰川冻土, 2022, 44(1): 24-33.
[185] YOU Q, ZHANG Y, XIE X, et al. Robust elevation dependency warming over the Qinghai-Tibetan Plateau under global warming of 1.5 ℃ and 2 ℃[J]. Climate Dynamics, 2019, 53(3): 2047-2060.
[186] 徐丽娇, 胡泽勇, 赵亚楠, 等. 1961—2010年青藏高原气候变化特征分析[J]. 高原气象, 2019, 38(05): 911-919.
[187] MASSON-DELMOTTE V, ZHAI P, PORTNER H O, et al. Global warming of 1.5 ℃[J]. An IPCC Special Report on the impacts of global warming of 1.5 ℃, 2018, 1(5): 43-50.
[188] GUO D, WANG H. Simulation of permafrost and seasonally frozen ground conditions on the Qinghai-Tibetan Plateau, 1981-2010[J]. Journal of Geophysical Research: Atmospheres, 2013, 118(11): 5216-5230.
[189] 胡芩, 姜大膀, 范广洲. CMIP5 全球气候模式对青藏高原地区气候模拟能力评估[J]. 大气科学, 2014, 38(5): 924-938.
[190] SU F, DUAN X, CHEN D, et al. Evaluation of the global climate models in the CMIP5 over the Qinghai-Tibetan Plateau[J]. Journal of Climate, 2013, 26(10): 3187-3208.
[191] GUO Y, WANG C. Trends in precipitation recycling over the Qinghai–Xizang Plateau in last decades[J]. Journal of Hydrology, 2014, 517: 826-835.
[192] GAO Y, CUO L, ZHANG Y. Changes in moisture flux over the Qinghai-Tibetan Plateau during 1979–2011 and possible mechanisms[J]. Journal of Climate, 2014, 27(5): 1876-1893.
修改评论