[1] BENZI R, SUCCI S, VERGASSOLA M. The lattice Boltzmann equation: theory and applications[J/OL]. Phys. Rep., 1992, 222(3): 145-197. DOI: 10.1016/0370-1573(92)90090-M.
[2] CHEN S, DOOLEN G D. LATTICE BOLTZMANN METHOD FOR FLUID FLOWS[J/OL].Annu. Rev. Fluid Mech., 1998, 30(1): 329-364. DOI: 10.1146/annurev.fluid.30.1.329.
[3] MOREAU S. The third golden age of aeroacoustics[J/OL]. Physics of Fluids, 2022, 34(3): 031301. https://doi.org/10.1063/5.0084060.
[4] CHEN H, KANDASAMY S, ORSZAG S, et al. Extended Boltzmann Kinetic Equation for Turbulent Flows[J/OL]. Science, 2003, 301(5633): 633-636. https://www.science.org/doi/abs/10.1126/science.1085048.
[5] SHAN X, CHEN H. Lattice Boltzmann model for simulating flows with multiple phases and components[J/OL]. Phys. Rev. E, 1993, 47(3): 1815-1819. DOI: 10.1103/PhysRevE.47.1815.
[6] ANSUMALI S, KARLIN I V. Kinetic boundary conditions in the lattice Boltzmann method [J/OL]. Phys. Rev. E, 2002, 66(2): 026311. DOI: 10.1103/PhysRevE.66.026311.
[7] SHI Y, SHAN X. A multiple-relaxation-time collision model for nonequilibrium flows[J/OL]. Phys. Fluids, 2021, 33(3): 037134. DOI: 10.1063/5.0046866.
[8] SHAN X, HE X. Discretization of the Velocity Space in the Solution of the Boltzmann Equation [J/OL]. Phys. Rev. Lett., 1998, 80(1): 65-68. DOI: 10.1103/PhysRevLett.80.65.
[9] SHAN X, YUAN X F, CHEN H. Kinetic theory representation of hydrodynamics: a way beyond the Navier–Stokes equation[J/OL]. J. Fluid Mech., 2006, 550: 413. DOI: 10.1017/S0022112005008153.
[10] BARAD M F, KOCHEEMOOLAYIL J G, KIRIS C C. Lattice Boltzmann and Navier-Stokes Cartesian CFD Approaches for Airframe Noise Predictions[C/OL]//23rd AIAA Comput. Fluid Dyn. Conf. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2017. DOI: 10.2514/6.2017-4404.
[11] GRACE S, GONZALEZ-MARTINO I, CASALINO D. Analysis of fan-stage gap-flow data to inform simulation of fan broadband noise[J/OL]. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., 2019, 377(2159): 20190080. DOI: 10.1098/rsta.2019.0080.
[12] HE X, CHEN S, DOOLEN G D. A Novel Thermal Model for the Lattice Boltzmann Method in Incompressible Limit[J/OL]. J. Comput. Phys., 1998, 146(1): 282-300. DOI: 10.1006/jcph.1998.6057.
[13] GUO Z, ZHENG C, SHI B, et al. Thermal lattice Boltzmann equation for low Mach number flows: Decoupling model[J/OL]. Phys. Rev. E, 2007, 75: 036704. https://link.aps.org/doi/10.1103/PhysRevE.75.036704.
[14] FENG Y, BOIVIN P, JACOB J, et al. Hybrid recursive regularized thermal lattice Boltzmann model for high subsonic compressible flows[J/OL]. J. Comput. Phys., 2019, 394(May): 82-99. DOI: 10.1016/j.jcp.2019.05.031.
[15] LI Q, HE Y L, WANG Y, et al. Coupled double-distribution-function lattice Boltzmann method for the compressible Navier-Stokes equations[J/OL]. Phys. Rev. E, 2007, 76: 056705. https://link.aps.org/doi/10.1103/PhysRevE.76.056705.
[16] QIAN Y H. Simulating thermohydrodynamics with lattice BGK models[J/OL]. Journal of Scientific Computing, 1993. https://doi.org/10.1007/BF01060932.
[17] ALEXANDER F, CHEN S, STERLING J. Lattice Boltzmann thermodynamics[J/OL]. Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics, 1993, 47: R2249-R2252. DOI: 10.1103/PhysRevE.47.R2249.
[18] CHEN Y, OHASHI H, AKIYAMA M. Thermal lattice Bhatnagar-Gross-Krook model without nonlinear deviations in macrodynamic equations[J/OL]. Phys. Rev. E, 1994, 50: 2776-2783. https://link.aps.org/doi/10.1103/PhysRevE.50.2776.
