[1] BADUE C, GUIDOLINI R, CARNEIRO R V, et al. Self-driving Cars: A Survey[J/OL]. Expert Systems with Applications, 2021, 165: 113816. https://www.sciencedirect.com/science/article/pii/S095741742030628X. DOI: https://doi.org/10.1016/j.eswa.2020.113816.
[2] LINN C Y. Trajectory Prediction of Dynamic Obstacles for Autonomous Vehicles[D/OL]. Singapore: National University of Singapore, 2020. https://www.pqdtcn.com/thesisDetails/98084B141F6054494BADA75E9E0F3D93.
[3] 贾晓港. 交互场景下的车辆轨迹预测研究[D/OL]. 哈尔滨: 哈尔滨工业大学, 2021. DOI:10.27061/d.cnki.ghgdu.2021.004027.
[4] LIU J B, MAO X Y, FANG Y Q, et al. A Survey on Deep-Learning Approaches for Vehicle Trajectory Prediction in Autonomous Driving[C/OL]//2021 IEEE International Conference on Robotics and Biomimetics (ROBIO). 2021: 978-985. DOI: 10.1109/ROBIO54168.2021.9739407.
[5] SONG H R, LUAN D, DING W C, et al. Learning to Predict Vehicle Trajectories with Model-based Planning[C/OL]//Proceedings of Machine Learning Research: Vol. 164 Proceedings of the 5th Conference on Robot Learning. PMLR, 2022: 1035-1045. https://proceedings.mlr.press/v164/song22a.html.
[6] RUDENKO A, PALMIERI L, HERMAN M, et al. Human Motion Trajectory Prediction: A Survey[J/OL]. The International Journal of Robotics Research, 2020, 39(8): 895-935. https://doi.org/10.1177/0278364920917446.
[7] MO X Y, HUANG Z Y, XING Y, et al. Multi-Agent Trajectory Prediction with Heterogeneous Edge-Enhanced Graph Attention Network[J/OL]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(7): 9554-9567. DOI: 10.1109/TITS.2022.3146300.
[8] GU J R, SUN C, ZHAO H. DenseTNT: End-to-end Trajectory Prediction from Dense Goal Sets [C/OL]//Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). Virtual, Online, Canada, 2021: 15283 - 15292. http://dx.doi.org/10.1109/ICCV48922.2021.01502.
[9] ZHAO H, GAO J Y, LAN T, et al. TNT: Target-driven Trajectory Prediction[C/OL]//Proceedings of Machine Learning Research: Vol. 155 Proceedings of the 2020 Conferenceon Robot Learning. PMLR, 2021: 895-904. https://proceedings.mlr.press/v155/zhao21b.html.
[10] FANG L J, JIANG Q H, SHI J P, et al. TPNet: Trajectory Proposal Network for Motion Prediction [C/OL]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Virtual, Online, United states, 2020: 6796 - 6805. http://dx.doi.org/10.1109/CVPR42600.2020.00683.
[11] WERLING M, ZIEGLER J, KAMMEL S, et al. Optimal Trajectory Generation for Dynamic Street Scenarios in a Frenét Frame[C/OL]//2010 IEEE International Conference on Robotics and Automation. 2010: 987-993. DOI: 10.1109/ROBOT.2010.5509799.
[12] DOSOVITSKIY A, ROS G, CODEVILLA F, et al. CARLA: An Open Urban Driving Simulator [C/OL]//Proceedings of Machine Learning Research: Vol. 78 Proceedings of the 1st Annual Conference on Robot Learning. PMLR, 2017: 1-16. https://proceedings.mlr.press/v78/dosovi tskiy17a.html.
[13] MANDALIA H M, SALVUCCI M D D. Using Support Vector Machines for Lane-Change Detection[J/OL]. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 2005, 49(22): 1965-1969. https://doi.org/10.1177/154193120504902217.
[14] AOUDE G S, DESARAJU V R, STEPHENS L H, et al. Driver Behavior Classification at Intersections and Validation on Large Naturalistic Data Set[J/OL]. IEEE Transactions on Intelligent Transportation Systems, 2012, 13(2): 724-736. DOI: 10.1109/TITS.2011.2179537.
