中文版 | English
题名

可压缩高阶格子玻尔兹曼算法研究——体力项建模及流体固壁边界条件

其他题名
HIGH ORDER LATTICE BOLTZMANN METHOD FOR COMPRESSIBLE FLOW: BODY FORCE MODELLING AND BOUNDARY CONDITION
姓名
姓名拼音
LI Zuoxu
学号
12032387
学位类型
硕士
学位专业
080103 流体力学
学科门类/专业学位类别
08 工学
导师
单肖文
导师单位
力学与航空航天工程系
论文答辩日期
2023-05-10
论文提交日期
2023-06-30
学位授予单位
南方科技大学
学位授予地点
深圳
摘要
准确模拟可压缩流动对指导生产实践有着重要意义,如新型飞机的气动设计、天气的准确预测、内燃机和制冷机的设计等等。格子玻尔兹曼方法 (Lattice Boltzmann Method LBM) 作为高效的计算流体力学方法之一,最初被用以模拟近不可压 缩流动。近年来,LBM 被重新公式化为 Boltzmann BGK 方程的速度空间离散,能够恢复完整的理想气体的 Navier Stokes Fourier (NSF) 方程,以应对各种现实工程领域的挑战。但是,尚有一些问题仍需深入讨论,如体力项的高阶矩对能量方程的作用;高阶 LBM 算法的边界条件等等。基于现在可压缩高阶 LBM 算法研究的不足,本文重点深入研究了高阶 LBM 的体力格式及其边界条件。现将本文研究内容总结如下:
 
提出一种通用的,系统性的在 LBM 中结合体积力的方法,可以有效的模拟热可压缩流动及非平衡流动。新格式的创新和关键之处在于加入了体力项的第三阶矩。通过 Chapman-Enskog 展开分析发现,体力项的三阶矩的缺省将在恢复的宏观热流中产生非物理的误差项。新的误差项为马赫数的三次方量级,温差的一次方量级,并且在可压缩流动中不可忽略。这些理论发现以及体力项的三阶矩的必要性通过数值算例得到验证。
 
提出了适用于多速 LBM,适用于模拟复杂几何下的热可压缩流动的,严格满足质量守恒的 LBM 边界条件。我们将基于体积分数的曲型边界条件 [Chen et al, Int. J. Mod. Phys, C, 9, 1281, (1998)] 拓展到多速度 LBM。提出了密度分布函数及内部自由度能量分布函数的边界条件。一系列数值实验,包括平直/倾斜的可压缩Couette 流动、可压缩 Taylor Couette 层流、可压缩 Rayleigh-Bénard 流动和同心圆环内的自然对流,证明了当前边界条件具有严格的质量守恒和接近二阶的数值精度。
 
提出了热对流系统中新的无量纲参数相对密度比 Dr,用以描述重力场和温度梯度对密度的影响之比。理论分析和数值实验均表明:当 Dr 偏离 0 时,即使在小 温差假设下,Boussinesq 近似不再成立。
其他摘要
Accurate simulation of compressible flow is of great significance to guide human production practices, such as the aerodynamic design of new aircraft, accurate weather prediction, and the design of internal combustion engines and refrigerators. Lattice Boltz
mann Method (LBM), as one of the most efffficient computational fluid dynamics methods, was initially applied to mimic the motion of a near-incompressible fluid. In recent years the method was re-formulated as a velocity-space discretization of the Boltzmann-BGK equation capable of recovering the full Navier-Stokes-Fourier (NSF) equations to answer
the challenges in various real-life engineering fields. However, there are still some issues to be discussed in depth, such as effect of the high order moments of the body force term on the energy equation, boundary condition of high order LBM and so on. Based on the
shortages of the current research on compressible higher-order LBM algorithm, this thesis focuses on the in-depth study of the forcing scheme and boundary condition of high order LBM. The research contents of this thesis are summarized as follows.
 
We present a systematic approach of incorporating body force in LBM which is valid for thermal compressible and non-equilibrium flows. In particular, a LBM forcing scheme accurate for the energy equation with second-order time accuracy is given. New and essential in this scheme is the third-moment contribution of the force term. It is shown
via Chapman-Enskog analysis that the absence of this contribution causes an erroneous heat flux quadratic in Mach number and linear in temperature variation. The theoretical findings are verified and the necessity of the third-moment contribution demonstrated by
numerical simulations.
