中文版 | English
题名

基于氮化镓光电器件的可穿戴健康传感器

其他题名
WEARABLE HEALTH SENSORS BASED ON GALLIUM NITRIDE OPTOELECTRONIC DEVICE
姓名
姓名拼音
LIU Zecong
学号
12132462
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
08 工学
导师
李携曦
导师单位
深港微电子学院
论文答辩日期
2023-05-15
论文提交日期
2023-06-30
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

       对多种健康指标的持续实时监测在疾病早期和预防阶段有着重大意义,
可穿戴健康传感器由于其易于穿戴和实时监测健康数据的优势而受到极大
关注。为了能准确的监测到微弱的生命信号,本文提出了一种基于氮化镓
(GaN)的单片集成发光二极管(LED)-光电探测器(PD)的光电器件,
同时实现光发射与光探测的功能可以减少复杂光耦合。实现了一种利用蓝
宝石衬底作为光波导的光学传感系统,与传统光学传感系统相比,该系统
具有小型化和高密度集成的优点。 
      本论文提出了一种基于 GaN光电器件的湿度传感器,其传感范围为 2-
90 %RH,响应/恢复时间为 12.5 s/6 s。该传感器在高湿度环境中具有高灵敏度,可用于口罩呼吸监测。设计了柔性无线信号传输电路,可以识别出七
种呼吸模式。此外,本论文提出了一种基于 GaN光电器件的压力传感器,
其传感范围为 0-10 N,响应/恢复时间为 0.84 ms/1.92 ms,最小分辨率为 5 μN。该传感器对微力具有高灵敏度,适用于脉冲监测。设计了柔性多传感器 PCB,通过信号处理可以实现对心率、心率异常、动脉血管硬化和血压的实时监测。

其他摘要

      Continuous real-time monitoring of a variety of health indicators is of great significance in the early stage of disease and prevention, and wearable health sensors have attracted great attention due to their advantages of ease of wearing and monitoring health data in real time. In order to accurately detect weak health signals, this thesis proposes a GaN-based monolithic integrated LED-PD optoelectronic device, which can reduce complex optical coupling by simultaneously implementing the functions of light emission and light detection. 
An optical sensing system using a sapphire substrate as an optical waveguide has been implemented. Compared to traditional optical sensing systems, this system has the advantages of miniaturization and high-density integration.  
      This thesis proposes a humidity sensor based on GaN photoelectric devices, with a sensing range of 2-90 %RH and a response/recovery time of 12.5 s/6 s. The sensor has high sensitivity in high humidity environments and can be used for respirator breathing monitoring. A flexible wireless signal transmission circuit was designed to identify seven respiratory patterns.. In addition, this thesis proposes a pressure sensor based on GaN photoelectric devices, with a sensing range of 0-10 N, a response/recovery time of 0.84 ms/1.92 ms,and a minimum resolution of 5 μN. The sensor has high sensitivity to micro forces and is suitable for pulse monitoring. A flexible multi-sensor PCB is designed to realize real-time monitoring of heart rate, abnormal heart rate, arteriosclerosis 
and blood pressure through signal processing.  

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2023-06
参考文献列表

[1] YI F, ZHANG Z, KANG Z, et al. Recent Advances in Triboelectric Nanogenerator‐Based Health Monitoring [J]. Advanced Functional Materials, 2019, 29(41)
[2] NASIRI S, KHOSRAVANI M R. Progress and challenges in fabrication of wearable sensors for health monitoring [J]. Sensors and Actuators A: Physical, 2020, 312
[3] MCGRATH M J, SCANAILL C N. Sensing and Sensor Fundamentals, F, 2013 [C].
[4] KANOUN O, TRANKLER H R. Sensor technology advances and future trends [J]. IEEE Trans Instrum Meas, 2004, 53(6): 1497-501.