[19] SHAN X, CHEN H. A GENERAL MULTIPLE-RELAXATION-TIME BOLTZMANN COLLISION MODEL[J/OL]. International Journal of Modern Physics C, 2007, 18(04): 635-643. https://doi.org/10.1142/S0129183107010887.
[20] NIE X, SHAN X, CHEN H. Thermal lattice Boltzmann model for gases with internal degrees of freedom[J/OL]. Phys. Rev. E, 2008, 77: 035701. https://link.aps.org/doi/10.1103/PhysRevE.77.035701.
[21] SHAN X. Central-moment-based Galilean-invariant multiple-relaxation-time collision model [J/OL]. Phys. Rev. E, 2019, 100(4): 043308. DOI: 10.1103/PhysRevE.100.043308.
[22] LI X, SHAN X. Rotational symmetry of the multiple-relaxation-time collision model[J/OL]. Phys. Rev. E, 2021, 103(4): 043309. DOI: 10.1103/PhysRevE.103.043309.
[23] SHAN X, LI X, SHI Y. A multiple-relaxation-time collision model by Hermite expansion[J/OL]. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., 2021, 379(2208): 20200406. DOI: 10.1098/rsta.2020.0406.
[24] CAI Z, TORRILHON M. On the Holway-Weiss debate: Convergence of the Grad-momentexpansion in kinetic gas theory[J/OL]. Phys. Fluids, 2019, 31(12): 126105. DOI: 10.1063/1.5127114.
[25] COREIXAS C, LATT J. Compressible lattice Boltzmann methods with adaptive velocity stencils: An interpolation-free formulation[J/OL]. Phys. Fluids, 2020, 32(11): 116102. DOI:10.1063/5.0027986.
[26] 师羊羊. 非平衡流动的高阶格子玻尔兹曼方法[D]. 哈尔滨工业大学, 2021.
[27] HE X, SHAN X, DOOLEN G D. Discrete Boltzmann equation model for nonideal gases[J/OL]. Phys. Rev. E, 1998, 57(1): R13-R16. DOI: 10.1103/PhysRevE.57.R13.
[28] MOHAMAD A A, KUZMIN A. A critical evaluation of force term in lattice Boltzmann method, natural convection problem[J/OL]. Int. J. Heat Mass Transf., 2010, 53(5-6): 990-996. DOI:10.1016/j.ijheatmasstransfer.2009.11.014.
[29] BAWAZEER S A, BAAKEEM S S, MOHAMAD A A. A Critical Review of Forcing Schemes in Lattice Boltzmann Method: 1993–2019[J/OL]. Arch. Comput. Methods Eng., 2021, 28(7): 4405-4423. DOI: 10.1007/s11831-021-09535-4.
[30] YU Z, FAN L S. An interaction potential based lattice Boltzmann method with adaptive mesh refinement ( AMR ) for two-phase flow simulation[J/OL]. J. Comput. Phys., 2009, 228(17): 6456-6478. DOI: 10.1016/j.jcp.2009.05.034.
[31] SBRAGAGLIA M, BENZI R, BIFERALE L, et al. Lattice Boltzmann method with selfconsistent thermo-hydrodynamic equilibria[J/OL]. J. Fluid Mech., 2009, 628: 299. DOI: 10.1017/S002211200900665X.
[32] GUO Z, ZHENG C, SHI B. Discrete lattice effects on the forcing term in the lattice Boltzmann method[J/OL]. Phys. Rev. E, 2002, 65(4): 046308. DOI: 10.1103/PhysRevE.65.046308.
[33] BUICK J M, GREATED C A. Gravity in a lattice Boltzmann model[J/OL]. Phys. Rev. E, 2000, 61(5): 5307-5320. DOI: 10.1103/PhysRevE.61.5307.
[34] LADD A J C, VERBERG R. Lattice-Boltzmann Simulations of Particle-Fluid Suspensions [J/OL]. J. Stat. Phys., 2001, 104(September): 1191-1251. DOI: 10.1023/A:1010414013942.
[35] MARTYS N S, SHAN X, CHEN H. Evaluation of the external force term in the discrete Boltzmann equation[J/OL]. Phys. Rev. E, 1998, 58(5): 6855-6857. DOI: 10.1103/PhysRevE.58.6855.
[36] KUPERSHTOKH A L. New method of incorporating a body force term into the lattice Boltzmann equation[C]//Proeedings 5th Int. EDH Work. Poitiers, 2004: 241-246.
[37] KUPERSHTOKH A L, MEDVEDEV D, KARPOV D. On equations of state in a lattice Boltzmann method[J/OL]. Comput. Math. with Appl., 2009, 58(5): 965-974. DOI: 10.1016/j.camwa.2009.02.024.
[38] HUANG H, KRAFCZYK M, LU X. Forcing term in single-phase and Shan-Chen-type multiphase lattice Boltzmann models[J/OL]. Phys. Rev. E, 2011, 84(4): 046710. DOI:10.1103/PhysRevE.84.046710.