 
We extend the volumetric boundary condition for curved boundaries [Chen et al, Int. J. Mod. Phys, C, 9, 1281, (1998)] to multi-speed lattice Boltzmann models for thermal compressible flows. We propose the boundary conditions of density distribution function
and distribution function of internal freedom energy. Several numerical tests, including flat/inclined compressible Couette flow, compressible laminar Taylor-Couette flow, compressible Rayleigh-Bénard convection and natural convection in a concentric annulus, confirm that the boundary condition has exact mass conservation and an accuracy
close to second order.
 
For thermal convection, the density variation ratio 𝐷𝑟 is defined to depict influence of gravity on density, compared with temperature difference. The theoretical analysis and numerical tests indicate the Boussinesq assumption isn’t valid when 𝐷𝑟 deviates from zero
even for small temperature variation.
关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2023-05
参考文献列表

[1] BENZI R, SUCCI S, VERGASSOLA M. The lattice Boltzmann equation: theory and applica￾tions[J/OL]. Phys. Rep., 1992, 222(3): 145-197. DOI: 10.1016/0370-1573(92)90090-M.
[2] CHEN S, DOOLEN G D. LATTICE BOLTZMANN METHOD FOR FLUID FLOWS[J/OL].Annu. Rev. Fluid Mech., 1998, 30(1): 329-364. DOI: 10.1146/annurev.fluid.30.1.329.
[3] MOREAU S. The third golden age of aeroacoustics[J/OL]. Physics of Fluids, 2022, 34(3): 031301. https://doi.org/10.1063/5.0084060.
[4] CHEN H, KANDASAMY S, ORSZAG S, et al. Extended Boltzmann Kinetic Equation for Turbulent Flows[J/OL]. Science, 2003, 301(5633): 633-636. https://www.science.org/doi/abs/10.1126/science.1085048.
[5] SHAN X, CHEN H. Lattice Boltzmann model for simulating flows with multiple phases and components[J/OL]. Phys. Rev. E, 1993, 47(3): 1815-1819. DOI: 10.1103/PhysRevE.47.1815.
[6] ANSUMALI S, KARLIN I V. Kinetic boundary conditions in the lattice Boltzmann method [J/OL]. Phys. Rev. E, 2002, 66(2): 026311. DOI: 10.1103/PhysRevE.66.026311.
[7] SHI Y, SHAN X. A multiple-relaxation-time collision model for nonequilibrium flows[J/OL]. Phys. Fluids, 2021, 33(3): 037134. DOI: 10.1063/5.0046866.
[8] SHAN X, HE X. Discretization of the Velocity Space in the Solution of the Boltzmann Equation [J/OL]. Phys. Rev. Lett., 1998, 80(1): 65-68. DOI: 10.1103/PhysRevLett.80.65.
[9] SHAN X, YUAN X F, CHEN H. Kinetic theory representation of hydrodynamics: a way beyond the Navier–Stokes equation[J/OL]. J. Fluid Mech., 2006, 550: 413. DOI: 10.1017/S0022112005008153.
[10] BARAD M F, KOCHEEMOOLAYIL J G, KIRIS C C. Lattice Boltzmann and Navier-Stokes Cartesian CFD Approaches for Airframe Noise Predictions[C/OL]//23rd AIAA Comput. Fluid Dyn. Conf. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2017. DOI: 10.2514/6.2017-4404.
[11] GRACE S, GONZALEZ-MARTINO I, CASALINO D. Analysis of fan-stage gap-flow data to inform simulation of fan broadband noise[J/OL]. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., 2019, 377(2159): 20190080. DOI: 10.1098/rsta.2019.0080.
[12] HE X, CHEN S, DOOLEN G D. A Novel Thermal Model for the Lattice Boltzmann Method in Incompressible Limit[J/OL]. J. Comput. Phys., 1998, 146(1): 282-300. DOI: 10.1006/jcph.1998.6057.