[15] AMMOUN S, NASHASHIBI F. Real Time Trajectory Prediction for Collision Risk Estimation Between Vehicles[C/OL]//2009 IEEE 5th International Conference on Intelligent Computer Communication and Processing. 2009: 417-422. DOI: 10.1109/ICCP.2009.5284727.
[16] POLYCHRONOPOULOS A, TSOGAS M, AMDITIS A J, et al. Sensor Fusion for Predicting Vehicles’ Path for Collision Avoidance Systems[J/OL]. IEEE Transactions on Intelligent Transportation Systems, 2007, 8(3): 549-562. DOI: 10.1109/TITS.2007.903439.
[17] TAN H S, HUANG J H. DGPS-Based Vehicle-to-Vehicle Cooperative Collision Warning: Engineering Feasibility Viewpoints[J/OL]. IEEE Transactions on Intelligent Transportation Systems, 2006, 7(4): 415-428. DOI: 10.1109/TITS.2006.883938.
[18] BATZ T, WATSON K, BEYERER J. Recognition of Dangerous Situations Within a Cooperative Group of Vehicles[C/OL]//2009 IEEE Intelligent Vehicles Symposium. 2009: 907-912. DOI: 10.1109/IVS.2009.5164400.
[19] VEERARAGHAVAN H, PAPANIKOLOPOULOS N, SCHRATER P. Deterministic Samplingbased Switching Kalman Filtering for Vehicle Tracking[C/OL]//2006 IEEE Intelligent Transportation Systems Conference. 2006: 1340-1345. DOI: 10.1109/ITSC.2006.1707409.
[20] EIDEHALL A, PETERSSON L. Statistical Threat Assessment for General Road Scenes Using Monte Carlo Sampling[J/OL]. IEEE Transactions on Intelligent Transportation Systems, 2008, 9(1): 137-147. DOI: 10.1109/TITS.2007.909241.
[21] BROADHURST A, BAKER S, KANADE T. Monte Carlo Road Safety Reasoning[C/OL]//IEEE Proceedings. Intelligent Vehicles Symposium, 2005. 2005: 319-324. DOI: 10.1109/IVS.2005.1505122.
[22] ALTHOFF M, MERGEL A. Comparison of Markov Chain Abstraction and Monte Carlo Simulation for the Safety Assessment of Autonomous Cars[J/OL]. IEEE Transactions on Intelligent Transportation Systems, 2011, 12(4): 1237-1247. DOI: 10.1109/TITS.2011.2157342.
[23] GARCIA ORTIZ M, FRITSCH J, KUMMERT F, et al. Behavior Prediction at Multiple Timescales in Inner-city Scenarios[C/OL]//2011 IEEE Intelligent Vehicles Symposium (IV). 2011:1068-1073. DOI: 10.1109/IVS.2011.5940524.
[24] KUMAR P, PERROLLAZ M, LEFèVRE S, et al. Learning-based Approach for Online Lane Change Intention Prediction[C/OL]//2013 IEEE Intelligent Vehicles Symposium (IV). 2013:797-802. DOI: 10.1109/IVS.2013.6629564.
[25] MORRIS B T, TRIVEDI M M. Trajectory Learning for Activity Understanding: Unsupervised, Multilevel, and Long-Term Adaptive Approach[J/OL]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(11): 2287-2301. DOI: 10.1109/TPAMI.2011.64.
[26] BERNDT H, EMMERT J, DIETMAYER K. Continuous Driver Intention Recognition with Hidden Markov Models[C/OL]//2008 11th International IEEE Conference on Intelligent Transportation Systems. 2008: 1189-1194. DOI: 10.1109/ITSC.2008.4732630.
[27] DUEHOLM J V, KRISTOFFERSEN M S, SATZODA R K, et al. Trajectories and Maneuvers of Surrounding Vehicles with Panoramic Camera Arrays[J/OL]. IEEE Transactions on Intelligent Vehicles, 2016, 1(2): 203-214. DOI: 10.1109/TIV.2016.2622921.
[28] SCHREIER M, WILLERT V, ADAMY J. Bayesian, Maneuver-based, Long-term Trajectory Prediction and Criticality Assessment for Driver Assistance Systems[C/OL]//17th International IEEE Conference on Intelligent Transportation Systems (ITSC). 2014: 334-341. DOI: 10.1109/ITSC.2014.6957713.