[5] FAN Y, KAHRIZI M. An optical MEMS sensor system [J]. CCECE 2003 - Canadian Conference on Electrical and Computer Engineering Toward a Caring and Humane Technology (Cat No03CH37436), 2003, 1: 315-8 vol.1.
[6] MERMELSTEIN M D. THERMAL NOISE IN A FIBER OPTIC SENSOR - COMMENT [J]. J Acoust Soc Am, 1990, 87(3): 1362-3.
[7] YANG D Z, MA D G. Development of Organic Semiconductor Photodetectors: From Mechanism to Applications [J]. Advanced Optical Materials, 2019, 7(1): 23.
[8] LEE K H, WANG Y, WANG B, et al. Monolithic Integration of Si-CMOS and III-V-on-Si Through Direct Wafer Bonding Process [J]. IEEE J Electron Devices Soc, 2018, 6(1): 571-8.
[9] XIONG W J, WANG G L, LI J F, et al. SiN-based platform toward monolithic integration in photonics and electronics [J]. J Mater Sci-Mater Electron, 2021, 32(1): 1-18.
[10] ADHIKARY K, CHAUDHURI S. Gallium Nitride: Synthesis and Characterization [J]. Transactions of the Indian Ceramic Society, 2007, 66: 1-16.
[11] AVIT G, LEKHAL K, ANDRé Y, et al. Ultralong and defect-free GaN nanowires grown by the HVPE process [J]. Nano letters, 2014, 14 2: 559-62.
[12] KANOUN M B, GOUMRI‐SAID S, MERAD A E, et al. Zinc-blende AlN and GaN under pressure: structural, electronic, elastic and piezoelectric properties [J]. Semiconductor Science and Technology, 2004, 19: 1220-31.
[13] WOODS‐ROBINSON R, HAN Y, ZHANG H, et al. Wide Band Gap Chalcogenide Semiconductors [J]. Chemical reviews, 2019
[14] JIANG Y, SHI Z, ZHANG S, et al. Simultaneous Light-Emitting Light-Detecting Functionality of InGaN/GaN Multiple Quantum Well Diodes [J]. IEEE Electron Device Letters, 2017, 38: 1684-7.
[15] JI L-W, YOUNG S-J, LIU C-H, et al. Nitride-based light-emitter and photodiode dual function devices with InGaN/GaN multiple quantum dot structures [J]. Journal of Crystal Growth, 2008, 310: 2476-9.
[16] YIN J, AN X, CHEN L, et al. Phosphor-Based InGaN/GaN White Light-Emitting Diodes With Monolithically Integrated Photodetectors [J]. IEEE Transactions on Electron Devices, 2021, 68: 132-7.
[17] LUO Y, AN X, CHEN L, et al. Chip-scale optical airflow sensor [J]. Microsystems & Nanoengineering, 2022, 8
[18] YU B, LUO Y, CHEN L, et al. An optical humidity sensor: A compact photonic chip integrated with artificial opal [J]. Sensors and Actuators B: Chemical, 2021.
[19] JING J, HOU Y, LUO Y, et al. Chip-Scale In Situ Salinity Sensing Based on a Monolithic Optoelectronic Chip [J]. ACS sensors, 2022.
[20] CHEN J, YIN J, AN X, et al. III-Nitride Microchips for Sugar Concentration Detection [J]. IEEE Sensors Journal, 2022, 22: 2078-82.
[21] AN X, LUO Y, YU B, et al. A Chip-Scale GaN-Based Optical Pressure Sensor With Microdome-Patterned Polydimethylsiloxane (PDMS) [J]. IEEE Electron Device Letters, 2021, 42: 1532-5.
[22] BHAT I B. Physical properties of gallium nitride and related III–V nitrides [J]. Wide Bandgap Semiconductor Power Devices, 2019.
[23] BOGUE R. Detecting gases with light: a review of optical gas sensor technologies [J]. Sensor Review, 2015, 35: 133-40.