[13] GUO Z, ZHENG C, SHI B, et al. Thermal lattice Boltzmann equation for low Mach number flows: Decoupling model[J/OL]. Phys. Rev. E, 2007, 75: 036704. https://link.aps.org/doi/10.1103/PhysRevE.75.036704.
[14] FENG Y, BOIVIN P, JACOB J, et al. Hybrid recursive regularized thermal lattice Boltzmann model for high subsonic compressible flows[J/OL]. J. Comput. Phys., 2019, 394(May): 82-99. DOI: 10.1016/j.jcp.2019.05.031.
[15] LI Q, HE Y L, WANG Y, et al. Coupled double-distribution-function lattice Boltzmann method for the compressible Navier-Stokes equations[J/OL]. Phys. Rev. E, 2007, 76: 056705. https://link.aps.org/doi/10.1103/PhysRevE.76.056705.
[16] QIAN Y H. Simulating thermohydrodynamics with lattice BGK models[J/OL]. Journal of Scientific Computing, 1993. https://doi.org/10.1007/BF01060932.
[17] ALEXANDER F, CHEN S, STERLING J. Lattice Boltzmann thermodynamics[J/OL]. Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics, 1993, 47: R2249-R2252. DOI: 10.1103/PhysRevE.47.R2249.
[18] CHEN Y, OHASHI H, AKIYAMA M. Thermal lattice Bhatnagar-Gross-Krook model without nonlinear deviations in macrodynamic equations[J/OL]. Phys. Rev. E, 1994, 50: 2776-2783. https://link.aps.org/doi/10.1103/PhysRevE.50.2776.
[19] SHAN X, CHEN H. A GENERAL MULTIPLE-RELAXATION-TIME BOLTZMANN COL￾LISION MODEL[J/OL]. International Journal of Modern Physics C, 2007, 18(04): 635-643. https://doi.org/10.1142/S0129183107010887.
[20] NIE X, SHAN X, CHEN H. Thermal lattice Boltzmann model for gases with internal degrees of freedom[J/OL]. Phys. Rev. E, 2008, 77: 035701. https://link.aps.org/doi/10.1103/PhysRevE.77.035701.
[21] SHAN X. Central-moment-based Galilean-invariant multiple-relaxation-time collision model [J/OL]. Phys. Rev. E, 2019, 100(4): 043308. DOI: 10.1103/PhysRevE.100.043308.
[22] LI X, SHAN X. Rotational symmetry of the multiple-relaxation-time collision model[J/OL]. Phys. Rev. E, 2021, 103(4): 043309. DOI: 10.1103/PhysRevE.103.043309.
[23] SHAN X, LI X, SHI Y. A multiple-relaxation-time collision model by Hermite expansion[J/OL]. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., 2021, 379(2208): 20200406. DOI: 10.1098/rsta.2020.0406.
[24] CAI Z, TORRILHON M. On the Holway-Weiss debate: Convergence of the Grad-moment￾expansion in kinetic gas theory[J/OL]. Phys. Fluids, 2019, 31(12): 126105. DOI: 10.1063/1.5127114.
[25] COREIXAS C, LATT J. Compressible lattice Boltzmann methods with adaptive velocity sten￾cils: An interpolation-free formulation[J/OL]. Phys. Fluids, 2020, 32(11): 116102. DOI:10.1063/5.0027986.
[26] 师羊羊. 非平衡流动的高阶格子玻尔兹曼方法[D]. 哈尔滨工业大学, 2021.
[27] HE X, SHAN X, DOOLEN G D. Discrete Boltzmann equation model for nonideal gases[J/OL]. Phys. Rev. E, 1998, 57(1): R13-R16. DOI: 10.1103/PhysRevE.57.R13.
[28] MOHAMAD A A, KUZMIN A. A critical evaluation of force term in lattice Boltzmann method, natural convection problem[J/OL]. Int. J. Heat Mass Transf., 2010, 53(5-6): 990-996. DOI:10.1016/j.ijheatmasstransfer.2009.11.014.