[29] LEFÈVRE S, VASQUEZ D, LAUGIER C. A Survey on Motion Prediction and Risk Assessment for Intelligent Vehicles[J/OL]. ROBOMECH journal, 2014, 1(1): 1-14. https://doi.org/10.1186/s40648-014-0001-z.
[30] BRäNNSTRöM M, COELINGH E, SJöBERG J. Model-Based Threat Assessment for Avoiding Arbitrary Vehicle Collisions[J/OL]. IEEE Transactions on Intelligent Transportation Systems, 2010, 11(3): 658-669. DOI: 10.1109/TITS.2010.2048314.
[31] HILLENBRAND J, SPIEKER A M, KROSCHEL K. A Multilevel Collision Mitigation Approach—Its Situation Assessment, Decision Making, and Performance Tradeoffs[J/OL]. IEEE Transactions on Intelligent Transportation Systems, 2006, 7(4): 528-540. DOI: 10.1109/TITS .2006.883115.
[32] MILLER R, HUANG Q. An Adaptive Peer-to-peer Collision Warning System[C/OL]//Vehicular Technology Conference. IEEE 55th Vehicular Technology Conference. VTC Spring 2002 (Cat. No.02CH37367): Vol. 1. 2002: 317-321. DOI: 10.1109/VTC.2002.1002718.
[33] LYTRIVIS P, THOMAIDIS G, AMDITIS A. Cooperative Path Prediction in Vehicular Environments[C/OL]//2008 11th International IEEE Conference on Intelligent Transportation Systems.2008: 803-808. DOI: 10.1109/ITSC.2008.4732629.
[34] HOUENOU A, BONNIFAIT P, CHERFAOUI V, et al. Vehicle Trajectory Prediction Based on Motion Model and Maneuver Recognition[C/OL]//2013 IEEE/RSJ International Conference on Intelligent Robots and Systems. 2013: 4363-4369. DOI: 10.1109/IROS.2013.6696982.
[35] LAUGIER C, PAROMTCHIK I E, PERROLLAZ M, et al. Probabilistic Analysis of Dynamic Scenes and Collision Risks Assessment to Improve Driving Safety[J/OL]. IEEE Intelligent Transportation Systems Magazine, 2011, 3(4): 4-19. DOI: 10.1109/MITS.2011.942779.
[36] AOUDE G S, LUDERS B D, LEE K K H, et al. Threat Assessment Design for Driver Assistance System at Intersections[C/OL]//13th International IEEE Conference on Intelligent Transportation Systems. 2010: 1855-1862. DOI: 10.1109/ITSC.2010.5625287.
[37] KHOSROSHAHI A, OHN-BAR E, TRIVEDI M M. Surround Vehicles Trajectory Analysis with Recurrent Neural Networks[C/OL]//2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC). 2016: 2267-2272. DOI: 10.1109/ITSC.2016.7795922.
[38] ZYNER A, WORRALL S, WARD J, et al. Long Short Term Memory for Driver Intent Prediction[C/OL]//2017 IEEE Intelligent Vehicles Symposium (IV). 2017: 1484-1489. DOI:10.1109/IVS.2017.7995919.
[39] ZYNER A, WORRALL S, NEBOT E. A Recurrent Neural Network Solution for Predicting Driver Intention at Unsignalized Intersections[J/OL]. IEEE Robotics and Automation Letters, 2018, 3(3): 1759-1764. DOI: 10.1109/LRA.2018.2805314.
[40] ZYNER A, WORRALL S, NEBOT E. Naturalistic Driver Intention and Path Prediction Using Recurrent Neural Networks[J/OL]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(4): 1584-1594. DOI: 10.1109/TITS.2019.2913166.
[41] XIN L, WANG P, CHAN C Y, et al. Intention-aware Long Horizon Trajectory Prediction of Surrounding Vehicles Using Dual LSTM Networks[C/OL]//2018 21st International Conference on Intelligent Transportation Systems (ITSC). 2018: 1441-1446. DOI: 10.1109/ITSC.2018.8569595.
[42] PHILLIPS D J, WHEELER T A, KOCHENDERFER M J. Generalizable Intention Prediction of Human Drivers at Intersections[C/OL]//2017 IEEE Intelligent Vehicles Symposium (IV). 2017: 1665-1670. DOI: 10.1109/IVS.2017.7995948.
