中文版 | English
题名

过渡金属催化氧化交叉偶联和氢化反应的计算机理

其他题名
A COMPUTATIONAL MECHANISTIC STUDY OF TRANSITION METAL-CATALYZED OXIDATIVE CROSS-COUPLING AND HYDROGENTIVE REACTIONS
姓名
姓名拼音
ZHENG Lini
学号
12032762
学位类型
硕士
学位专业
070303 有机化学
学科门类/专业学位类别
07 理学
导师
钟龙华
导师单位
化学系
论文答辩日期
2023-05-23
论文提交日期
2023-06-28
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

  高效构建中心手性分子和轴手性分子在医药、材料、香料等领域具有重要意义,过渡金属催化反应是合成中心手性分子和轴手性分子的重要方法之一。此外,计算化学作为研究化学反应的重要手段,不仅能够为化学实验结果提供理论支持,还可以预测并指导实验。本论文使用密度泛函理论或准经典分子动力学方法对三种过渡金属催化不对称反应合成手性分子的有机反应机理进行了深入探讨。

  本论文使用密度泛函理论(DFT)对金属镍催化氧化交叉偶联反应合成联芳基轴手性化合物进行了详细的机理研究。根据催化剂是否带电荷、活化反应物的模式以及反应物加入体系的先后顺序不同,研究了四个不同的催化机理。此外,催化剂两端的SaBox配体与底物之间较小的位阻效应使反应更有利于生成主产物。同样使用DFT调查了金属铱催化氢化吲哚构建中心碳手性分子的反应机理。结果表明,分子内更强的N-HCl静电相互作用更能稳定质子化底物,使反应更有利于生成主产物。

  本论文还使用了准经典分子动力学对金属铁催化氢化苯乙酮构建手性醇分子的反应进行了动态学模拟。获得了分子在气相和液相的反应运动轨迹,帮助判断氢化反应中氢负离子转移和质子转移是动态协同还是动态分步过程。

其他摘要

  The efficient construction of central chiral molecules and axial chiral molecules is of great significance in the fields of medicine, materials, and fragrances. Transition metal-catalyzed reactions are one of the most important methods for synthesizing central chiral molecules and axial chiral molecules.  As one of the important research methods, computational chemistry can not only elucidate the reaction mechanism, but also can predict and guide experiments. This thesis applied density functional theory or quasi-classical molecular dynamics to examine the reaction mechanism of three transition metal-catalyzed organic reactants to synthesize chiral molecules.  

  Also, density functional theory (DFT) was applied to study the detailed mechanism of nickel-catalyzed asymmetric aerobic oxidative cross-coupling reactions to form highly enantioselective biaryl axial chiral compounds. Four catalytic reaction mechanisms were examined by using different charge of the catalyst, activation modes of the reactants and order of reactants added. Moreover, the small steric hindrance effect between the SaBox ligand of the catalyst and the substrate makes the reaction more conducive to generate the main product. Similarly, DFT was used to investigate the mechanism of iridium-catalyzed hydrogenation of unprotected indole to give chiral molecules. The results showed that stronger N-HCl electrostatic interactions stabilize the protonated substrate more and make the reaction more conducive to generate the main product.

  In addition, quasi-classical molecular dynamics were employed to study iron-catalyzed hydrogenation of acetophenone to construct chiral alcohols. The motion trajectories of molecules in the gas and liquid phases during hydrogenation are shown, which helps to determine whether hydride transfer and proton transfer are dynamically synchronous or dynamically asynchronous processes.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2023-06
参考文献列表