[29] BAWAZEER S A, BAAKEEM S S, MOHAMAD A A. A Critical Review of Forcing Schemes in Lattice Boltzmann Method: 1993–2019[J/OL]. Arch. Comput. Methods Eng., 2021, 28(7): 4405-4423. DOI: 10.1007/s11831-021-09535-4.
[30] YU Z, FAN L S. An interaction potential based lattice Boltzmann method with adaptive mesh refinement ( AMR ) for two-phase flow simulation[J/OL]. J. Comput. Phys., 2009, 228(17): 6456-6478. DOI: 10.1016/j.jcp.2009.05.034.
[31] SBRAGAGLIA M, BENZI R, BIFERALE L, et al. Lattice Boltzmann method with self￾consistent thermo-hydrodynamic equilibria[J/OL]. J. Fluid Mech., 2009, 628: 299. DOI: 10.1017/S002211200900665X.
[32] GUO Z, ZHENG C, SHI B. Discrete lattice effects on the forcing term in the lattice Boltzmann method[J/OL]. Phys. Rev. E, 2002, 65(4): 046308. DOI: 10.1103/PhysRevE.65.046308.
[33] BUICK J M, GREATED C A. Gravity in a lattice Boltzmann model[J/OL]. Phys. Rev. E, 2000, 61(5): 5307-5320. DOI: 10.1103/PhysRevE.61.5307.
[34] LADD A J C, VERBERG R. Lattice-Boltzmann Simulations of Particle-Fluid Suspensions [J/OL]. J. Stat. Phys., 2001, 104(September): 1191-1251. DOI: 10.1023/A:1010414013942.
[35] MARTYS N S, SHAN X, CHEN H. Evaluation of the external force term in the discrete Boltzmann equation[J/OL]. Phys. Rev. E, 1998, 58(5): 6855-6857. DOI: 10.1103/PhysRevE.58.6855.
[36] KUPERSHTOKH A L. New method of incorporating a body force term into the lattice Boltz￾mann equation[C]//Proeedings 5th Int. EDH Work. Poitiers, 2004: 241-246.
[37] KUPERSHTOKH A L, MEDVEDEV D, KARPOV D. On equations of state in a lattice Boltzmann method[J/OL]. Comput. Math. with Appl., 2009, 58(5): 965-974. DOI: 10.1016/j.camwa.2009.02.024.
[38] HUANG H, KRAFCZYK M, LU X. Forcing term in single-phase and Shan-Chen-type multiphase lattice Boltzmann models[J/OL]. Phys. Rev. E, 2011, 84(4): 046710. DOI:10.1103/PhysRevE.84.046710.
[39] LI Q, LUO K H, LI X J. Forcing scheme in pseudopotential lattice Boltzmann model for mul￾tiphase flows[J/OL]. Phys. Rev. E, 2012, 86(1): 016709. DOI: 10.1103/PhysRevE.86.016709.
[40] SILVA G, SEMIAO V. First- and second-order forcing expansions in a lattice Boltzmann method reproducing isothermal hydrodynamics in artificial compressibility form[J/OL]. J. Fluid Mech., 2012, 698: 282-303. DOI: 10.1017/jfm.2012.83.
[41] LI X, DUAN W, SHAN X. Second-order force scheme for lattice Boltzmann method[A/OL].2022. arXiv: 2212.07494.
[42] SHAN X. The mathematical structure of the lattices of the lattice Boltzmann method[J/OL]. J.Comput. Sci., 2016, 17: 475-481. DOI: 10.1016/j.jocs.2016.03.002.
[43] CORNUBERT R, D’HUMIÈRES D, LEVERMORE D. A Knudsen layer theory for lattice gases[J/OL]. Phys. D Nonlinear Phenom., 1991, 47(1-2): 241-259. DOI: 10.1016/0167-278 9(91)90295-K.
[44] GINZBOURG I, ADLER P M. Boundary flow condition analysis for the three-dimensional lattice Boltzmann model[J/OL]. J. Phys. II, 1994, 4(2): 191-214. DOI: 10.1051/jp2:1994123.
[45] NOBLE D R, CHEN S, GEORGIADIS J G, et al. A consistent hydrodynamic boundary condition for the lattice Boltzmann method[J/OL]. Phys. Fluids, 1995, 7(1): 203. DOI: 10.1063/1.868767.
