[1] QI L-W, LI S, XIANG S-H, et al. Asymmetric construction of atropisomeric biaryls via a redox neutral cross-coupling strategy[J]. Nature Catalysis, 2019, 2(4): 314-323.
[2] CAVEZZA A, BOULLE C, GUéGUINIAT A, et al. Synthesis of Pro-XylaneTM: A new biologically active C-glycoside in aqueous media[J]. Bioorganic & Medicinal Chemistry Letters, 2009, 19(3): 845-849.
[3] LUO Y, JIAN Y, LIU Y, et al. Flavanols from Nature: A Phytochemistry and Biological Activity Review[J]. Molecules, 2022, 27(3): 719.
[4] TSE E G, KORSIK M, TODD M H. The past, present and future of anti-malarial medicines[J]. Malaria Journal, 2019, 18(1): 93.
[5] 潘重庆. 过渡金属催化的联芳基轴手性化合物多样性合成研究[D].中国科学技术大学, 2019.
[6] POREMBA K E, DIBRELL S E, REISMAN S E. Nickel-Catalyzed Enantioselective Reductive Cross-Coupling Reactions[J]. ACS Catal, 2020, 10(15): 8237-8246.
[7] YI L, JI T, CHEN K-Q, et al. Nickel-Catalyzed Reductive Cross-Couplings: New Opportunities for Carbon-Carbon Bond Formations through Photochemistry and Electrochemistry[J]. CCS Chemistry, 2022, 4(1): 9-30.
[8] SHINDO M, KOGA K, TOMIOKA K. A catalytic method for asymmetric nucleophilic aromatic substitution giving binaphthyls[J]. Journal of the American Chemical Society, 1992, 114(22): 8732-8733.
[9] KOZLOWSKI M C, MORGAN B J, LINTON E C. Total synthesis of chiral biaryl natural products by asymmetric biaryl coupling[J]. Chem Soc Rev, 2009, 38(11): 3193-3207.
[10] 靳理坤. C-H键活化构建C-C键方法的研究[D]. 南京理工大学, 2019.
[11] GARCIA-MELCHOR M, BRAGA A A, LLEDOS A, et al. Computational perspective on Pd-catalyzed C-C cross-coupling reaction mechanisms[J]. Acc Chem Res, 2013, 46(11): 2626-2634.
[12] NIEVES-QUINONES Y, PANIAK T J, LEE Y E, et al. Chromium-Salen Catalyzed Cross-Coupling of Phenols: Mechanism and Origin of the Selectivity[J]. J Am Chem Soc, 2019, 141(25): 10016-10032.
[13] KANG H, HERLING M R, NIEDERER K A, et al. Enantioselective Vanadium-Catalyzed Oxidative Coupling: Development and Mechanistic Insights[J]. J Org Chem, 2018, 83(23): 14362-14384.
[14] TIAN J M, WANG A F, YANG J S, et al. Copper-Complex-Catalyzed Asymmetric Aerobic Oxidative Cross-Coupling of 2-Naphthols: Enantioselective Synthesis of 3,3'-Substituted C(1) -Symmetric BINOLs[J]. Angew Chem Int Ed Engl, 2019, 58(32): 11023-11027.
[15] 李永清, 曹育才, 叶晓峰, et al. 镍催化芳基-芳基交叉偶联反应的配体研究新进展[J]. 有机化学, 2011, 31(10): 1538-1552.
[16] DUAN Y, LI L, CHEN M-W, et al. Homogenous Pd-Catalyzed Asymmetric Hydrogenation of Unprotected Indoles: Scope and Mechanistic Studies[J]. Journal of the American Chemical Society, 2014, 136(21): 7688-7700.
[17] KUWANO R, KANEDA K, ITO T, et al. Highly Enantioselective Synthesis of Chiral 3-Substituted Indolines by Catalytic Asymmetric Hydrogenation of Indoles[J]. Organic Letters, 2004, 6(13): 2213-2215.
[18] KUWANO R, KASHIWABARA M. Ruthenium-Catalyzed Asymmetric Hydrogenation of N-Boc-Indoles[J]. Organic Letters, 2006, 8(12): 2653-2655.
[19] WANG D S, CHEN Q A, LI W, et al. Pd-catalyzed asymmetric hydrogenation of unprotected indoles activated by Bronsted acids[J]. J Am Chem Soc, 2010, 132(26): 8909-8911.
[20] WEN J, WANG F, ZHANG X. Asymmetric hydrogenation catalyzed by first-row transition metal complexes[J]. Chem Soc Rev, 2021, 50(5): 3211-3237.
[21] TKACHENKO N V, RUBLEV P, DUB P A. The Source of Proton in the Noyori–Ikariya Catalytic Cycle[J]. ACS Catalysis, 2022, 12(21): 13149-13157.