[43] DEO N, TRIVEDI M M. Multi-Modal Trajectory Prediction of Surrounding Vehicles with Maneuver Based LSTMs[C/OL]//2018 IEEE Intelligent Vehicles Symposium (IV). 2018: 1179-1184. DOI: 10.1109/IVS.2018.8500493.
[44] HU Y P, ZHAN W, TOMIZUKA M. Probabilistic Prediction of Vehicle Semantic Intention and Motion[C/OL]//2018 IEEE Intelligent Vehicles Symposium (IV). 2018: 307-313. DOI:10.1109/IVS.2018.8500419.
[45] DING W C, CHEN J, SHEN S J. Predicting Vehicle Behaviors over an Extended Horizon Using Behavior Interaction Network[C/OL]//2019 International Conference on Robotics and Automation (ICRA). 2019: 8634-8640. DOI: 10.1109/ICRA.2019.8794146.
[46] LI X, YING X W, CHUAH M C. GRIP: Graph-based Interaction-aware Trajectory Prediction [C/OL]//2019 IEEE Intelligent Transportation Systems Conference (ITSC). 2019: 3960-3966. DOI: 10.1109/ITSC.2019.8917228.
[47] DING W C, SHEN S J. Online Vehicle Trajectory Prediction Using Policy Anticipation Network and Optimization-based Context Reasoning[C/OL]//2019 International Conference on Robotics and Automation (ICRA). 2019: 9610-9616. DOI: 10.1109/ICRA.2019.8793568.
[48] DIEHL F, BRUNNER T, LE M T, et al. Graph Neural Networks for Modelling Traffic Participant Interaction[C/OL]//2019 IEEE Intelligent Vehicles Symposium (IV). 2019: 695-701. DOI: 10.1109/IVS.2019.8814066.
[49] MA Y X, ZHU X G, ZHANG S B, et al. TrafficPredict: Trajectory Prediction for Heterogeneous Traffic-Agents[C/OL]//Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence and Thirty-First Innovative Applications of Artificial Intelligence Conference and Ninth AAAI Symposium on Educational Advances in Artificial Intelligence. Honolulu, Hawaii, USA: AAAI Press, 2019. https://doi.org/10.1609/aaai.v33i01.33016120.
[50] 李文礼, 韩迪, 石晓辉, 等. 基于时-空注意力机制的车辆轨迹预测[J/OL]. 中国公路学报, 2023, 36(226-239). DOI: 10.19721/j.cnki.1001-7372.2023.01.018.
[51] DJURIC N, RADOSAVLJEVIC V, CUI H, et al. Uncertainty-aware Short-term Motion Prediction of Traffic Actors for Autonomous Driving[C/OL]//2020 IEEE Winter Conference on Applications of Computer Vision (WACV). 2020: 2084-2093. DOI: 10.1109/WACV45572.20 20.9093332.
[52] CUI H G, RADOSAVLJEVIC V, CHOU F C, et al. Multimodal Trajectory Predictions for Autonomous Driving Using Deep Convolutional Networks[C/OL]//2019 International Conference on Robotics and Automation (ICRA). 2019: 2090-2096. DOI: 10.1109/ICRA.2019.8793868.
[53] CHAI Y, SAPP B, BANSAL M, et al. MultiPath: Multiple Probabilistic Anchor Trajectory Hypotheses for Behavior Prediction[C/OL]//Proceedings of Machine Learning Research: Vol. 100 Proceedings of the Conference on Robot Learning. PMLR, 2020: 86-99. https://proceedings.mlr.press/v100/chai20a.html.
[54] GILLES T, SABATINI S, TSISHKOU D, et al. HOME: Heatmap Output for Future Motion Estimation[C/OL]//2021 IEEE International Intelligent Transportation Systems Conference (ITSC). 2021: 500-507. DOI: 10.1109/ITSC48978.2021.9564944.
[55] HONG J, SAPP B, PHILBIN J. Rules of the Road: Predicting Driving Behavior with a Convolutional Model of Semantic Interactions[C/OL]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR): 2019-June. Long Beach, CA, United states, 2019: 8446 - 8454. http://dx.doi.org/10.1109/CVPR.2019.00865.
[56] ZHOU Z, YE L Y, WANG J P, et al. HiVT: Hierarchical Vector Transformer for Multi-Agent Motion Prediction[C/OL]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2022: 8813-8823. DOI: 10.1109/CVPR52688.2022.00862.