[46] CHEN S, MARTÍNEZ D O, MEI R. On boundary conditions in lattice Boltzmann methods [J/OL]. Phys. Fluids, 1996, 8(9): 2527. DOI: 10.1063/1.869035.
[47] MAIER R S, BERNARD R S, GRUNAU D W. Boundary conditions for the lattice Boltzmann method[J/OL]. Phys. Fluids, 1996, 8(7): 1788. DOI: 10.1063/1.868961.
[48] ZOU Q, HE X. On pressure and velocity boundary conditions for the lattice Boltzmann BGK model[J/OL]. Phys. Fluids, 1997, 9(6): 1591-1598. DOI: 10.1063/1.869307.
[49] HE X, DOOLEN G. Lattice Boltzmann Method on Curvilinear Coordinates System: Flow around a Circular Cylinder[J/OL]. J. Comput. Phys., 1997, 134(2): 306-315. DOI: 10.1006/jcph.1997.5709.
[50] SANJEEVI S K P, ZARGHAMI A, PADDING J T. Choice of no-slip curved boundary condition for lattice Boltzmann simulations of high-Reynolds-number flows[J/OL]. Phys. Rev. E, 2018, 97(4): 043305. DOI: 10.1103/PhysRevE.97.043305.
[51] XU L, SERRE E, SAGAUT P. A theoretical analysis of mass leakage at boundaries within the lattice Boltzmann method[J/OL]. Phys. Fluids, 2022, 34(6): 065113. DOI: 10.1063/5.0089253.
[52] PESKIN C S. Flow patterns around heart valves: A numerical method[J/OL]. J. Comput. Phys., 1972, 10(2): 252-271. DOI: 10.1016/0021-9991(72)90065-4.
[53] FENG Z G, MICHAELIDES E E. Proteus: a direct forcing method in the simulations of particulate flows[J/OL]. J. Comput. Phys., 2005, 202(1): 20-51. DOI: 10.1016/j.jcp.2004.06.020.
[54] WU J, SHU C. Implicit velocity correction-based immersed boundary-lattice Boltzmann method and its applications[J/OL]. J. Comput. Phys., 2009, 228(6): 1963-1979. DOI: 10.1016/j.jcp.2008.11.019.
[55] XU L, TIAN F B, YOUNG J, et al. A novel geometry-adaptive Cartesian grid based immersed boundary–lattice Boltzmann method for fluid–structure interactions at moderate and high Reynolds numbers[J/OL]. J. Comput. Phys., 2018, 375: 22-56. DOI: 10.1016/j.jcp.2018.08.024.
[56] PENG C, AYALA O M, WANG L P. A comparative study of immersed boundary method and interpolated bounce-back scheme for no-slip boundary treatment in the lattice Boltzmann method: Part I, laminar flows[J/OL]. Comput. Fluids, 2019, 192: 104233. DOI: 10.1016/j.compfluid.2019.06.032.
[57] CHEN H. Volumetric formulation of the lattice Boltzmann method for fluid dynamics: Basic concept[J/OL]. Phys. Rev. E, 1998, 58(3): 3955-3963. DOI: 10.1103/PhysRevE.58.3955.
[58] CHEN H, TEIXEIRA C, MOLVIG K. Realization of Fluid Boundary Conditions via Discrete Boltzmann Dynamics[J/OL]. Int. J. Mod. Phys. C, 1998, 09(08): 1281-1292. DOI: 10.1142/S0129183198001151.
[59] ROHDE M, DERKSEN J J, Van den Akker H E A. Volumetric method for calculating the flow around moving objects in lattice-Boltzmann schemes[J/OL]. Phys. Rev. E, 2002, 65(5): 056701. DOI: 10.1103/PhysRevE.65.056701.
[60] KLASS F, GABBANA A, BARTEL A. A non-equilibrium bounce-back boundary condition for thermal multispeed LBM[J/OL]. J. Comput. Sci., 2021, 53(April): 101364. DOI: 10.1016/j.jocs.2021.101364.
