中文版 | English
题名

测量量子双模型 𝐷(ℤ𝑛) 中拓扑序的方案

其他题名
THE MEASUREMENT SCHEME OF TOPOLOGICAL ORDER IN QUANTUM DOUBLE MODEL 𝐷(ℤ𝑛)
姓名
姓名拼音
HAN Qian
学号
11930046
学位类型
硕士
学位专业
0702 物理学
学科门类/专业学位类别
07 理学
导师
吴健生
导师单位
量子科学与工程研究院
论文答辩日期
2023-05-11
论文提交日期
2023-06-30
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

拓扑序是超越朗道对称性自发破缺范式的多体量子态,它的典型特征是长程
纠缠、简并的基态和点状激发——任意子。它是理解物质的相和相变的关键,也在高容错的拓扑量子计算中有重要的应用。我们介绍了拓扑序,任意子,还有拓扑序的完备表征,即描述任意子融聚的 𝐹 矩阵和描述编织的 𝑅 矩阵,并以伊辛任意子为例给出了计算任意子 𝐹 矩阵和 𝑅 矩阵的方法。我们介绍了具有拓扑序且严格可解的 Kitaev 量子双模型,并且分别举例介绍了阿贝尔量子双模型和非阿贝尔量子双模型。我们介绍了利用体边对应和在边界上的任意子凝聚来测量 𝑅 矩阵的理论方案,并将其推广到量子双模型 𝐷(ℤ𝑛)(其中 ℤ𝑛 为 𝑛 个元素的循环群)。我们以具有两个 𝑛 能级量子比特的最小量子双模型 𝐷(ℤ𝑛) 为例,讨论了测量 𝑅 矩阵的理论方案。我们还讨论了如何利用两个普通的二能级量子比特来实现一个三能级的量子比特,并且在上面实现 𝑋 和 𝑍 操作,从而能用量子比特来模拟量子双模型 𝐷(ℤ3);进一步提出具体测量量子双模型 𝐷(ℤ3) 中任意子编织的 𝑅 矩阵的量子
线路和操作步骤。带边界的量子双模型 𝐷(ℤ3) 可以实现通用的拓扑量子计算,我们期待我们的结果为此提供一种可能的实现。