[39] LI Q, LUO K H, LI X J. Forcing scheme in pseudopotential lattice Boltzmann model for multiphase flows[J/OL]. Phys. Rev. E, 2012, 86(1): 016709. DOI: 10.1103/PhysRevE.86.016709.
[40] SILVA G, SEMIAO V. First- and second-order forcing expansions in a lattice Boltzmann method reproducing isothermal hydrodynamics in artificial compressibility form[J/OL]. J. Fluid Mech., 2012, 698: 282-303. DOI: 10.1017/jfm.2012.83.
[41] LI X, DUAN W, SHAN X. Second-order force scheme for lattice Boltzmann method[A/OL].2022. arXiv: 2212.07494.
[42] SHAN X. The mathematical structure of the lattices of the lattice Boltzmann method[J/OL]. J.Comput. Sci., 2016, 17: 475-481. DOI: 10.1016/j.jocs.2016.03.002.
[43] CORNUBERT R, D’HUMIÈRES D, LEVERMORE D. A Knudsen layer theory for lattice gases[J/OL]. Phys. D Nonlinear Phenom., 1991, 47(1-2): 241-259. DOI: 10.1016/0167-278 9(91)90295-K.
[44] GINZBOURG I, ADLER P M. Boundary flow condition analysis for the three-dimensional lattice Boltzmann model[J/OL]. J. Phys. II, 1994, 4(2): 191-214. DOI: 10.1051/jp2:1994123.
[45] NOBLE D R, CHEN S, GEORGIADIS J G, et al. A consistent hydrodynamic boundary condition for the lattice Boltzmann method[J/OL]. Phys. Fluids, 1995, 7(1): 203. DOI: 10.1063/1.868767.
[46] CHEN S, MARTÍNEZ D O, MEI R. On boundary conditions in lattice Boltzmann methods [J/OL]. Phys. Fluids, 1996, 8(9): 2527. DOI: 10.1063/1.869035.
[47] MAIER R S, BERNARD R S, GRUNAU D W. Boundary conditions for the lattice Boltzmann method[J/OL]. Phys. Fluids, 1996, 8(7): 1788. DOI: 10.1063/1.868961.
[48] ZOU Q, HE X. On pressure and velocity boundary conditions for the lattice Boltzmann BGK model[J/OL]. Phys. Fluids, 1997, 9(6): 1591-1598. DOI: 10.1063/1.869307.
[49] HE X, DOOLEN G. Lattice Boltzmann Method on Curvilinear Coordinates System: Flow around a Circular Cylinder[J/OL]. J. Comput. Phys., 1997, 134(2): 306-315. DOI: 10.1006/jcph.1997.5709.
[50] SANJEEVI S K P, ZARGHAMI A, PADDING J T. Choice of no-slip curved boundary condition for lattice Boltzmann simulations of high-Reynolds-number flows[J/OL]. Phys. Rev. E, 2018, 97(4): 043305. DOI: 10.1103/PhysRevE.97.043305.
[51] XU L, SERRE E, SAGAUT P. A theoretical analysis of mass leakage at boundaries within the lattice Boltzmann method[J/OL]. Phys. Fluids, 2022, 34(6): 065113. DOI: 10.1063/5.0089253.
[52] PESKIN C S. Flow patterns around heart valves: A numerical method[J/OL]. J. Comput. Phys., 1972, 10(2): 252-271. DOI: 10.1016/0021-9991(72)90065-4.
[53] FENG Z G, MICHAELIDES E E. Proteus: a direct forcing method in the simulations of particulate flows[J/OL]. J. Comput. Phys., 2005, 202(1): 20-51. DOI: 10.1016/j.jcp.2004.06.020.
[54] WU J, SHU C. Implicit velocity correction-based immersed boundary-lattice Boltzmann method and its applications[J/OL]. J. Comput. Phys., 2009, 228(6): 1963-1979. DOI: 10.1016/j.jcp.2008.11.019.
[55] XU L, TIAN F B, YOUNG J, et al. A novel geometry-adaptive Cartesian grid based immersed boundary–lattice Boltzmann method for fluid–structure interactions at moderate and high Reynolds numbers[J/OL]. J. Comput. Phys., 2018, 375: 22-56. DOI: 10.1016/j.jcp.2018.08.024.
[56] PENG C, AYALA O M, WANG L P. A comparative study of immersed boundary method and interpolated bounce-back scheme for no-slip boundary treatment in the lattice Boltzmann method: Part I, laminar flows[J/OL]. Comput. Fluids, 2019, 192: 104233. DOI: 10.1016/j.compfluid.2019.06.032.