[61] MALASPINAS O P, CHOPARD B, LATT J. General regularized boundary condition for multispeed lattice Boltzmann models[J/OL]. Comput. Fluids, 2011, 49(1): 29-35. DOI: 10.1016/j.compfluid.2011.04.010.
[62] LEE H, BAWAZEER S, MOHAMAD A A. Boundary conditions for lattice Boltzmann method with multispeed lattices[J/OL]. Comput. Fluids, 2018, 162: 152-159. DOI: 10.1016/j.compfluid.2017.12.011.
[63] MAXWELL J C. VII. On stresses in rarified gases arising from inequalities of temperature [J/OL]. Philos. Trans. R. Soc. London, 1879, 170: 231-256. DOI: 10.1098/rstl.1879.0067.
[64] EPSTEIN M. A model of the wall boundary condition in kinetic theory.[J/OL]. AIAA J., 1967,5(10): 1797-1800. DOI: 10.2514/3.4307.
[65] CERCIGNANI C, LAMPIS M. Kinetic models for gas—surface interactions[J/OL]. Transp. Theory Stat. Phys., 1971, 1(2): 101-114. DOI: 10.1080/00411457108231440.
[66] KLINC T. Slip Coefficients for General Gas-Surface Interaction[J/OL]. Phys. Fluids, 1972, 15 (6): 1018. DOI: 10.1063/1.1694022.
[67] MENG J, ZHANG Y. Diffuse reflection boundary condition for high-order lattice Boltzmann models with streaming–collision mechanism[J/OL]. J. Comput. Phys., 2014, 258: 601-612. DOI: 10.1016/j.jcp.2013.10.057.
[68] BHATNAGAR P L, GROSS E P, KROOK M. A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component Systems[J/OL]. Phys.Rev., 1954, 94: 511-525. https://link.aps.org/doi/10.1103/PhysRev.94.511.
[69] HOLWAY L H. New Statistical Models for Kinetic Theory: Methods of Construction[J/OL]. The Physics of Fluids, 1966, 9(9): 1658-1673. https://aip.scitation.org/doi/abs/10.1063/1.1761920.
[70] Generalization of the Krook kinetic relaxation equation[J/OL]. Fluid Dynamics, 1972, 3(5): 95-96. DOI: 10.1007/BF01029546.
[71] GRAD H. On the kinetic theory of rarefied gases[J/OL]. Commun. Pure Appl. Math., 1949, 2 (4): 331-407. DOI: 10.1002/cpa.3160020403.
[72] LI Z, SHAN X. Body-force modelling in thermal compressible flows with lattice Boltzmann method[A]. 2023. arXiv: 2302.04741.
[73] GAD-EL HAK M. The Fluid Mechanics of Microdevices—The Freeman Scholar Lecture [J/OL]. Journal of Fluids Engineering, 1999, 121(1): 5-33. https://doi.org/10.1115/1.2822013.
[74] LEE T, LIN C L. Rarefaction and compressibility effects of the lattice-Boltzmann-equation method in a gas microchannel[J/OL]. Phys. Rev. E, 2005, 71: 046706. https://link.aps.org/doi/10.1103/PhysRevE.71.046706.
[75] SPIEGEL E A. Convective Instability in a Compressible Atmosphere I[J/OL]. Astrophys. J., 1965, 141: 1068. DOI: 10.1086/148197.
[76] SCAGLIARINI A, BIFERALE L, SBRAGAGLIA M, et al. Lattice Boltzmann methods for thermal flows: Continuum limit and applications to compressible Rayleigh–Taylor systems [J/OL]. Phys. Fluids, 2010, 22(5): 055101. DOI: 10.1063/1.3392774.

所在学位评定分委会
力学
国内图书分类号
中国
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/544674
专题工学院_力学与航空航天工程系
推荐引用方式
GB/T 7714
李作旭. 可压缩高阶格子玻尔兹曼算法研究——体力项建模及流体固壁边界条件[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032387-李作旭-力学与航空航天(2639KB)学位论文--限制开放CC BY-NC-SA请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[李作旭]的文章
百度学术
百度学术中相似的文章
[李作旭]的文章
必应学术
必应学术中相似的文章
[李作旭]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。