[24] KAZANSKIY N L, BUTT M A, KHONINA S N. Recent Advances in Wearable Optical Sensor Automation Powered by Battery versus Skin-like Battery-Free Devices for Personal Healthcare—A Review [J]. Nanomaterials, 2022, 12.
[25] KUMAR V, RAGHUWANSHI S K, KUMAR S. Advances in Nanocomposite Thin-Film-Based Optical Fiber Sensors for Environmental Health Monitoring—A Review [J]. IEEE Sensors Journal, 2022, 22: 14696-707.
[26] VILARINHO D, THEODOSIOU A, LEITãO C, et al. POFBG-Embedded Cork Insole for Plantar Pressure Monitoring [J]. Sensors (Basel, Switzerland), 2017, 17.
[27] GUO J, ZHOU B, YANG C, et al. Stretchable and Temperature‐Sensitive Polymer Optical Fibers for Wearable Health Monitoring [J]. Advanced Functional Materials, 2019, 29.
[28] LEAL-JUNIOR A G, DíAZ C A R, LEITãO C, et al. Polymer optical fiber-based sensor for simultaneous measurement of breath and heart rate under dynamic movements [J]. Optics & Laser Technology, 2019.
[29] ZHONG J, LI Z, TAKAKUWA M, et al. Smart Face Mask Based on an Ultrathin Pressure Sensor for Wireless Monitoring of Breath Conditions [J]. Advanced Materials, 2021, 34.
[30] CHEN J, WANG F, ZHU G, et al. Breathable Strain/Temperature Sensor Based on Fibrous Networks of Ionogels Capable of Monitoring Human Motion, Respiration, and Proximity [J]. ACS applied materials & interfaces, 2021.
[31] DAS P S, CHHETRY A, PARK J Y. A Flexible Capacitive Pressure Sensor for Wearable Respiration Monitoring System [J]. IEEE Sensors Journal, 2017, 17: 6558-64.
[32] LI Z, TENG M, YANG R, et al. Sb-doped WO3 based QCM humidity sensor with self-recovery ability for real-time monitoring of respiration and wound [J]. Sensors and Actuators B: Chemical, 2022.
[33] ZHANG M, LIU Z, ZHANG Y, et al. Spider dragline silk-based FP humidity sensor with ultra-high sensitivity [J]. Sensors and Actuators B: Chemical, 2022.
[34] MENG K, XIAO X, WEI W, et al. Wearable Pressure Sensors for Pulse Wave Monitoring [J]. Advanced Materials, 2022, 34.
[35] YUE Y, LIU N, LIU W, et al. 3D hybrid porous Mxene-sponge network and its application in piezoresistive sensor [J]. Nano Energy, 2018.
[36] YANG J C, KIM J-O, OH J, et al. Microstructured Porous Pyramid-Based Ultrahigh Sensitive Pressure Sensor Insensitive to Strain and Temperature [J]. ACS applied materials & interfaces, 2019, 11 21: 19472-80.
[37] SU Y, CHEN C, PAN H, et al. Muscle Fibers Inspired High‐Performance Piezoelectric Textiles for Wearable Physiological Monitoring [J]. Advanced Functional Materials, 2021, 31.
[38] YAN J, YE Z, SHI F X, et al. Reflection-type photoplethysmography pulse sensor based on an integrated optoelectronic chip with a ring structure [J]. Biomedical optics express, 2021, 12 10: 6277-83.
[39] OUYANG H, TIAN J, SUN G, et al. Self‐Powered Pulse Sensor for Antidiastole of Cardiovascular Disease [J]. Advanced Materials, 2017, 29.
[40] ZHOU Y, ZHAO X, XU J, et al. Giant magnetoelastic effect in soft systems for bioelectronics [J]. Nature Materials, 2021, 20: 1670 - 6.
[41] HOSPODKOVá A, NIKL M, PACHEROVA O, et al. InGaN/GaN multiple quantum well for fast scintillation application: radioluminescence and photoluminescence study [J]. Nanotechnology, 2014, 25.
