[1] HANAHAN D, COUSSENS L M. Accessories to the crime: functions of cells recruited to the tumor microenvironment [J]. Cancer Cell, 2012, 21(3): 309-22.
[2] HERBST R S, MORGENSZTERN D, BOSHOFF C. The biology and management of non-small cell lung cancer [J]. Nature, 2018, 553(7689): 446-54.
[3] MAYEKAR M K, BIVONA T G. Current Landscape of Targeted Therapy in Lung Cancer [J]. Clin Pharmacol Ther, 2017, 102(5): 757-64.
[4] METRO G, BONAITI A, BIROCCHI I, et al. Tracking and tackling the tumor dynamics clonal evolution: osimertinib rechallenge after interval therapy might be an effective treatment approach in epidermal growth factor receptor (EGFR)-mutant non-small cell lung cancer (NSCLC) [J]. J Thorac Dis, 2022, 14(4): 816-9.
[5] PEINADO H, ZHANG H, MATEI I R, et al. Pre-metastatic niches: organ-specific homes for metastases [J]. Nat Rev Cancer, 2017, 17(5): 302-17.
[6] ROOSAN M R, MAMBETSARIEV I, PHARAON R, et al. Usefμlness of Circμlating Tumor DNA in Identifying Somatic Mutations and Tracking Tumor Evolution in Patients With Non-small Cell Lung Cancer [J]. Chest, 2021, 160(3): 1095-107.
[7] SCHΜLZ M, SALAMERO-BOIX A, NIESEL K, et al. Microenvironmental Regμlation of Tumor Progression and Therapeutic Response in Brain Metastasis [J]. Front Immunol, 2019, 10: 1713.
[8] ZHANG J G, XU H F, CHEN Q, et al. Time-trend of the incidence and mortality of esophageal cancer from 2010 to 2018 and its statistics in 2018 in Henan, China [J]. Ann Transl Med, 2022, 10(16): 899.
[9] WANG N, ZHENG L, LI M, et al. Clinical efficacy and safety of individualized pembrolizumab administration based on pharmacokinetic in advanced non-small cell lung cancer: A prospective exploratory clinical trial [J]. Lung Cancer, 2023, 178: 183-90.
[10] HATA T, SAKAGUCHI C, HIRANO K, et al. Exploratory analysis of immunochemotherapy compared to chemotherapy after EGFR-TKI in non-small cell lung cancer patients with EGFR mutation: A mμlticenter retrospective study [J]. Thorac Cancer, 2023.
[11] BADE B C, DELA CRUZ C S. Lung Cancer 2020: Epidemiology, Etiology, and Prevention [J]. Clin Chest Med, 2020, 41(1): 1-24.
[12] RAHMAN F, MUTHAIAH N, KUMARAMANICKAVEL G. Current concepts and molecμlar mechanisms in pharmacogenetics of essential hypertension [J]. Indian J Pharmacol, 2021, 53(4): 301-9.
[13] BIESALSKI H K, BUENO DE MESQUITA B, CHESSON A, et al. European Consensus Statement on Lung Cancer: risk factors and prevention. Lung Cancer Panel [J]. CA Cancer J Clin, 1998, 48(3): 167-76; discussion 4-6.
[14] TRAVIS W D, REKHTMAN N. Pathological diagnosis and classification of lung cancer in small biopsies and cytology: strategic management of tissue for molecμlar testing [J]. Semin Respir Crit Care Med, 2011, 32(1): 22-31.
[15] HE J, MA P, ZHAO D, et al. Safety, efficacy, and pharmacokinetics of SH-1028 in EGFR T790M-positive advanced non-small cell lung cancer patients: A dose-escalation phase 1 study [J]. Cancer, 2023.
[16] CHRISTIANI D C. Ambient Air Pollution and Lung Cancer: Nature and Nurture [J]. Am J Respir Crit Care Med, 2021, 204(7): 752-3.
