中文版 | English
题名

基于单细胞转录组学解析肿瘤微环境对肺癌脑转移的作用

其他题名
SINGLE-CELL SEQUENCINGREVEALSTHEROLE OF TUMOR MICROENVIRMENTINBRAIN METASTASIS OF LUNGCANCER
姓名
姓名拼音
ZHANG Siyu
学号
12032635
学位类型
硕士
学位专业
0710 生物学
学科门类/专业学位类别
07 理学
导师
胡继良
导师单位
南方科技大学第一附属医院
论文答辩日期
2023-05-10
论文提交日期
2023-06-28
学位授予单位
南方科技大学
学位授予地点
深圳
摘要
研究背景:
   肺癌已经成为中国乃至全球恶性肿瘤死亡率最高的肿瘤之一,肺癌患者确诊时大多已发展到中晚期。大脑是肺癌转移的最常见部位,高达 50% 的肺癌患者在疾病过程中发展为脑转移(BrM)。肺癌脑转移后具有较强的侵袭性,预后差,常伴有患者生活质量的下降。有关于脑转移瘤的治疗方法十分有限,孤立性病灶多采用手术或立体定向放射治疗,多发性病灶以全脑放射治疗为主。由于目前有关肺癌脑转移的发病机制尚不清楚,肺癌脑转移的治疗成为一种难题,因此进一步研究肺癌脑转移的发展机制,寻找新的靶点,才能有效延长患者的生存期。
研究方法:
  本课题运用单细胞转录组测序技术以构建肺癌脑转移肿瘤微环境的单细胞图谱 。通 过 使 用 10× Genomics 公 司 的 Chromium Single Cell 3 Reagent v3 kits 6 例肺癌组织、7 例肺癌脑转移组织以及 2 例癌旁组织进行单细胞转录组测序。通过生物信息学分析研究肺癌脑转移肿瘤微环境的异质性,寻找在肺癌转移过程中起定向脑转移作用的上皮细胞亚群,找到该亚群分子标志物,利用细胞增殖、细胞迁移和侵袭、多重免疫荧光染色实验探究靶基因在肺癌转移中的作用。
研究结论:
  本课题通过单细胞转录组测序以及生物信息学分析,鉴定了肺癌及脑转移肿瘤 微 环 境 中 的 7 大 类 细 胞 , 分 别 为 : T Cell Epithelial Cell Myeloid CellFibroblastEndothelial CellB CellMast Cell,构建了肺癌脑转移肿瘤微环境的单细胞图谱,揭示了肺癌脑转移肿瘤微环境的高度异质性。与肺癌原位肿瘤上皮细胞相比,脑转移上皮细胞中找到一个特殊细胞亚群,通过该亚群 GOGSEA 分析发现其生物学过程与肿瘤转移密切相关。通过比对该上皮细胞亚群与肺癌原位上皮细胞的差异基因表达,发现SLC44A1 基因在该上皮细胞亚群中表达较高。利用 TCGA 数据分析发现该基因的表达与肺癌患者的生存期密切相关。通过多重免疫荧光实验检测肺癌及脑转移患者肿瘤组织中 SLC44A1 基因表达情况,发现在脑转移患者肿瘤相关上皮细胞中,SLC44A1 基因表达明显增加。随后使用 siRNA 在人肺癌细胞系 A549HCC827 中敲降 SLC44A1 基因,运用 CCK-8 法检测细胞增 殖 、 Transwell 法 检 测 细 胞 迁 移 与 侵 袭 , 发 现 在 人 肺 癌 细 胞 系 A549HCC827 中敲降 SLC44A1 基因可以降低细胞增殖以及细胞迁移与侵袭速率,说明 SLC44A1 基因可以促进肺癌细胞的增殖、迁移以及侵袭,初步判断SLC44A1 基因在肺癌转移过程中起促进作用。
关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2023-06
参考文献列表


[1] HANAHAN D, COUSSENS L M. Accessories to the crime: functions of cells recruited to the tumor microenvironment [J]. Cancer Cell, 2012, 21(3): 309-22.

[2] HERBST R S, MORGENSZTERN D, BOSHOFF C. The biology and management of non-small cell lung cancer [J]. Nature, 2018, 553(7689): 446-54.

[3] MAYEKAR M K, BIVONA T G. Current Landscape of Targeted Therapy in Lung Cancer [J]. Clin Pharmacol Ther, 2017, 102(5): 757-64.