[42] YU C-L, CHUANG R W, CHANG S-J, et al. InGaN–GaN MQW Metal–Semiconductor–Metal Photodiodes With Semi-Insulating Mg-Doped GaN Cap Layers [J]. IEEE Photonics Technology Letters, 2007, 19: 846-8.
[43] ZHANG H, HUANG C, SONG K, et al. Compositionally graded III-nitride alloys: building blocks for efficient ultraviolet optoelectronics and power electronics [J]. Reports on Progress in Physics, 2021, 84.
[44] 李长富. InGaN/GaN多量子阱基LED的电致/光致发光特性研究 [D]; 山东大学, 2020.
[45] CHEN L, AN X, JING J, et al. Ultracompact Chip-Scale Refractometer Based on an InGaN-Based Monolithic Photonic Chip [J]. ACS applied materials & interfaces, 2020.
[46] ZHENG R, TAGUCHI T. Stokes shift in InGaN epitaxial layers [J]. Applied Physics Letters, 2000, 77: 3024-6.
[47] HUANG Y H, CHENG C L, CHEN T T, et al. Studies of Stokes shift in InxGa1−xN alloys [J]. Journal of Applied Physics, 2007, 101: 103521.
[48] DUAN Z, JIANG Y, TAI H. Recent advances in humidity sensors for human body related humidity detection [J]. Journal of Materials Chemistry C, 2021, 9(42): 14963-80.
[49] DINH T, NGUYEN T, PHAN H P, et al. Stretchable respiration sensors: Advanced designs and multifunctional platforms for wearable physiological monitoring [J]. Biosens Bioelectron, 2020, 166: 112460.
[50] LAN L, LE X, DONG H, et al. One-step and large-scale fabrication of flexible and wearable humidity sensor based on laser-induced graphene for real-time tracking of plant transpiration at bio-interface [J]. Biosens Bioelectron, 2020, 165: 112360.
[51] RAUF S, VIJJAPU M T, ANDRES M A, et al. Highly Selective Metal-Organic Framework Textile Humidity Sensor [J]. ACS Appl Mater Interfaces, 2020, 12(26): 29999-30006.
[52] CHEN G, GUAN R, SHI M, et al. A nanoforest-based humidity sensor for respiration monitoring [J]. Microsyst Nanoeng, 2022, 8: 44.
[53] DUAN Z, ZHAO Q, WANG S, et al. Halloysite nanotubes: Natural, environmental-friendly and low-cost nanomaterials for high-performance humidity sensor [J]. Sensors and Actuators B: Chemical, 2020, 317.
[54] JEONG W, SONG J, BAE J, et al. Breathable Nanomesh Humidity Sensor for Real-Time Skin Humidity Monitoring [J]. ACS Appl Mater Interfaces, 2019, 11(47): 44758-63.
[55] WU J, SUN Y M, WU Z, et al. Carbon Nanocoil-Based Fast-Response and Flexible Humidity Sensor for Multifunctional Applications [J]. ACS Appl Mater Interfaces, 2019, 11(4): 4242-51.
[56] CHEN M, XUE S, LIU L, et al. A highly stable optical humidity sensor [J]. Sensors and Actuators B: Chemical, 2019, 287: 329-37.
[57] JANG J, KANG K, RAEIS‐HOSSEINI N, et al. Self‐Powered Humidity Sensor Using Chitosan‐Based Plasmonic Metal–Hydrogel–Metal Filters [J]. Advanced Optical Materials, 2020, 8(9).
[58] ZHANG M, LIU Z, ZHANG Y, et al. Spider dragline silk-based FP humidity sensor with ultra-high sensitivity [J]. Sensors and Actuators B: Chemical, 2022, 350.
[59] ZHONG J, LI Z, TAKAKUWA M, et al. Smart Face Mask Based on an Ultrathin Pressure Sensor for Wireless Monitoring of Breath Conditions [J]. Adv Mater, 2022, 34(6): e2107758.