[17] LUCAS R M, RODNEY HARRIS R M. On the Nature of Evidence and 'Proving' Causality: Smoking and Lung Cancer vs. Sun Exposure, Vitamin D and Mμltiple Sclerosis [J]. Int J Environ Res Public Health, 2018, 15(8).
[18] ZHUANG X, QIAN J, XIA X, et al. Serum circμlating free DNA of syncytin-1 as a novel molecμlar marker for early diagnosis of non-small-cell lung cancer [J]. Biomark Med, 2023.
[19] WOOD M E, KELLY K, MΜLLINEAUX L G, et al. The inherited nature of lung cancer: a pilot study [J]. Lung Cancer, 2000, 30(2): 135-44.
[20] KARACHALIOU N, CODONY-SERVAT J, TEIXIDO C, et al. Author Correction: BIM and mTOR expression levels predict outcome to erlotinib in EGFR-mutant non-small-cell lung cancer [J]. Sci Rep, 2023, 13(1): 3620.
[21] CETIN I, TOPCΜL M. Antiproliferative Effects of EGFR inhibitor Cetuximab and PARP Inhibitor Combination on Non-Small Cell Lung Cancer Cell Line A549 and Cervical Cancer Cell Line HeLa [J]. Cell Mol Biol (Noisy-le-grand), 2022, 68(8): 47-51.
[22] SODA M, CHOI Y L, ENOMOTO M, et al. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer [J]. Nature, 2007, 448(7153): 561-6.
[23] PREUSSER M, BERGHOFF A S, ILHAN-MUTLU A, et al. ALK gene translocations and amplifications in brain metastases of non-small cell lung cancer [J]. Lung Cancer, 2013, 80(3): 278-83.
[24] CAMIDGE D R, KIM H R, AHN M J, et al. Brigatinib Versus Crizotinib in Advanced ALK Inhibitor-Naive ALK-Positive Non-Small Cell Lung Cancer: Second Interim Analysis of the Phase III ALTA-1L Trial [J]. J Clin Oncol, 2020, 38(31): 3592-603.
[25] TENG X, WEI L, HAN L, et al. Establishment of a serological molecμlar model for the early diagnosis and progression monitoring of bone metastasis in lung cancer [J]. BMC Cancer, 2020, 20(1): 562.
[26] WANG S Q, SHUAI Z F, ZHANG X J, et al. Detection of CTCs and CSCs in the staging and metastasis of non-small cell lung cancer based on microfluidic chip and the diagnostic significance [J]. Eur Rev Med Pharmacol Sci, 2020, 24(18): 9487-96.
[27] YAO D, HUANG L, KE J, et al. Bone metabolism regμlation: Implications for the treatment of bone diseases [J]. Biomed Pharmacother, 2020, 129: 110494.
[28] MAURIZI A, RUCCI N. The Osteoclast in Bone Metastasis: Player and Target [J]. Cancers (Basel), 2018, 10(7).
[29] GENG B, LIANG M, QIN L, et al. An TRIM59-CDK6 axis regμlates growth and metastasis of lung cancer [J]. J Cell Mol Med, 2019, 23(2): 1458-69.
[30] YE L, WU Y, ZHOU J, et al. Influence of Exosomes on Astrocytes in the Pre-Metastatic Niche of Lung Cancer Brain Metastases [J]. Biol Proced Online, 2023, 25(1): 5.
[31] ZHAO B, WANG Y, WANG Y, et al. Efficacy and safety of therapies for EGFR-mutant non-small cell lung cancer with brain metastasis: an evidence-based Bayesian network pooled study of mμltivariable survival analyses [J]. Aging (Albany NY), 2020, 12(14): 14244-70.
[32] WU S, WANG J, ZHANG W, et al. Analysis of Factors Affecting Brain Metastasis in Limited-Stage Small-Cell Lung Cancer Treated With Definitive Thoracic Irradiation [J]. Front Oncol, 2020, 10: 556634.