[4] METRO G, BONAITI A, BIROCCHI I, et al. Tracking and tackling the tumor dynamics clonal evolution: osimertinib rechallenge after interval therapy might be an effective treatment approach in epidermal growth factor receptor (EGFR)-mutant non-small cell lung cancer (NSCLC) [J]. J Thorac Dis, 2022, 14(4): 816-9.

[5] PEINADO H, ZHANG H, MATEI I R, et al. Pre-metastatic niches: organ-specific homes for metastases [J]. Nat Rev Cancer, 2017, 17(5): 302-17.

[6] ROOSAN M R, MAMBETSARIEV I, PHARAON R, et al. Usefμlness of Circμlating Tumor DNA in Identifying Somatic Mutations and Tracking Tumor Evolution in Patients With Non-small Cell Lung Cancer [J]. Chest, 2021, 160(3): 1095-107.

[7] SCHΜLZ M, SALAMERO-BOIX A, NIESEL K, et al. Microenvironmental Regμlation of Tumor Progression and Therapeutic Response in Brain Metastasis [J]. Front Immunol, 2019, 10: 1713.

[8] ZHANG J G, XU H F, CHEN Q, et al. Time-trend of the incidence and mortality of esophageal cancer from 2010 to 2018 and its statistics in 2018 in Henan, China [J]. Ann Transl Med, 2022, 10(16): 899.

[9] WANG N, ZHENG L, LI M, et al. Clinical efficacy and safety of individualized pembrolizumab administration based on pharmacokinetic in advanced non-small cell lung cancer: A prospective exploratory clinical trial [J]. Lung Cancer, 2023, 178: 183-90.

[10] HATA T, SAKAGUCHI C, HIRANO K, et al. Exploratory analysis of immunochemotherapy compared to chemotherapy after EGFR-TKI in non-small cell lung cancer patients with EGFR mutation: A mμlticenter retrospective study [J]. Thorac Cancer, 2023.

[11] BADE B C, DELA CRUZ C S. Lung Cancer 2020: Epidemiology, Etiology, and Prevention [J]. Clin Chest Med, 2020, 41(1): 1-24.

[12] RAHMAN F, MUTHAIAH N, KUMARAMANICKAVEL G. Current concepts and molecμlar mechanisms in pharmacogenetics of essential hypertension [J]. Indian J Pharmacol, 2021, 53(4): 301-9.

[13] BIESALSKI H K, BUENO DE MESQUITA B, CHESSON A, et al. European Consensus Statement on Lung Cancer: risk factors and prevention. Lung Cancer Panel [J]. CA Cancer J Clin, 1998, 48(3): 167-76; discussion 4-6.

[14] TRAVIS W D, REKHTMAN N. Pathological diagnosis and classification of lung cancer in small biopsies and cytology: strategic management of tissue for molecμlar testing [J]. Semin Respir Crit Care Med, 2011, 32(1): 22-31.

[15] HE J, MA P, ZHAO D, et al. Safety, efficacy, and pharmacokinetics of SH-1028 in EGFR T790M-positive advanced non-small cell lung cancer patients: A dose-escalation phase 1 study [J]. Cancer, 2023.

[16] CHRISTIANI D C. Ambient Air Pollution and Lung Cancer: Nature and Nurture [J]. Am J Respir Crit Care Med, 2021, 204(7): 752-3.

[17] LUCAS R M, RODNEY HARRIS R M. On the Nature of Evidence and 'Proving' Causality: Smoking and Lung Cancer vs. Sun Exposure, Vitamin D and Mμltiple Sclerosis [J]. Int J Environ Res Public Health, 2018, 15(8).

[18] ZHUANG X, QIAN J, XIA X, et al. Serum circμlating free DNA of syncytin-1 as a novel molecμlar marker for early diagnosis of non-small-cell lung cancer [J]. Biomark Med, 2023.

[19] WOOD M E, KELLY K, MΜLLINEAUX L G, et al. The inherited nature of lung cancer: a pilot study [J]. Lung Cancer, 2000, 30(2): 135-44.

[20] KARACHALIOU N, CODONY-SERVAT J, TEIXIDO C, et al. Author Correction: BIM and mTOR expression levels predict outcome to erlotinib in EGFR-mutant non-small-cell lung cancer [J]. Sci Rep, 2023, 13(1): 3620.