[60] GHOSH R, SONG M S, PARK J, et al. Fabrication of piezoresistive Si nanorod-based pressure sensor arrays: A promising candidate for portable breath monitoring devices [J]. Nano Energy, 2021, 80.
[61] PARK S W, DAS P S, CHHETRY A, et al. A Flexible Capacitive Pressure Sensor for Wearable Respiration Monitoring System [J]. IEEE Sensors Journal, 2017.
[62] PANG Z, ZHAO Y, LUO N, et al. Flexible pressure and temperature dual-mode sensor based on buckling carbon nanofibers for respiration pattern recognition [J]. Sci Rep, 2022, 12(1): 17434.
[63] SHIN J, JEONG B, KIM J, et al. Sensitive Wearable Temperature Sensor with Seamless Monolithic Integration [J]. Adv Mater, 2020, 32(2): e1905527.
[64] CHEN S, QIAN G, GHANEM B, et al. Quantitative and Real-Time Evaluation of Human Respiration Signals with a Shape-Conformal Wireless Sensing System [J]. Adv Sci (Weinh), 2022, 9(32): e2203460.
[65] CHEN J, WANG F, ZHU G, et al. Breathable Strain/Temperature Sensor Based on Fibrous Networks of Ionogels Capable of Monitoring Human Motion, Respiration, and Proximity [J]. ACS Appl Mater Interfaces, 2021, 13(43): 51567-77.
[66] WANG Y, ZHANG L, ZHANG Z, et al. High-Sensitivity Wearable and Flexible Humidity Sensor Based on Graphene Oxide/Non-Woven Fabric for Respiration Monitoring [J]. Langmuir, 2020, 36(32): 9443-8.
[67] SU Y, LI C, LI M, et al. Surface acoustic wave humidity sensor based on three-dimensional architecture graphene/PVA/SiO2 and its application for respiration monitoring [J]. Sensors and Actuators B: Chemical, 2020, 308.
[68] LI Z, TENG M, YANG R, et al. Sb-doped WO3 based QCM humidity sensor with self-recovery ability for real-time monitoring of respiration and wound [J]. Sensors and Actuators B: Chemical, 2022, 361.
[69] XING H, LI X, LU Y, et al. MXene/MWCNT electronic fabric with enhanced mechanical robustness on humidity sensing for real-time respiration monitoring [J]. Sensors and Actuators B: Chemical, 2022, 361.
[70] MENON S, USHA S P, MANOHARAN H, et al. Metal-Organic Framework-Based Fiber Optic Sensor for Chromium(VI) Detection [J]. ACS Sens, 2023.
[71] FAY C D, NATTESTAD A. Advances in Optical Based Turbidity Sensing Using LED Photometry (PEDD) [J]. Sensors (Basel), 2021, 22(1).
[72] CHEN M-Q, ZHAO Y, WEI H-M, et al. 3D printed castle style Fabry-Perot microcavity on optical fiber tip as a highly sensitive humidity sensor [J]. Sensors and Actuators B: Chemical, 2021, 328.
[73] LI K H, CHEUNG Y F, JIN W, et al. InGaN RGB Light-Emitting Diodes With Monolithically Integrated Photodetectors for Stabilizing Color Chromaticity [J]. IEEE Transactions on Industrial Electronics, 2020, 67(6): 5154-60.
[74] LI K H, CHEUNG Y F, FU W Y, et al. Monolithic Integration of GaN-on-Sapphire Light-Emitting Diodes, Photodetectors, and Waveguides [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24(6): 1-6.
[75] YU X, WANG Z, JIANG Y, et al. Reversible pH-Responsive Surface: From Superhydrophobicity to Superhydrophilicity [J]. Advanced Materials, 2005, 17(10): 1289-93.
[76] FENG X, FENG L, JIN M, et al. Reversible super-hydrophobicity to super-hydrophilicity transition of aligned ZnO nanorod films [J]. J Am Chem Soc, 2004, 126(1): 62-3.