[57] GAO J Y, SUN C, ZHAO H, et al. VectorNet: Encoding HD Maps and Agent Dynamics from Vectorized Representation[C/OL]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2020: 11522-11530. DOI: 10.1109/CVPR42600.2020.01154.
[58] LIANG M, YANG B, HU R, et al. Learning Lane Graph Representations for Motion Forecasting [C]//Computer Vision – ECCV 2020. Cham: Springer International Publishing, 2020: 541-556.
[59] ZHAN W, SUN L T, WANG D, et al. INTERACTION Dataset: An INTERnational, Adversarial and Cooperative moTION Dataset in Interactive Driving Scenarios with Semantic Maps[J/OL]. CoRR, 2019, abs/1910.03088. http://arxiv.org/abs/1910.03088.
[60] CHANG M F, LAMBERT J, SANGKLOY P, et al. Argoverse: 3D Tracking and Forecasting with Rich Maps[C/OL]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR): 2019-June. Long Beach, CA, United states, 2019: 8740 - 8749. http://dx.doi.org/10.1109/CVPR.2019.00895.
[61] JIAO J L. Machine Learning Assisted High-Definition Map Creation[C/OL]//2018 IEEE 42nd Annual Computer Software and Applications Conference (COMPSAC): Vol. 01. 2018: 367-373. DOI: 10.1109/COMPSAC.2018.00058.
[62] HAKLAY M, WEBER P. OpenStreetMap: User-Generated Street Maps[J/OL]. IEEE Pervasive Computing, 2008, 7(4): 12-18. DOI: 10.1109/MPRV.2008.80.
[63] POGGENHANS F, PAULS J H, JANOSOVITS J, et al. Lanelet2: A High-definition Map Framework for the Future of Automated Driving[C/OL]//2018 21st International Conference on Intelligent Transportation Systems (ITSC). 2018: 1672-1679. DOI: 10.1109/ITSC.2018.8569929.
[64] PARAVARZAR S, MOHAMMAD B. Motion Prediction on Self-driving Cars: A Review [J/OL]. CoRR, 2020, abs/2011.03635. https://arxiv.org/abs/2011.03635.
[65] LEA C, FLYNN M D, VIDAL R, et al. Temporal Convolutional Networks for Action Segmentation and Detection[C/OL]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR): 2017-January. Honolulu, HI, United states, 2017: 1003 - 1012. http://dx.doi.org/10.1109/CVPR.2017.113.
[66] HOCHREITER S, SCHMIDHUBER J. Long Short-Term Memory[J/OL]. Neural Computation, 1997, 9(8): 1735-1780. DOI: 10.1162/neco.1997.9.8.1735.
[67] TAUD H, MAS J. Multilayer Perceptron (MLP)[M/OL]. Cham: Springer International Publishing, 2018: 451-455. https://doi.org/10.1007/978-3-319-60801-3_27.
[68] TARJAN R. Depth-First Search and Linear Graph Algorithms[J/OL]. SIAM Journal on Computing, 1972, 1(2): 146-160. https://doi.org/10.1137/0201010.
[69] XU J J, SUN X, ZHANG Z Y, et al. Understanding and Improving Layer Normalization[C/OL]//Advances in Neural Information Processing Systems: Vol. 32. Curran Associates, Inc., 2019. https://proceedings.neurips.cc/paper/2019/file/2f4fe03d77724a7217006e5d16728874-Paper.pdf.
[70] LEA C, VIDAL R, REITER A, et al. Temporal Convolutional Networks: A Unified Approach to Action Segmentation[C]//Computer Vision – ECCV 2016 Workshops. Cham: Springer International Publishing, 2016: 47-54.
[71] WU Y X, HE K M. Group Normalization[C/OL]//Proceedings of the European Conference onComputer Vision (ECCV): 11217 LNCS. Munich, Germany, 2018: 3 - 19. http://dx.doi.org/10.1007/978-3-030-01261-8_1.
[72] IMAMBI S, PRAKASH K B, KANAGACHIDAMBARESAN G R. PyTorch[M/OL]. Cham:Springer International Publishing, 2021: 87-104. https://doi.org/10.1007/978-3-030-57077-4_10.