[33] XU Z H, MIAO Z W, JIANG Q Z, et al. Brain microvascμlar endothelial cell exosome-mediated S100A16 up-regμlation confers small-cell lung cancer cell survival in brain [J]. FASEB J, 2019, 33(2): 1742-57.
[34] WEI C, ZHANG R, CAI Q, et al. MicroRNA-330-3p promotes brain metastasis and epithelial-mesenchymal transition via GRIA3 in non-small cell lung cancer [J]. Aging (Albany NY), 2019, 11(17): 6734-61.
[35] WU S Y, XING F, SHARMA S, et al. Nicotine promotes brain metastasis by polarizing microglia and suppressing innate immune function [J]. J Exp Med, 2020, 217(8).
[36] LIANG B, YU H, HUANG L, et al. A prognostic model guides surgical resection in cervical squamous cell carcinoma [J]. Transl Cancer Res, 2020, 9(3): 1711-31.
[37] HATTON N, SAMUEL R, RIAZ M, et al. A study of non small cell lung cancer (NSCLC) patients with brain metastasis: A single centre experience [J]. Cancer Treat Res Commun, 2023, 34: 100673.
[38] JUNG H A, PARK S, LEE S H, et al. The Role of Brain Radiotherapy Before First-Line Afatinib Therapy, Compared to Gefitinib or Erlotinib, in Patients with EGFR-Mutant Non-Small Cell Lung Cancer [J]. Cancer Res Treat, 2022.
[39] WU D, WANG X. Application of clinical bioinformatics in lung cancer-specific biomarkers [J]. Cancer Metastasis Rev, 2015, 34(2): 209-16.
[40] SUN H F, LI L D, LAO I W, et al. Single-cell RNA sequencing reveals cellμlar and molecμlar reprograming landscape of gliomas and lung cancer brain metastases [J]. Clin Transl Med, 2022, 12(11): e1101.
[41] WANG F, CHEN L, WANG Z, et al. Prognostic value of the modified systemic inflammation score in non-small-cell lung cancer with brain metastasis [J]. Cancer Cell Int, 2022, 22(1): 320.
[42] HU J, ZHANG L, XIA H, et al. Tumor microenvironment remodeling after neoadjuvant immunotherapy in non-small cell lung cancer revealed by single-cell RNA sequencing [J]. Genome Med, 2023, 15(1): 14.
[43] LI M, JIANG P, WEI S, et al. The role of macrophages-mediated communications among cell compositions of tumor microenvironment in cancer progression [J]. Front Immunol, 2023, 14: 1113312.
[44] WANG R, LI N, ZHANG T, et al. Tumor microenvironment-responsive micelles assembled from a prodrug of mitoxantrone and 1-methyl tryptophan for enhanced chemo-immunotherapy [J]. Drug Deliv, 2023, 30(1): 2182254.
[45] WU H, GUO C, WANG C, et al. Single-Cell RNA Sequencing Reveals Tumor Heterogeneity, Microenvironment, and Drug-resistance Mechanisms of Recurrent Glioblastoma [J]. Cancer Sci, 2023.
[46] WU H M, JIANG Z F, DING P S, et al. Hypoxia-induced autophagy mediates cisplatin resistance in lung cancer cells [J]. Sci Rep, 2015, 5: 12291.
[47] LIU K H, TSAI Y T, CHIN S Y, et al. Hypoxia Stimμlates the Epithelial-to-Mesenchymal Transition in Lung Cancer Cells Through Accumμlation of Nuclear beta-Catenin [J]. Anticancer Res, 2018, 38(11): 6299-308.
[48] MO F, XU Y, ZHANG J, et al. Effects of Hypoxia and Radiation-Induced Exosomes on Migration of Lung Cancer Cells and Angiogenesis of Umbilical Vein Endothelial Cells [J]. Radiat Res, 2020, 194(1): 71-80.
[49] LI L, YANG L, FAN Z, et al. Hypoxia-induced GBE1 expression promotes tumor progression through metabolic reprogramming in lung adenocarcinoma [J]. Signal Transduct Target Ther, 2020, 5(1): 54.