[21] CETIN I, TOPCΜL M. Antiproliferative Effects of EGFR inhibitor Cetuximab and PARP Inhibitor Combination on Non-Small Cell Lung Cancer Cell Line A549 and Cervical Cancer Cell Line HeLa [J]. Cell Mol Biol (Noisy-le-grand), 2022, 68(8): 47-51.

[22] SODA M, CHOI Y L, ENOMOTO M, et al. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer [J]. Nature, 2007, 448(7153): 561-6.

[23] PREUSSER M, BERGHOFF A S, ILHAN-MUTLU A, et al. ALK gene translocations and amplifications in brain metastases of non-small cell lung cancer [J]. Lung Cancer, 2013, 80(3): 278-83.

[24] CAMIDGE D R, KIM H R, AHN M J, et al. Brigatinib Versus Crizotinib in Advanced ALK Inhibitor-Naive ALK-Positive Non-Small Cell Lung Cancer: Second Interim Analysis of the Phase III ALTA-1L Trial [J]. J Clin Oncol, 2020, 38(31): 3592-603.

[25] TENG X, WEI L, HAN L, et al. Establishment of a serological molecμlar model for the early diagnosis and progression monitoring of bone metastasis in lung cancer [J]. BMC Cancer, 2020, 20(1): 562.

[26] WANG S Q, SHUAI Z F, ZHANG X J, et al. Detection of CTCs and CSCs in the staging and metastasis of non-small cell lung cancer based on microfluidic chip and the diagnostic significance [J]. Eur Rev Med Pharmacol Sci, 2020, 24(18): 9487-96.

[27] YAO D, HUANG L, KE J, et al. Bone metabolism regμlation: Implications for the treatment of bone diseases [J]. Biomed Pharmacother, 2020, 129: 110494.

[28] MAURIZI A, RUCCI N. The Osteoclast in Bone Metastasis: Player and Target [J]. Cancers (Basel), 2018, 10(7).

[29] GENG B, LIANG M, QIN L, et al. An TRIM59-CDK6 axis regμlates growth and metastasis of lung cancer [J]. J Cell Mol Med, 2019, 23(2): 1458-69.

[30] YE L, WU Y, ZHOU J, et al. Influence of Exosomes on Astrocytes in the Pre-Metastatic Niche of Lung Cancer Brain Metastases [J]. Biol Proced Online, 2023, 25(1): 5.

[31] ZHAO B, WANG Y, WANG Y, et al. Efficacy and safety of therapies for EGFR-mutant non-small cell lung cancer with brain metastasis: an evidence-based Bayesian network pooled study of mμltivariable survival analyses [J]. Aging (Albany NY), 2020, 12(14): 14244-70.

[32] WU S, WANG J, ZHANG W, et al. Analysis of Factors Affecting Brain Metastasis in Limited-Stage Small-Cell Lung Cancer Treated With Definitive Thoracic Irradiation [J]. Front Oncol, 2020, 10: 556634.

[33] XU Z H, MIAO Z W, JIANG Q Z, et al. Brain microvascμlar endothelial cell exosome-mediated S100A16 up-regμlation confers small-cell lung cancer cell survival in brain [J]. FASEB J, 2019, 33(2): 1742-57.

[34] WEI C, ZHANG R, CAI Q, et al. MicroRNA-330-3p promotes brain metastasis and epithelial-mesenchymal transition via GRIA3 in non-small cell lung cancer [J]. Aging (Albany NY), 2019, 11(17): 6734-61.

[35] WU S Y, XING F, SHARMA S, et al. Nicotine promotes brain metastasis by polarizing microglia and suppressing innate immune function [J]. J Exp Med, 2020, 217(8).

[36] LIANG B, YU H, HUANG L, et al. A prognostic model guides surgical resection in cervical squamous cell carcinoma [J]. Transl Cancer Res, 2020, 9(3): 1711-31.

[37] HATTON N, SAMUEL R, RIAZ M, et al. A study of non small cell lung cancer (NSCLC) patients with brain metastasis: A single centre experience [J]. Cancer Treat Res Commun, 2023, 34: 100673.