[73] KINGMA D P, BA J. Adam: A Method for Stochastic Optimization[C/OL]//3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings. 2015. http://arxiv.org/abs/1412.6980.
[74] HUANG Z Y, WU J D, LV C. Driving Behavior Modeling Using Naturalistic Human Driving Data with Inverse Reinforcement Learning[J/OL]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(8): 10239-10251. DOI: 10.1109/TITS.2021.3088935.
[75] 李柏. 智能网联汽车研究与开发丛书: 智能网联汽车协同决策与规划技术[M/OL]. 机械工业出版社, 2020. https://books.google.com.hk/books?id=sb1jzgEACAAJ.
[76] DEO N, TRIVEDI M M. Convolutional Social Pooling for Vehicle Trajectory Prediction [C/OL]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). 2018: 1549-15498. DOI: 10.1109/CVPRW.2018.00196.
[77] 赵树恩, 苏天彬, 赵东宇. 基于图神经网络的交互车辆驾驶意图识别及轨迹预测[J/OL]. 汽车技术, 2023. DOI: 10.19620/j.cnki.1000-3703.20221005.
[78] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is All you Need[C/OL]//Advances in Neural Information Processing Systems: Vol. 30. Curran Associates, Inc., 2017. https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.
[79] ALEXIADIS V, COLYAR J, HALKIAS J, et al. The Next Generation Simulation Program [J/OL]. ITE Journal, 2004, 74(8): 22-26. https://www.proquest.com/scholarly-journals/next-generation-simulation-program/docview/28448813/se-2.
[80] KRAJEWSKI R, BOCK J, KLOEKER L, et al. The highD Dataset: A Drone Dataset of Naturalistic Vehicle Trajectories on German Highways for Validation of Highly Automated Driving Systems[C/OL]//2018 21st International Conference on Intelligent Transportation Systems (ITSC). 2018: 2118-2125. DOI: 10.1109/ITSC.2018.8569552.
[81] TIAN Y, PEI H X, ZHANG Y. A Strategy for Making Lane-Change Decision Based on Improved Driving Risk Field and BP Neural Network[C/OL]//EITCE 2020: Proceedings of the 2020 4th International Conference on Electronic Information Technology and Computer Engineering. New York, NY, USA: Association for Computing Machinery, 2021: 669–675. https://doi.org/10.1145/3443467.3443833.
[82] HOUSTON J, ZUIDHOF G, BERGAMINI L, et al. One Thousand and One Hours: Selfdriving Motion Prediction Dataset[C/OL]//Proceedings of Machine Learning Research: Vol. 155 Proceedings of the 2020 Conference on Robot Learning. PMLR, 2021: 409-418. https://proceedings.mlr.press/v155/houston21a.html.
[83] CAESAR H, BANKITI V, LANG A H, et al. nuScenes: A Multimodal Dataset for Autonomous Driving[C/OL]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA, USA: IEEE Computer Society, 2020: 11618-11628. https://doi.ieeecomputersociety.org/10.1109/CVPR42600.2020.01164.
[84] YANG G, XUE Y Z, MENG L Z, et al. Survey on Autonomous Vehicle Simulation Platforms[C/OL]//2021 8th International Conference on Dependable Systems and Their Applications(DSA). 2021: 692-699. DOI: 10.1109/DSA52907.2021.00100.
[85] FAN H Y, ZHU F, LIU C C, et al. Baidu Apollo EM Motion Planner[J/OL]. CoRR, 2018, abs/1807.08048. http://arxiv.org/abs/1807.08048.
[86] SHAH S, DEY D, LOVETT C, et al. AirSim: High-Fidelity Visual and Physical Simulation for Autonomous Vehicles[C]//Field and Service Robotics. Cham: Springer International Publishing, 2018: 621-635.
[87] RONG G D, SHIN B H, TABATABAEE H, et al. LGSVL Simulator: A High Fidelity Simulator for Autonomous Driving[C/OL]//2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC). 2020: 1-6. DOI: 10.1109/ITSC45102.2020.9294422.
[88] KAWASAKI A, SEKI A. Multimodal Trajectory Predictions for Urban Environments Using Geometric Relationships Between a Vehicle and Lanes[C/OL]//2020 IEEE International Conference on Robotics and Automation (ICRA). 2020: 9203-9209. DOI: 10.1109/ICRA40945.2020.9196738.
修改评论