[77] DINES T J, ONOH H. An infrared and resonance Raman spectroscopic study of phenylazonaphthol pigments [J]. Spectrochimica acta Part A, Molecular and biomolecular spectroscopy, 2006, 64 4: 891-900.
[78] NA N, OUYANG Q-M, MA H, et al. Non-destructive and in situ identification of rice paper, seals and pigments by FT-IR and XRD spectroscopy [J]. Talanta, 2004, 64 4: 1000-8.
[79] CHO M Y, KIM S, KIM I S, et al. Perovskite‐Induced Ultrasensitive and Highly Stable Humidity Sensor Systems Prepared by Aerosol Deposition at Room Temperature [J]. Advanced Functional Materials, 2020, 30(3): 1907449.
[80] JANG J, KANG K, RAEIS‐HOSSEINI N, et al. Self‐powered humidity sensor using chitosan‐based plasmonic metal–hydrogel–metal filters [J]. Advanced Optical Materials, 2020, 8(9): 1901932.
[81] GUPTA S P, PAWBAKE A S, SATHE B R, et al. Superior humidity sensor and photodetector of mesoporous ZnO nanosheets at room temperature [J]. Sensors and Actuators B: Chemical, 2019, 293: 83-92.
[82] ZHANG M, LIU Z, ZHANG Y, et al. Spider dragline silk-based FP humidity sensor with ultra-high sensitivity [J]. Sensors and Actuators B: Chemical, 2022, 350: 130895.
[83] DUAN Z, JIANG Y, YAN M, et al. Facile, flexible, cost-saving, and environment-friendly paper-based humidity sensor for multifunctional applications [J]. ACS applied materials & interfaces, 2019, 11(24): 21840-9.
[84] CHEN G, GUAN R, SHI M, et al. A nanoforest-based humidity sensor for respiration monitoring [J]. Microsystems & Nanoengineering, 2022, 8(1): 44.
[85] WU J, SUN Y-M, WU Z, et al. Carbon nanocoil-based fast-response and flexible humidity sensor for multifunctional applications [J]. ACS applied materials & interfaces, 2019, 11(4): 4242-51.
[86] LAN L, LE X, DONG H, et al. One-step and large-scale fabrication of flexible and wearable humidity sensor based on laser-induced graphene for real-time tracking of plant transpiration at bio-interface [J]. Biosensors and Bioelectronics, 2020, 165: 112360.
[87] WU J, WU Z, XU H, et al. An intrinsically stretchable humidity sensor based on anti-drying, self-healing and transparent organohydrogels [J]. Materials horizons, 2019, 6(3): 595-603.
[88] RAUF S, VIJJAPU M T, ANDRÉS M A, et al. Highly selective metal–organic framework textile humidity sensor [J]. ACS applied materials & interfaces, 2020, 12(26): 29999-30006.
[89] HAMMOUCHE H, ACHOUR H, MAKHLOUF S, et al. A comparative study of capacitive humidity sensor based on keratin film, keratin/graphene oxide, and keratin/carbon fibers [J]. Sensors and Actuators A: Physical, 2021, 329: 112805.
[90] JEONG W, SONG J, BAE J, et al. Breathable Nanomesh Humidity Sensor for Real-time Skin Humidity Monitoring [J]. ACS applied materials & interfaces, 2019.
[91] WANG C, LI X, HU H, et al. Monitoring of the central blood pressure waveform via a conformal ultrasonic device [J]. Nature biomedical engineering, 2018, 2: 687 - 95.
[92] PANG C, KOO J H, NGUYEN A, et al. Sensors: Highly Skin‐Conformal Microhairy Sensor for Pulse Signal Amplification (Adv. Mater. 4/2015) [J]. Advanced Materials, 2015, 27: 589-.