关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2023-06
参考文献列表

[1] WEN X, ZEE A. Quantum statistics and superconductivity in two spatial dimensions[J]. Nuclear Physics B - Proceedings Supplements, 1990, 15: 135-156.
[2] MOORE G, SEIBERG N. Classical and quantum conformal field theory[J]. Communication of Mathematical Physics, 1989, 123: 177-254.
[3] KITAEV A. Fault-tolerant quantum computation by anyons[J]. Annals of Physics, 2003, 303(1): 2-30.
[4] KITAEV A. Anyons in an exactly solved model and beyond[J]. Annals of Physics, 2006, 321(1): 2-111.
[5] ARMSTRONG M A. Basic topology[M]. Basic Topology, 1997.
[6] KLITZING K V, DORDA G, PEPPER M. New Method for High-Accuracy Determination ofthe Fine-Structure Constant Based on Quantized Hall Resistance[J]. Phys. Rev. Lett., 1980, 45:494-497.
[7] PACHOS J K, SIMON S H. Focus on topological quantum computation[J]. New Journal of Physics, 2014, 16(6): 065003.
[8] WEN X G. Topological orders and edge excitations in fractional quantum Hall states[J]. Advances in Physics, 1995, 44(5): 405-473.
[9] WEN X. Topological orders in rigid states[J]. International Journal of Modern Physics B, 1990, 4: 239-271.
[10] WEN X G, WILCZEK F, ZEE A. Chiral spin states and superconductivity[J]. Phys. Rev. B, 1989, 39: 11413-11423.
[11] WEN X G. TOPOLOGICAL ORDERS IN RIGID STATES[J]. International Journal of Modern Physics B, 1990, 04(02): 239-271.
[12] CHEN X, GU Z C, LIU Z X, et al. Symmetry-Protected Topological Orders in Interacting Bosonic Systems[J]. Science, 2012, 338(6114): 1604-1606.
[13] LUDWIG A W W, POILBLANC D, TREBST S, et al. Two-dimensional quantum liquids from interacting non-Abelian anyons[J]. New Journal of Physics, 2011, 13(4): 045014.
[14] LANDAU L. On the theory of phase transitions[J]. Phys.Z.Sowjetunion, 1937.
[15] WILCZEK F. Quantum Mechanics of Fractional-Spin Particles[J]. Phys. Rev. Lett., 1982, 49:957-959.
[16] JIANG H C, WANG Z, BALENTS L. Identifying topological order by entanglement entropy[J]. Nature Physics, 2012, 8(12): 902-905.
[17] WU Y. General theory for quantum statistics in two dimensions[J]. Physical Review Letter,1984, 52: 2103–6.
[18] PACHOS J. Introduction to Topological Quantum Computation[M]. Cambridge University Press, 2012.
[19] HERDMAN C M, WHALEY K B. Loop condensation in the triangular lattice quantum dimer model[J]. New Journal of Physics, 2011, 13(8): 085001.
[20] SCHULZ M D, DUSUEL S, ORúS R, et al. Breakdown of a perturbed 𝒵𝑁 topological phase[J]. New Journal of Physics, 2012, 14(2): 025005.
[21] BURNELL F J, SIMON S H, SLINGERLAND J K. Phase transitions in topological lattice models via topological symmetry breaking[J]. New Journal of Physics, 2012, 14(1): 015004.
[22] BOMBIN H, MARTIN-DELGADO M A. Nested topological order[J]. New Journal of Physics, 2011, 13(12): 125001.
[23] GREGOR K, HUSE D A, MOESSNER R, et al. Diagnosing deconfinement and topological order[J]. New Journal of Physics, 2011, 13(2): 025009.
[24] BAIS F A, SLINGERLAND J K. Condensate-induced transitions between topologically ordered phases[J]. Phys. Rev. B, 2009, 79: 045316.
[25] BAIS F A, ROMERS J C. The modular S-matrix as order parameter for topological phase transitions[J]. New Journal of Physics, 2012, 14(3): 035024.
[26] WEN X G. Colloquium: Zoo of quantum-topological phases of matter[J]. Rev. Mod. Phys., 2017, 89: 041004.
[27] MIGNARD M, SCHAUENBURG P. Modular categories are not determined by their modular data[J]. Letter of Mathematical Physics, 2021, 111: 60.
[28] HAI Y J, ZHANG Z, ZHENG H, et al. Uniquely identifying topological order based on boundary-bulk duality and anyon condensation[J]. NATIONAL SCIENCE REVIEW, 2023, 10(3).
[29] LEINAAS J M, MYRHEIM J. On the theory of identical particles[J]. Il Nuovo Cimento B (1971-1996), 1977, 37(1): 1-23.
[30] AHARONOV Y, BOHM D. Significance of Electromagnetic Potentials in the Quantum Theory[J]. Phys. Rev., 1959, 115: 485-491.
[31] CHAMBERS R G. Shift of an Electron Interference Pattern by Enclosed Magnetic Flux[J].Phys. Rev. Lett., 1960, 5: 3-5.
[32] I, CHENG M, WANG Z. Universal Quantum Computation with Gapped Boundaries[J]. Phys. Rev. Lett., 2017, 119: 170504.
[33] NIELSEN M A, CHUANG I L. Quantum Computation and Quantum Information: 10th Anniversary Edition[M]. Cambridge University Press, 2010.
[34] BENIOFF P. The computer as a physical system: A microscopic quantum mechanical Hamiltonian model of computers as represented by Turing machines[J]. Journal of Statistical Physics, 1980, 22(5): 563-591.
[35] FEYNMAN R. SIMULATING PHYSICS WITH COMPUTERS[J]. INTERNATIONALJOURNAL OF THEORETICAL PHYSICS, 1982, 21(6-7): 467-488.
[36] DEUTSCH D. Quantum theory as a universal physical theory[J]. International Journal of Theoretical Physics, 1985, 24(1): 1-41.
[37] SHOR P W. Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer[J]. SIAM Review, 1999, 41(2): 303-332.
[38] MONROE C, MEEKHOF D M, KING B E, et al. Demonstration of a Fundamental Quantum Logic Gate[J]. Phys. Rev. Lett., 1995, 75: 4714-4717.
[39] GROVER L K. Quantum Computers Can Search Arbitrarily Large Databases by a Single Query[J]. Phys. Rev. Lett., 1997, 79: 4709-4712.