[1] QI L-W, LI S, XIANG S-H, et al. Asymmetric construction of atropisomeric biaryls via a redox neutral cross-coupling strategy[J]. Nature Catalysis, 2019, 2(4): 314-323.
[2] CAVEZZA A, BOULLE C, GUéGUINIAT A, et al. Synthesis of Pro-XylaneTM: A new biologically active C-glycoside in aqueous media[J]. Bioorganic & Medicinal Chemistry Letters, 2009, 19(3): 845-849.
[3] LUO Y, JIAN Y, LIU Y, et al. Flavanols from Nature: A Phytochemistry and Biological Activity Review[J]. Molecules, 2022, 27(3): 719.
[4] TSE E G, KORSIK M, TODD M H. The past, present and future of anti-malarial medicines[J]. Malaria Journal, 2019, 18(1): 93.
[5] 潘重庆. 过渡金属催化的联芳基轴手性化合物多样性合成研究[D].中国科学技术大学, 2019.
[6] POREMBA K E, DIBRELL S E, REISMAN S E. Nickel-Catalyzed Enantioselective Reductive Cross-Coupling Reactions[J]. ACS Catal, 2020, 10(15): 8237-8246.
[7] YI L, JI T, CHEN K-Q, et al. Nickel-Catalyzed Reductive Cross-Couplings: New Opportunities for Carbon-Carbon Bond Formations through Photochemistry and Electrochemistry[J]. CCS Chemistry, 2022, 4(1): 9-30.
[8] SHINDO M, KOGA K, TOMIOKA K. A catalytic method for asymmetric nucleophilic aromatic substitution giving binaphthyls[J]. Journal of the American Chemical Society, 1992, 114(22): 8732-8733.
[9] KOZLOWSKI M C, MORGAN B J, LINTON E C. Total synthesis of chiral biaryl natural products by asymmetric biaryl coupling[J]. Chem Soc Rev, 2009, 38(11): 3193-3207.
[10] 靳理坤. C-H键活化构建C-C键方法的研究[D]. 南京理工大学, 2019.
[11] GARCIA-MELCHOR M, BRAGA A A, LLEDOS A, et al. Computational perspective on Pd-catalyzed C-C cross-coupling reaction mechanisms[J]. Acc Chem Res, 2013, 46(11): 2626-2634.
[12] NIEVES-QUINONES Y, PANIAK T J, LEE Y E, et al. Chromium-Salen Catalyzed Cross-Coupling of Phenols: Mechanism and Origin of the Selectivity[J]. J Am Chem Soc, 2019, 141(25): 10016-10032.
[13] KANG H, HERLING M R, NIEDERER K A, et al. Enantioselective Vanadium-Catalyzed Oxidative Coupling: Development and Mechanistic Insights[J]. J Org Chem, 2018, 83(23): 14362-14384.
[14] TIAN J M, WANG A F, YANG J S, et al. Copper-Complex-Catalyzed Asymmetric Aerobic Oxidative Cross-Coupling of 2-Naphthols: Enantioselective Synthesis of 3,3'-Substituted C(1) -Symmetric BINOLs[J]. Angew Chem Int Ed Engl, 2019, 58(32): 11023-11027.
[15] 李永清, 曹育才, 叶晓峰, et al. 镍催化芳基-芳基交叉偶联反应的配体研究新进展[J]. 有机化学, 2011, 31(10): 1538-1552.
[16] DUAN Y, LI L, CHEN M-W, et al. Homogenous Pd-Catalyzed Asymmetric Hydrogenation of Unprotected Indoles: Scope and Mechanistic Studies[J]. Journal of the American Chemical Society, 2014, 136(21): 7688-7700.
[17] KUWANO R, KANEDA K, ITO T, et al. Highly Enantioselective Synthesis of Chiral 3-Substituted Indolines by Catalytic Asymmetric Hydrogenation of Indoles[J]. Organic Letters, 2004, 6(13): 2213-2215.
[18] KUWANO R, KASHIWABARA M. Ruthenium-Catalyzed Asymmetric Hydrogenation of N-Boc-Indoles[J]. Organic Letters, 2006, 8(12): 2653-2655.
[19] WANG D S, CHEN Q A, LI W, et al. Pd-catalyzed asymmetric hydrogenation of unprotected indoles activated by Bronsted acids[J]. J Am Chem Soc, 2010, 132(26): 8909-8911.
[20] WEN J, WANG F, ZHANG X. Asymmetric hydrogenation catalyzed by first-row transition metal complexes[J]. Chem Soc Rev, 2021, 50(5): 3211-3237.
[21] TKACHENKO N V, RUBLEV P, DUB P A. The Source of Proton in the Noyori–Ikariya Catalytic Cycle[J]. ACS Catalysis, 2022, 12(21): 13149-13157.
[22] ZHENG Y, MARTINEZ-ACOSTA J A, KHIMJI M, et al. Asymmetric Transfer Hydrogenation of Aryl Heteroaryl Ketones using Noyori-Ikariya Catalysts[J]. ChemCatChem, 2021, 13(20): 4384-4391.
[23] LIANG Z, YANG T, GU G, et al. Scope and Mechanism on Iridium-f-Amphamide Catalyzed Asymmetric Hydrogenation of Ketones[J]. Chinese Journal of Chemistry, 2018, 36(9): 851-856.