[93] CUSTODIS F, REIL J-C, LAUFS U, et al. Heart rate: a global target for cardiovascular disease and therapy along the cardiovascular disease continuum [J]. Journal of cardiology, 2013, 62 3: 183-7.
[94] MCGHEE B H, BRIDGES E. Monitoring arterial blood pressure: what you may not know [J]. Critical care nurse, 2002, 22 2: 60-4, 6-70, 3 passim.
[95] IMANI S, BANDODKAR A J, MOHAN A M V, et al. A wearable chemical–electrophysiological hybrid biosensing system for real-time health and fitness monitoring [J]. Nature Communications, 2016, 7.
[96] POLAT E O, MERCIER G, NIKITSKIY I, et al. Flexible graphene photodetectors for wearable fitness monitoring [J]. Science Advances, 2019, 5.
[97] WANG Z L. Self‐Powered Nanosensors and Nanosystems [J]. Advanced Materials, 2012, 24.
[98] LOU Z, WANG L, JIANG K, et al. Reviews of wearable healthcare systems: Materials, devices and system integration [J]. Materials Science & Engineering R-reports, 2020, 140: 100523.
[99] LIU Z, MA Y, OUYANG H, et al. Transcatheter Self‐Powered Ultrasensitive Endocardial Pressure Sensor [J]. Advanced Functional Materials, 2018, 29.
[100]PARK D Y, JOE D J, KIM D H, et al. Self‐Powered Real‐Time Arterial Pulse Monitoring Using Ultrathin Epidermal Piezoelectric Sensors [J]. Advanced Materials, 2017, 29(
[101]CHU Y, ZHONG J, LIU H, et al. Health Monitoring: Human Pulse Diagnosis for Medical Assessments Using a Wearable Piezoelectret Sensing System (Adv. Funct. Mater. 40/2018) [J]. Advanced Functional Materials, 2018.
[102]GAO Y, YAN C, HUANG H, et al. Microchannel‐Confined MXene Based Flexible Piezoresistive Multifunctional Micro‐Force Sensor [J]. Advanced Functional Materials, 2020, 30.
[103]CHUN S, CHOI I Y, SON W, et al. A Highly Sensitive Force Sensor with Fast Response Based on Interlocked Arrays of Indium Tin Oxide Nanosprings toward Human Tactile Perception [J]. Advanced Functional Materials, 2018, 28.
[104]JIANG Y, LIU M, YAN X, et al. Electrical Breakdown-Induced Tunable Piezoresistivity in Graphene/Polyimide Nanocomposites for Flexible Force Sensor Applications [J]. Advanced Materials Technologies, 2018, 3(8): 1800113.
[105]TAO L-Q, ZHANG K, TIAN H, et al. Graphene-Paper Pressure Sensor for Detecting Human Motions [J]. ACS nano, 2017, 11 9: 8790-5.
[106]BAI N, WANG L, WANG Q, et al. Graded intrafillable architecture-based iontronic pressure sensor with ultra-broad-range high sensitivity [J]. Nature Communications, 2020, 11.
[107]SHI J, WANG L, DAI Z, et al. Multiscale Hierarchical Design of a Flexible Piezoresistive Pressure Sensor with High Sensitivity and Wide Linearity Range [J]. Small, 2018, 14 27: e1800819.
[108]GAO L, ZHU C, LI L, et al. All Paper-Based Flexible and Wearable Piezoresistive Pressure Sensor [J]. ACS applied materials & interfaces, 2019.
[109]ZHANG Z A, GUI X, HU Q, et al. Highly Sensitive Capacitive Pressure Sensor Based on a Micropyramid Array for Health and Motion Monitoring [J]. Advanced Electronic Materials, 2021, 7.
[110]HOSSEINI E S, MANJAKKAL L, SHAKTHIVEL D, et al. Glycine–Chitosan-Based Flexible Biodegradable Piezoelectric Pressure Sensor [J]. ACS Applied Materials & Interfaces, 2020, 12: 9008 - 16.