[57] CHEN H. Volumetric formulation of the lattice Boltzmann method for fluid dynamics: Basic concept[J/OL]. Phys. Rev. E, 1998, 58(3): 3955-3963. DOI: 10.1103/PhysRevE.58.3955.
[58] CHEN H, TEIXEIRA C, MOLVIG K. Realization of Fluid Boundary Conditions via Discrete Boltzmann Dynamics[J/OL]. Int. J. Mod. Phys. C, 1998, 09(08): 1281-1292. DOI: 10.1142/S0129183198001151.
[59] ROHDE M, DERKSEN J J, Van den Akker H E A. Volumetric method for calculating the flow around moving objects in lattice-Boltzmann schemes[J/OL]. Phys. Rev. E, 2002, 65(5): 056701. DOI: 10.1103/PhysRevE.65.056701.
[60] KLASS F, GABBANA A, BARTEL A. A non-equilibrium bounce-back boundary condition for thermal multispeed LBM[J/OL]. J. Comput. Sci., 2021, 53(April): 101364. DOI: 10.1016/j.jocs.2021.101364.
[61] MALASPINAS O P, CHOPARD B, LATT J. General regularized boundary condition for multispeed lattice Boltzmann models[J/OL]. Comput. Fluids, 2011, 49(1): 29-35. DOI: 10.1016/j.compfluid.2011.04.010.
[62] LEE H, BAWAZEER S, MOHAMAD A A. Boundary conditions for lattice Boltzmann method with multispeed lattices[J/OL]. Comput. Fluids, 2018, 162: 152-159. DOI: 10.1016/j.compfluid.2017.12.011.
[63] MAXWELL J C. VII. On stresses in rarified gases arising from inequalities of temperature [J/OL]. Philos. Trans. R. Soc. London, 1879, 170: 231-256. DOI: 10.1098/rstl.1879.0067.
[64] EPSTEIN M. A model of the wall boundary condition in kinetic theory.[J/OL]. AIAA J., 1967,5(10): 1797-1800. DOI: 10.2514/3.4307.
[65] CERCIGNANI C, LAMPIS M. Kinetic models for gas—surface interactions[J/OL]. Transp. Theory Stat. Phys., 1971, 1(2): 101-114. DOI: 10.1080/00411457108231440.
[66] KLINC T. Slip Coefficients for General Gas-Surface Interaction[J/OL]. Phys. Fluids, 1972, 15 (6): 1018. DOI: 10.1063/1.1694022.
[67] MENG J, ZHANG Y. Diffuse reflection boundary condition for high-order lattice Boltzmann models with streaming–collision mechanism[J/OL]. J. Comput. Phys., 2014, 258: 601-612. DOI: 10.1016/j.jcp.2013.10.057.
[68] BHATNAGAR P L, GROSS E P, KROOK M. A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component Systems[J/OL]. Phys.Rev., 1954, 94: 511-525. https://link.aps.org/doi/10.1103/PhysRev.94.511.
[69] HOLWAY L H. New Statistical Models for Kinetic Theory: Methods of Construction[J/OL]. The Physics of Fluids, 1966, 9(9): 1658-1673. https://aip.scitation.org/doi/abs/10.1063/1.1761920.
[70] Generalization of the Krook kinetic relaxation equation[J/OL]. Fluid Dynamics, 1972, 3(5): 95-96. DOI: 10.1007/BF01029546.
[71] GRAD H. On the kinetic theory of rarefied gases[J/OL]. Commun. Pure Appl. Math., 1949, 2 (4): 331-407. DOI: 10.1002/cpa.3160020403.
[72] LI Z, SHAN X. Body-force modelling in thermal compressible flows with lattice Boltzmann method[A]. 2023. arXiv: 2302.04741.
[73] GAD-EL HAK M. The Fluid Mechanics of Microdevices—The Freeman Scholar Lecture [J/OL]. Journal of Fluids Engineering, 1999, 121(1): 5-33. https://doi.org/10.1115/1.2822013.
[74] LEE T, LIN C L. Rarefaction and compressibility effects of the lattice-Boltzmann-equation method in a gas microchannel[J/OL]. Phys. Rev. E, 2005, 71: 046706. https://link.aps.org/doi/10.1103/PhysRevE.71.046706.
[75] SPIEGEL E A. Convective Instability in a Compressible Atmosphere I[J/OL]. Astrophys. J., 1965, 141: 1068. DOI: 10.1086/148197.
[76] SCAGLIARINI A, BIFERALE L, SBRAGAGLIA M, et al. Lattice Boltzmann methods for thermal flows: Continuum limit and applications to compressible Rayleigh–Taylor systems [J/OL]. Phys. Fluids, 2010, 22(5): 055101. DOI: 10.1063/1.3392774.
修改评论