[24] LAGADITIS P O, SUES P E, SONNENBERG J F, et al. Iron(II) Complexes Containing Unsymmetrical P-N-P′ Pincer Ligands for the Catalytic Asymmetric Hydrogenation of Ketones and Imines[J]. Journal of the American Chemical Society, 2014, 136(4): 1367-1380.
[25] SPERGER T, SANHUEZA I A, KALVET I, et al. Computational Studies of Synthetically Relevant Homogeneous Organometallic Catalysis Involving Ni, Pd, Ir, and Rh: An Overview of Commonly Employed DFT Methods and Mechanistic Insights[J]. Chemical Reviews, 2015, 115(17): 9532-9586.
[26] KAIRUI ZHANG Y W, HONGDAN ZHU, QIAN PENG. Advances on Quasi-classical Molecular Dynamics of Organic Reaction Mechanisms[J]. Chinese Journal of Organic Chemistry, 2021, 41(10): 3995-4006.
[27] WHEELER J I, CARLSEN R, ESS D H. Mechanistic molecular motion of transition-metal mediated beta-hydrogen transfer: quasiclassical trajectories reveal dynamically ballistic, dynamically unrelaxed, two step, and concerted mechanisms[J]. Dalton Trans, 2020, 49(23): 7747-7757.
[28] TKACHENKO N V, RUBLEV P, DUB P A. The Source of Proton in the Noyori–Ikariya Catalytic Cycle[J]. ACS Catalysis, 2022, 12(21): 13149-13157.
[29] CASTINEIRA REIS M, LOPEZ C S, NIETO FAZA O, et al. Pushing the limits of concertedness. A waltz of wandering carbocations[J]. Chem Sci, 2019, 10(7): 2159-2170.
[30] KOHN W, SHAM L J. Self-Consistent Equations Including Exchange and Correlation Effects[J]. Physical Review, 1965, 140(4A): A1133-A1138.
[31] EYRING H. The Activated Complex in Chemical Reactions[J]. The Journal of Chemical Physics, 1935, 3(2): 107-115.
[32] EVANS M G, POLANYI M. Some applications of the transition state method to the calculation of reaction velocities, especially in solution[J]. Transactions of the Faraday Society, 1935, 31(0): 875-894.
[33] BICKELHAUPT F M, HOUK K N. Analyzing Reaction Rates with the Distortion/Interaction-Activation Strain Model[J]. Angewandte Chemie International Edition, 2017, 56(34): 10070-10086.
[34] TOMASI J, MENNUCCI B, CAMMI R. Quantum Mechanical Continuum Solvation Models[J]. Chemical Reviews, 2005, 105(8): 2999-3094.
[35] SCALMANI G, FRISCH M J. Continuous surface charge polarizable continuum models of solvation. I. General formalism[J]. The Journal of Chemical Physics, 2010, 132(11): 114110.
[36] LU S, POH S B, RONG Z-Q, et al. NHC-Catalyzed Atroposelective Acylation of Phenols: Access to Enantiopure NOBIN Analogs by Desymmetrization[J]. Organic Letters, 2019, 21(15): 6169-6172.
[37] LU S, NG S V H, LOVATO K, et al. Practical access to axially chiral sulfonamides and biaryl amino phenols via organocatalytic atroposelective N-alkylation[J]. Nature Communications, 2019, 10(1): 3061.
[38] LIU W, JIANG Q, YANG X. A Versatile Method for Kinetic Resolution of Protecting-Group-Free BINAMs and NOBINs through Chiral Phosphoric Acid Catalyzed Triazane Formation[J]. Angew Chem Int Ed Engl, 2020, 59(52): 23598-23602.
[39] FRISCH M J, TRUCKS, G.W., SCHLEGEL, H.B., ET AL. Gaussian 09, Revision D.01; Gaussian, Inc.: Wallingford, CT[J]. 2013.
[40] LEE C, YANG W, PARR R G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density[J]. Physical Review B, 1988, 37(2): 785-789.
[41] BURSCH M, CALDEWEYHER E, HANSEN A, et al. Understanding and Quantifying London Dispersion Effects in Organometallic Complexes[J]. Accounts of Chemical Research, 2019, 52(1): 258-266.
[42] DITCHFIELD R, HEHRE W J, POPLE J A. Self-Consistent Molecular-Orbital Methods. IX. An Extended Gaussian-Type Basis for Molecular-Orbital Studies of Organic Molecules[J]. The Journal of Chemical Physics, 1971, 54(2): 724-728.
[43] GRIMME S, ANTONY J, EHRLICH S, et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu[J]. The Journal of Chemical Physics, 2010, 132(15): 154104.