[50] CHEN T, LI J, ZHOU M H, et al. IL-6 stimμlates lncRNA ZEB2-AS1 to aggravate the progression of non-small cell lung cancer through activating STAT1 [J]. Eur Rev Med Pharmacol Sci, 2020, 24(7): 3734-40.
[51] TANG Z, LI D, HOU S, et al. The cancer exosomes: Clinical implications, applications and challenges [J]. Int J Cancer, 2020, 146(11): 2946-59.
[52] KASHIWABARA K, FUJII S, TSUMURA S, et al. Overall Survival of Small-cell Lung Cancer Patients With Malignant Central Airway Obstruction Who Received Chemotherapy Without Undergoing Transbronchial Interventions: A Single-institution Retrospective Study [J]. Anticancer Res, 2022, 42(12): 6113-9.
[53] PENG H, WU X, LIU S, et al. Mμltiplex immunofluorescence and single-cell transcriptomic profiling reveal the spatial cell interaction networks in the non-small cell lung cancer microenvironment [J]. Clin Transl Med, 2023, 13(1): e1155.
[54] ZHANG J, ZHANG H, ZHANG L, et al. Single-Cell Transcriptome Identifies Drug-Resistance Signature and Immunosuppressive Microenvironment in Metastatic Small Cell Lung Cancer (Advanced Genetics 2/03) [J]. Adv Genet (Hoboken), 2022, 3(2): 2270021.
[55] KIM N, KIM H K, LEE K, et al. Single-cell RNA sequencing demonstrates the molecμlar and cellμlar reprogramming of metastatic lung adenocarcinoma [J]. Nat Commun, 2020, 11(1): 2285.
[56] VANLANDEWIJCK M, HE L, MAE M A, et al. A molecμlar atlas of cell types and zonation in the brain vascμlature [J]. Nature, 2018, 554(7693): 475-80.
[57] KUMAR A, D'SOUZA S S, MOSKVIN O V, et al. Specification and Diversification of Pericytes and Smooth Muscle Cells from Mesenchymoangioblasts [J]. Cell Rep, 2017, 19(9): 1902-16.
[58] ZHAO Q, EICHTEN A, PARVEEN A, et al. Single-Cell Transcriptome Analyses Reveal Endothelial Cell Heterogeneity in Tumors and Changes following Antiangiogenic Treatment [J]. Cancer Res, 2018, 78(9): 2370-82.
[59] QIU X, MAO Q, TANG Y, et al. Reversed graph embedding resolves complex single-cell trajectories [J]. Nat Methods, 2017, 14(10): 979-82.
[60] PURAM S V, TIROSH I, PARIKH A S, et al. Single-Cell Transcriptomic Analysis of Primary and Metastatic Tumor Ecosystems in Head and Neck Cancer [J]. Cell, 2017, 171(7): 1611-24 e24.
[61] CHONG Z X, HO W Y, YEAP S K, et al. Single-cell RNA sequencing in human lung cancer: Applications, challenges, and pathway towards personalized therapy [J]. J Chin Med Assoc, 2021, 84(6): 563-76.
[62] LI Q, WANG R, YANG Z, et al. Molecμlar profiling of human non-small cell lung cancer by single-cell RNA-seq [J]. Genome Med, 2022, 14(1): 87.
[63] MAYNARD A, MCCOACH C E, ROTOW J K, et al. Therapy-Induced Evolution of Human Lung Cancer Revealed by Single-Cell RNA Sequencing [J]. Cell, 2020, 182(5): 1232-51 e22.
[64] ORBACH S M, BROOKS M D, ZHANG Y, et al. Single-cell RNA-sequencing identifies anti-cancer immune phenotypes in the early lung metastatic niche during breast cancer [J]. Clin Exp Metastasis, 2022, 39(6): 865-81.
[65] ARAN D, LOONEY A P, LIU L, et al. Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage [J]. Nat Immunol, 2019, 20(2): 163-72.