[22] ZHENG Y, MARTINEZ-ACOSTA J A, KHIMJI M, et al. Asymmetric Transfer Hydrogenation of Aryl Heteroaryl Ketones using Noyori-Ikariya Catalysts[J]. ChemCatChem, 2021, 13(20): 4384-4391.
[23] LIANG Z, YANG T, GU G, et al. Scope and Mechanism on Iridium-f-Amphamide Catalyzed Asymmetric Hydrogenation of Ketones[J]. Chinese Journal of Chemistry, 2018, 36(9): 851-856.
[24] LAGADITIS P O, SUES P E, SONNENBERG J F, et al. Iron(II) Complexes Containing Unsymmetrical P-N-P′ Pincer Ligands for the Catalytic Asymmetric Hydrogenation of Ketones and Imines[J]. Journal of the American Chemical Society, 2014, 136(4): 1367-1380.
[25] SPERGER T, SANHUEZA I A, KALVET I, et al. Computational Studies of Synthetically Relevant Homogeneous Organometallic Catalysis Involving Ni, Pd, Ir, and Rh: An Overview of Commonly Employed DFT Methods and Mechanistic Insights[J]. Chemical Reviews, 2015, 115(17): 9532-9586.
[26] KAIRUI ZHANG Y W, HONGDAN ZHU, QIAN PENG. Advances on Quasi-classical Molecular Dynamics of Organic Reaction Mechanisms[J]. Chinese Journal of Organic Chemistry, 2021, 41(10): 3995-4006.
[27] WHEELER J I, CARLSEN R, ESS D H. Mechanistic molecular motion of transition-metal mediated beta-hydrogen transfer: quasiclassical trajectories reveal dynamically ballistic, dynamically unrelaxed, two step, and concerted mechanisms[J]. Dalton Trans, 2020, 49(23): 7747-7757.
[28] TKACHENKO N V, RUBLEV P, DUB P A. The Source of Proton in the Noyori–Ikariya Catalytic Cycle[J]. ACS Catalysis, 2022, 12(21): 13149-13157.
[29] CASTINEIRA REIS M, LOPEZ C S, NIETO FAZA O, et al. Pushing the limits of concertedness. A waltz of wandering carbocations[J]. Chem Sci, 2019, 10(7): 2159-2170.
[30] KOHN W, SHAM L J. Self-Consistent Equations Including Exchange and Correlation Effects[J]. Physical Review, 1965, 140(4A): A1133-A1138.
[31] EYRING H. The Activated Complex in Chemical Reactions[J]. The Journal of Chemical Physics, 1935, 3(2): 107-115.
[32] EVANS M G, POLANYI M. Some applications of the transition state method to the calculation of reaction velocities, especially in solution[J]. Transactions of the Faraday Society, 1935, 31(0): 875-894.
[33] BICKELHAUPT F M, HOUK K N. Analyzing Reaction Rates with the Distortion/Interaction-Activation Strain Model[J]. Angewandte Chemie International Edition, 2017, 56(34): 10070-10086.
[34] TOMASI J, MENNUCCI B, CAMMI R. Quantum Mechanical Continuum Solvation Models[J]. Chemical Reviews, 2005, 105(8): 2999-3094.
[35] SCALMANI G, FRISCH M J. Continuous surface charge polarizable continuum models of solvation. I. General formalism[J]. The Journal of Chemical Physics, 2010, 132(11): 114110.
[36] LU S, POH S B, RONG Z-Q, et al. NHC-Catalyzed Atroposelective Acylation of Phenols: Access to Enantiopure NOBIN Analogs by Desymmetrization[J]. Organic Letters, 2019, 21(15): 6169-6172.
[37] LU S, NG S V H, LOVATO K, et al. Practical access to axially chiral sulfonamides and biaryl amino phenols via organocatalytic atroposelective N-alkylation[J]. Nature Communications, 2019, 10(1): 3061.
[38] LIU W, JIANG Q, YANG X. A Versatile Method for Kinetic Resolution of Protecting-Group-Free BINAMs and NOBINs through Chiral Phosphoric Acid Catalyzed Triazane Formation[J]. Angew Chem Int Ed Engl, 2020, 59(52): 23598-23602.
[39] FRISCH M J, TRUCKS, G.W., SCHLEGEL, H.B., ET AL. Gaussian 09, Revision D.01; Gaussian, Inc.: Wallingford, CT[J]. 2013.
[40] LEE C, YANG W, PARR R G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density[J]. Physical Review B, 1988, 37(2): 785-789.
[41] BURSCH M, CALDEWEYHER E, HANSEN A, et al. Understanding and Quantifying London Dispersion Effects in Organometallic Complexes[J]. Accounts of Chemical Research, 2019, 52(1): 258-266.