[111]YANG J, LUO S, ZHOU X, et al. Flexible, Tunable, and Ultrasensitive Capacitive Pressure Sensor with Microconformal Graphene Electrodes [J]. ACS applied materials & interfaces, 2019, 11 16: 14997-5006.
[112]TSUJI H, LARSON M G, VENDITTI F J, et al. Impact of reduced heart rate variability on risk for cardiac events. The Framingham Heart Study [J]. Circulation, 1996, 94 11: 2850-5.
[113]ANTONINI–CANTERIN F, CARERJ S, DI BELLO V, et al. Arterial stiffness and ventricular stiffness: a couple of diseases or a coupling disease? A review from the cardiologist's point of view [J]. European journal of echocardiography : the journal of the Working Group on Echocardiography of the European Society of Cardiology, 2009, 10 1: 36-43.
[114]LANDOWNE M. A Method Using Induced Waves to Study Pressure Propagation in Human Arteries [J]. Circulation Research, 1957, 5: 594–601.
[115]XU H, LIU J, ZHANG J, et al. Flexible Organic/Inorganic Hybrid Near‐Infrared Photoplethysmogram Sensor for Cardiovascular Monitoring [J]. Advanced Materials, 2017, 29.
[116]DAGDEVIREN C, SU Y, JOE P, et al. Conformable amplified lead zirconate titanate sensors with enhanced piezoelectric response for cutaneous pressure monitoring [J]. Nature Communications, 2014, 5.
[117]LAURENT S, COCKCROFT J, VAN BORTEL L M A B, et al. Expert consensus document on arterial stiffness: methodological issues and clinical applications [J]. European heart journal, 2006, 27 21: 2588-605.
[118]SAFAR M E, LéVY B I, STRUIJKER-BOUDIER H A J. Current Perspectives on Arterial Stiffness and Pulse Pressure in Hypertension and Cardiovascular Diseases [J]. Circulation: Journal of the American Heart Association, 2003, 107: 2864-9.
[119]ROGERS W J, HU Y L, COAST D A, et al. Age-associated changes in regional aortic pulse wave velocity [J]. Journal of the American College of Cardiology, 2001, 38 4: 1123-9.
[120]LAPOINTE A C, ROBERGE F A, NADEAU R, et al. Computation of aortic pulse wave velocity and aortic pulse wave velocity and aortic extensibility from pressure gradient measurements [J]. Canadian journal of physiology and pharmacology, 1975, 53 5: 940-6.
[121]CHEN J, LIU H, WANG W, et al. High Durable, Biocompatible, and Flexible Piezoelectric Pulse Sensor Using Single‐Crystalline III‐N Thin Film [J]. Advanced Functional Materials, 2019, 29.
[122]DELOACH S, TOWNSEND R R. Vascular stiffness: its measurement and significance for epidemiologic and outcome studies [J]. Clinical journal of the American Society of Nephrology : CJASN, 2008, 3 1: 184-92.
[123]CHUNG H U, KIM B H, LEE J Y, et al. Binodal, wireless epidermal electronic systems with in-sensor analytics for neonatal intensive care [J]. Science (New York, Ny), 2019, 363.
[124]AHLSTROM C, JOHANSSON A, UHLIN F, et al. Noninvasive investigation of blood pressure changes using the pulse wave transit time: a novel approach in the monitoring of hemodialysis patients [J]. Journal of Artificial Organs, 2005, 8: 192-7.

所在学位评定分委会
材料与化工
国内图书分类号
TP212.9
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/544682
专题南方科技大学-香港科技大学深港微电子学院筹建办公室
推荐引用方式
GB/T 7714
刘泽丛. 基于氮化镓光电器件的可穿戴健康传感器[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132462-刘泽丛-南方科技大学-(4625KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[刘泽丛]的文章
百度学术
百度学术中相似的文章
[刘泽丛]的文章
必应学术
必应学术中相似的文章
[刘泽丛]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。