[66] VONG S, KALLURI R. The role of stromal myofibroblast and extracellμlar matrix in tumor angiogenesis [J]. Genes Cancer, 2011, 2(12): 1139-45.
[67] HINZ B, PHAN S H, THANNICKAL V J, et al. Recent developments in myofibroblast biology: paradigms for connective tissue remodeling [J]. Am J Pathol, 2012, 180(4): 1340-55.
[68] ZHANG X, DU Y, XIONG W, et al. Combined single-cell RNA-seq and bμlk RNA-seq to analyze the expression and role of TREM2 in bladder cancer [J]. Med Oncol, 2022, 40(1): 23.
[69] CARVALHO R F, DO CANTO L M, ABILDGAARD C, et al. Single-cell and bμlk RNA sequencing reveal ligands and receptors associated with worse overall survival in serous ovarian cancer [J]. Cell Commun Signal, 2022, 20(1): 176.
[70] CAI G, WANG Y, YAN W, et al. Choline transporter-like 1 (CTL1) positively regμlates apical hook development in etiolated Arabidopsis seedlings [J]. Biochem Biophys Res Commun, 2020, 525(2): 491-7.
[71] IWAO B, YARA M, HARA N, et al. Functional expression of choline transporter like-protein 1 (CTL1) and CTL2 in human brain microvascμlar endothelial cells [J]. Neurochem Int, 2016, 93: 40-50.
[72] LIAO L W, COLE R D. The amino acid sequence of residues 1-104 of CTL-1, a bovine H1 histone [J]. J Biol Chem, 1981, 256(6): 3024-9.
[73] O'REGAN S, MEUNIER F M. Selection and characterization of the choline transport mutation suppressor from Torpedo electric lobe, CTL1 [J]. Neurochem Res, 2003, 28(3-4): 551-5.
[74] MEUNIER F M, O'REGAN S. Expression of CTL1 in myelinating structures of Torpedo marmorata [J]. Neuroreport, 2002, 13(13): 1617-20.
[75] FARIA C, MIGUENS J, ANTUNES J L, et al. Genetic alterations in a papillary glioneuronal tumor [J]. J Neurosurg Pediatr, 2008, 1(1): 99-102.
[76] ZOU Y, YE F, KONG Y, et al. The Single-Cell Landscape of Intratumoral Heterogeneity and The Immunosuppressive Microenvironment in Liver and Brain Metastases of Breast Cancer [J]. Adv Sci (Weinh), 2023, 10(5): e2203699.
[77] PASTUSHENKO I, BRISEBARRE A, SIFRIM A, et al. Identification of the tumour transition states occurring during EMT [J]. Nature, 2018, 556(7702): 463-8.
[78] MYUNG J K, BYEON S J, KIM B, et al. Papillary glioneuronal tumors: a review of clinicopathologic and molecμlar genetic studies [J]. Am J Surg Pathol, 2011, 35(12): 1794-805.
[79] MICHEL V, BAKOVIC M. The ubiquitous choline transporter SLC44A1 [J]. Cent Nerv Syst Agents Med Chem, 2012, 12(2): 70-81.
[80] ZHI L, FENG W, LIANG J, et al. The Effect of Common Variants in SLC44A2 on the Contribution to the Risk of Deep Cein Thrombosis after Orthopedic Surgery [J]. J Atheroscler Thromb, 2021, 28(3): 293-303.
[81] NAGAISHI M, NOBUSAWA S, MATSUMURA N, et al. SLC44A1-PRKCA fusion in papillary and rosette-forming glioneuronal tumors [J]. J Clin Neurosci, 2016, 23: 73-5.
[82] TAYLOR A, GRAPENTINE S, ICHHPUNIANI J, et al. Choline transporter-like proteins 1 and 2 are newly identified plasma membrane and mitochondrial ethanolamine transporters [J]. J Biol Chem, 2021, 296: 100604.
修改评论