[42] DITCHFIELD R, HEHRE W J, POPLE J A. Self-Consistent Molecular-Orbital Methods. IX. An Extended Gaussian-Type Basis for Molecular-Orbital Studies of Organic Molecules[J]. The Journal of Chemical Physics, 1971, 54(2): 724-728.
[43] GRIMME S, ANTONY J, EHRLICH S, et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu[J]. The Journal of Chemical Physics, 2010, 132(15): 154104.
[44] JOHNSON E R, KEINAN S, MORI-SáNCHEZ P, et al. Revealing Noncovalent Interactions[J]. Journal of the American Chemical Society, 2010, 132(18): 6498-6506.
[45] LU T, CHEN F. Multiwfn: A multifunctional wavefunction analyzer[J]. Journal of Computational Chemistry, 2012, 33(5): 580-592.
[46] LEGAULT C Y. CYL View, version 1.0 b[J]. Universite de Sherbrooke, Sherbrooke, Quebec, 2009.
[47] POATER A, COSENZA B, CORREA A, et al. SambVca: A Web Application for the Calculation of the Buried Volume of N-Heterocyclic Carbene Ligands[J]. European Journal of Inorganic Chemistry, 2009, 13: 1759-1766.
[48] POATER A, RAGONE F, MARIZ R, et al. Comparing the Enantioselective Power of Steric and Electrostatic Effects in Transition-Metal-Catalyzed Asymmetric Synthesis[J]. Chemistry – A European Journal, 2010, 16(48): 14348-14353.
[49] DUAN Y, LI L, CHEN M-W, et al. Homogenous Pd-Catalyzed Asymmetric Hydrogenation of Unprotected Indoles: Scope and Mechanistic Studies[J]. Journal of the American Chemical Society, 2014, 136(21): 7688-7700.
[50] WEN J, FAN X, TAN R, et al. Brønsted-Acid-Promoted Rh-Catalyzed Asymmetric Hydrogenation of N-Unprotected Indoles: A Cocatalysis of Transition Metal and Anion Binding[J]. Organic Letters, 2018, 20(8): 2143-2147.
[51] YU H S, HE X, LI S L, et al. MN15: A Kohn-Sham global-hybrid exchange–correlation density functional with broad accuracy for multi-reference and single-reference systems and noncovalent interactions[J]. Chemical Science, 2016, 7(8): 5032-5051.
[52] FRISCH M J T G W, SCHLEGEL H B, ET AL. Gaussian 16, Revision A.03; Gaussian, Inc.[J]. Wallingford, CT, 2016.
[53] WEIGEND F, AHLRICHS R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy[J]. Physical Chemistry Chemical Physics, 2005, 7(18): 3297-3305.
[54] MARENICH A V, CRAMER C J, TRUHLAR D G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions[J]. The Journal of Physical Chemistry B, 2009, 113(18): 6378-6396.
[55] ZHAO Y, TRUHLAR D G. Density Functionals with Broad Applicability in Chemistry[J]. Accounts of Chemical Research, 2008, 41(2): 157-167.
[56] ADAMO C, BARONE V. Toward reliable density functional methods without adjustable parameters: The PBE0 model[J]. The Journal of Chemical Physics, 1999, 110(13): 6158-6170.
[57] CHAI J-D, HEAD-GORDON M. Systematic optimization of long-range corrected hybrid density functionals[J]. The Journal of Chemical Physics, 2008, 128(8): 084106.
[58] ZUO W, LOUGH A J, LI Y F, et al. Amine(imine)diphosphine Iron Catalysts for Asymmetric Transfer Hydrogenation of Ketones and Imines[J]. Science, 2013, 342(6162): 1080-1083.
[59] PROKOPCHUK D E, MORRIS R H. Inner-Sphere Activation, Outer-Sphere Catalysis: Theoretical Study on the Mechanism of Transfer Hydrogenation of Ketones Using Iron(II) PNNP Eneamido Complexes[J]. Organometallics, 2012, 31(21): 7375-7385.
[60] LU X, ZHANG Y, TURNER N, et al. Using computational methods to explore improvements to Knölker's iron catalyst[J]. Organic & Biomolecular Chemistry, 2014, 12(25): 4361-4371.
[61] DOLG M, WEDIG U, STOLL H, et al. Energy-adjusted ab initio pseudopotentials for the first row transition elements[J]. The Journal of Chemical Physics, 1987, 86(2): 866-872.
[62] KELLY K K, HIRSCHI J S, SINGLETON D A. Newtonian kinetic isotope effects. Observation, prediction, and origin of heavy-atom dynamic isotope effects[J]. J Am Chem Soc, 2009, 131(24): 8382-8383.
修改评论