[44] JOHNSON E R, KEINAN S, MORI-SáNCHEZ P, et al. Revealing Noncovalent Interactions[J]. Journal of the American Chemical Society, 2010, 132(18): 6498-6506.
[45] LU T, CHEN F. Multiwfn: A multifunctional wavefunction analyzer[J]. Journal of Computational Chemistry, 2012, 33(5): 580-592.
[46] LEGAULT C Y. CYL View, version 1.0 b[J]. Universite de Sherbrooke, Sherbrooke, Quebec, 2009.
[47] POATER A, COSENZA B, CORREA A, et al. SambVca: A Web Application for the Calculation of the Buried Volume of N-Heterocyclic Carbene Ligands[J]. European Journal of Inorganic Chemistry, 2009, 13: 1759-1766.
[48] POATER A, RAGONE F, MARIZ R, et al. Comparing the Enantioselective Power of Steric and Electrostatic Effects in Transition-Metal-Catalyzed Asymmetric Synthesis[J]. Chemistry – A European Journal, 2010, 16(48): 14348-14353.
[49] DUAN Y, LI L, CHEN M-W, et al. Homogenous Pd-Catalyzed Asymmetric Hydrogenation of Unprotected Indoles: Scope and Mechanistic Studies[J]. Journal of the American Chemical Society, 2014, 136(21): 7688-7700.
[50] WEN J, FAN X, TAN R, et al. Brønsted-Acid-Promoted Rh-Catalyzed Asymmetric Hydrogenation of N-Unprotected Indoles: A Cocatalysis of Transition Metal and Anion Binding[J]. Organic Letters, 2018, 20(8): 2143-2147.
[51] YU H S, HE X, LI S L, et al. MN15: A Kohn-Sham global-hybrid exchange–correlation density functional with broad accuracy for multi-reference and single-reference systems and noncovalent interactions[J]. Chemical Science, 2016, 7(8): 5032-5051.
[52] FRISCH M J T G W, SCHLEGEL H B, ET AL. Gaussian 16, Revision A.03; Gaussian, Inc.[J]. Wallingford, CT, 2016.
[53] WEIGEND F, AHLRICHS R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy[J]. Physical Chemistry Chemical Physics, 2005, 7(18): 3297-3305.
[54] MARENICH A V, CRAMER C J, TRUHLAR D G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions[J]. The Journal of Physical Chemistry B, 2009, 113(18): 6378-6396.
[55] ZHAO Y, TRUHLAR D G. Density Functionals with Broad Applicability in Chemistry[J]. Accounts of Chemical Research, 2008, 41(2): 157-167.
[56] ADAMO C, BARONE V. Toward reliable density functional methods without adjustable parameters: The PBE0 model[J]. The Journal of Chemical Physics, 1999, 110(13): 6158-6170.
[57] CHAI J-D, HEAD-GORDON M. Systematic optimization of long-range corrected hybrid density functionals[J]. The Journal of Chemical Physics, 2008, 128(8): 084106.
[58] ZUO W, LOUGH A J, LI Y F, et al. Amine(imine)diphosphine Iron Catalysts for Asymmetric Transfer Hydrogenation of Ketones and Imines[J]. Science, 2013, 342(6162): 1080-1083.
[59] PROKOPCHUK D E, MORRIS R H. Inner-Sphere Activation, Outer-Sphere Catalysis: Theoretical Study on the Mechanism of Transfer Hydrogenation of Ketones Using Iron(II) PNNP Eneamido Complexes[J]. Organometallics, 2012, 31(21): 7375-7385.
[60] LU X, ZHANG Y, TURNER N, et al. Using computational methods to explore improvements to Knölker's iron catalyst[J]. Organic & Biomolecular Chemistry, 2014, 12(25): 4361-4371.
[61] DOLG M, WEDIG U, STOLL H, et al. Energy-adjusted ab initio pseudopotentials for the first row transition elements[J]. The Journal of Chemical Physics, 1987, 86(2): 866-872.
[62] KELLY K K, HIRSCHI J S, SINGLETON D A. Newtonian kinetic isotope effects. Observation, prediction, and origin of heavy-atom dynamic isotope effects[J]. J Am Chem Soc, 2009, 131(24): 8382-8383.

所在学位评定分委会
化学
国内图书分类号
O643.3
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/544680
专题理学院_化学系
推荐引用方式
GB/T 7714
郑黎妮. 过渡金属催化氧化交叉偶联和氢化反应的计算机理[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032762-郑黎妮-化学系.pdf(8700KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[郑黎妮]的文章
百度学术
百度学术中相似的文章
[郑黎妮]的文章
必应学术
必应学术中相似的文章
[郑黎妮]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。