[40] VANDERSYPEN L M K, STEFFEN M, BREYTA G, et al. Experimental realization of Shor’s quantum factoring algorithm using nuclear magnetic resonance[J]. Nature, 2001, 414(6866): 883-887.
[41] RAUSSENDORF R, HARRINGTON J. Fault-Tolerant Quantum Computation with High Threshold in Two Dimensions[J]. Phys. Rev. Lett., 2007, 98: 190504.
[42] XU N, ZHU J, LU D, et al. Quantum Factorization of 143 on a Dipolar-Coupling Nuclear Magnetic Resonance System[J]. Phys. Rev. Lett., 2012, 108: 130501.
[43] VELDHORST M, YANG C H, HWANG J C C, et al. A two-qubit logic gate in silicon[J]. Nature, 2015, 526(7573): 410-414.
[44] REN J G, XU P, YONG H L, et al. Ground-to-satellite quantum teleportation[J]. Nature, 2017, 549(7670): 70-73.
[45] ARUTE F, ARYA K, BABBUSH R, et al. Quantum supremacy using a programmable superconducting processor[J]. Nature, 2019, 574(7779): 505-510.
[46] ACHARYA R, ALEINER I, ALLEN R, et al. Suppressing quantum errors by scaling a surface code logical qubit[J]. Nature, 2023, 614(7949): 676-681.
[47] NI Z, LI S, DENG X, et al. Beating the break-even point with a discrete-variable-encoded logical qubit[J]. Nature, 2023.
[48] ZUREK W H. Decoherence, einselection, and the quantum origins of the classical[J]. Rev. Mod. Phys., 2003, 75: 715-775.
[49] PRESKILL J. Fault-tolerant quantum computation[A]. 1997. arXiv: quant-ph/9712048.
[50] FREEDMAN M H. P/NP, and the quantum field computer[J]. Proceedings of the National Academy of Sciences, 1998, 95(1): 98-101.
[51] COLLINS G. Computing with quantum knots[J]. SCIENTIFIC AMERICAN, 2006, 294(4): 56-63.
[52] NAYAK C, SIMON S H, STERN A, et al. Non-Abelian anyons and topological quantum computation[J]. Rev. Mod. Phys., 2008, 80: 1083-1159.
[53] STANESCU T. Introduction to Topological Quantum Matter & Quantum Computation[M]. CRC Press, 2017.
[54] BOMBIN H, MARTIN-DELGADO M A. Family of non-Abelian Kitaev models on a lattice: Topological condensation and confinement[J]. Phys. Rev. B, 2008, 78: 115421.
[55] JONES V F R. A polynomial invariant for knots via von Neumann algebras[J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1985, 12: 103-111.
[56] FREEDMAN M, KITAEV A, LARSEN M, et al. Topological quantum computation[J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 40(1): 31-38.
[57] TREBST S, TROYER M, WANG Z, et al. A Short Introduction to Fibonacci Anyon Models[J]. Progress of Theoretical Physics Supplement, 2008, 176: 384-407.
[58] BONESTEEL N E, HORMOZI L, ZIKOS G, et al. Braid Topologies for Quantum Computation[J]. Phys. Rev. Lett., 2005, 95: 140503.
[59] STORMER H L. Nobel Lecture: The fractional quantum Hall effect[J]. Rev. Mod. Phys., 1999, 71: 875-889.
[60] KASAHARA Y, OHNISHI T, MIZUKAMI Y, et al. Majorana quantization and half-integer thermal quantum Hall effect in a Kitaev spin liquid[J]. Nature, 2018, 559(7713): 227-231.
[61] BOLOTIN K I, GHAHARI F, SHULMAN M D, et al. Observation of the fractional quantum Hall effect in graphene[J]. Nature, 2009, 462(7270): 196-199.
[62] BARTOLOMEI H, KUMAR M, BISOGNIN R, et al. Fractional statistics in anyon collisions[J]. Science, 2020, 368(6487): 173-177.
[63] SARMA S D, FREEDMAN M, NAYAK C. Majorana zero modes and topological quantum computation[J]. npj Quantum Information, 2015, 1(1): 15001.
[64] ALICEA J. New directions in the pursuit of Majorana fermions in solid state systems[J]. Reports on Progress in Physics, 2012, 75(7): 076501.
[65] TEWARI S, STANESCU T D, SAU J D, et al. Topologically non-trivial superconductivity in spin–orbit-coupled systems: bulk phases and quantum phase transitions[J]. New Journal of Physics, 2011, 13(6): 065004.
[66] HOU C Y, SHTENGEL K, REFAEL G, et al. Ettingshausen effect due to Majorana modes[J]. New Journal of Physics, 2012, 14(10): 105005.
[67] ALBRECHT S M, HIGGINBOTHAM A P, MADSEN M, et al. Exponential protection of zero modes in Majorana islands[J]. Nature, 2016, 531(7593): 206-209.
[68] LUTCHYN R M, BAKKERS E P A M, KOUWENHOVEN L P, et al. Majorana zero modes in superconductor–semiconductor heterostructures[J]. Nature Reviews Materials, 2018, 3(5): 52-68.
[69] LI M, LI G, CAO L, et al. Ordered and tunable Majorana-zero-mode lattice in naturally strained LiFeAs[J]. Nature, 2022, 606(7916): 890-895.
[70] TURAEV V G. Quantum Invariants of Knots and 3-Manifolds[M/OL]. Berlin, Boston: De Gruyter, 1994. https://doi.org/10.1515/9783110883275.
[71] READ N, GREEN D. Paired states of fermions in two dimensions with breaking of parity and time-reversal symmetries and the fractional quantum Hall effect[J]. Phys. Rev. B, 2000, 61: 10267-10297.
[72] CUI S X, HONG S M, WANG Z. Universal quantum computation with weakly integral anyons[J]. Quantum Information Processing, 2015, 14(8): 2687-2727.
[73] BRENNEN G K, AGUADO M, CIRAC J I. Simulations of quantum double models[J]. New Journal of Physics, 2009, 11(5): 053009.

所在学位评定分委会
物理学
国内图书分类号
O469
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/544687
专题量子科学与工程研究院
推荐引用方式
GB/T 7714
韩乾. 测量量子双模型 𝐷(ℤ𝑛) 中拓扑序的方案[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930046-韩乾-量子科学与工程研(9339KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[韩乾]的文章
百度学术
百度学术中相似的文章
[韩乾]的文章
必应学术
必应学术中相似的文章
[韩乾]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。