[38] JUNG H A, PARK S, LEE S H, et al. The Role of Brain Radiotherapy Before First-Line Afatinib Therapy, Compared to Gefitinib or Erlotinib, in Patients with EGFR-Mutant Non-Small Cell Lung Cancer [J]. Cancer Res Treat, 2022.

[39] WU D, WANG X. Application of clinical bioinformatics in lung cancer-specific biomarkers [J]. Cancer Metastasis Rev, 2015, 34(2): 209-16.

[40] SUN H F, LI L D, LAO I W, et al. Single-cell RNA sequencing reveals cellμlar and molecμlar reprograming landscape of gliomas and lung cancer brain metastases [J]. Clin Transl Med, 2022, 12(11): e1101.

[41] WANG F, CHEN L, WANG Z, et al. Prognostic value of the modified systemic inflammation score in non-small-cell lung cancer with brain metastasis [J]. Cancer Cell Int, 2022, 22(1): 320.

[42] HU J, ZHANG L, XIA H, et al. Tumor microenvironment remodeling after neoadjuvant immunotherapy in non-small cell lung cancer revealed by single-cell RNA sequencing [J]. Genome Med, 2023, 15(1): 14.

[43] LI M, JIANG P, WEI S, et al. The role of macrophages-mediated communications among cell compositions of tumor microenvironment in cancer progression [J]. Front Immunol, 2023, 14: 1113312.

[44] WANG R, LI N, ZHANG T, et al. Tumor microenvironment-responsive micelles assembled from a prodrug of mitoxantrone and 1-methyl tryptophan for enhanced chemo-immunotherapy [J]. Drug Deliv, 2023, 30(1): 2182254.

[45] WU H, GUO C, WANG C, et al. Single-Cell RNA Sequencing Reveals Tumor Heterogeneity, Microenvironment, and Drug-resistance Mechanisms of Recurrent Glioblastoma [J]. Cancer Sci, 2023.

[46] WU H M, JIANG Z F, DING P S, et al. Hypoxia-induced autophagy mediates cisplatin resistance in lung cancer cells [J]. Sci Rep, 2015, 5: 12291.

[47] LIU K H, TSAI Y T, CHIN S Y, et al. Hypoxia Stimμlates the Epithelial-to-Mesenchymal Transition in Lung Cancer Cells Through Accumμlation of Nuclear beta-Catenin [J]. Anticancer Res, 2018, 38(11): 6299-308.

[48] MO F, XU Y, ZHANG J, et al. Effects of Hypoxia and Radiation-Induced Exosomes on Migration of Lung Cancer Cells and Angiogenesis of Umbilical Vein Endothelial Cells [J]. Radiat Res, 2020, 194(1): 71-80.

[49] LI L, YANG L, FAN Z, et al. Hypoxia-induced GBE1 expression promotes tumor progression through metabolic reprogramming in lung adenocarcinoma [J]. Signal Transduct Target Ther, 2020, 5(1): 54.

[50] CHEN T, LI J, ZHOU M H, et al. IL-6 stimμlates lncRNA ZEB2-AS1 to aggravate the progression of non-small cell lung cancer through activating STAT1 [J]. Eur Rev Med Pharmacol Sci, 2020, 24(7): 3734-40.

[51] TANG Z, LI D, HOU S, et al. The cancer exosomes: Clinical implications, applications and challenges [J]. Int J Cancer, 2020, 146(11): 2946-59.

[52] KASHIWABARA K, FUJII S, TSUMURA S, et al. Overall Survival of Small-cell Lung Cancer Patients With Malignant Central Airway Obstruction Who Received Chemotherapy Without Undergoing Transbronchial Interventions: A Single-institution Retrospective Study [J]. Anticancer Res, 2022, 42(12): 6113-9.

[53] PENG H, WU X, LIU S, et al. Mμltiplex immunofluorescence and single-cell transcriptomic profiling reveal the spatial cell interaction networks in the non-small cell lung cancer microenvironment [J]. Clin Transl Med, 2023, 13(1): e1155.

[54] ZHANG J, ZHANG H, ZHANG L, et al. Single-Cell Transcriptome Identifies Drug-Resistance Signature and Immunosuppressive Microenvironment in Metastatic Small Cell Lung Cancer (Advanced Genetics 2/03) [J]. Adv Genet (Hoboken), 2022, 3(2): 2270021.

[55] KIM N, KIM H K, LEE K, et al. Single-cell RNA sequencing demonstrates the molecμlar and cellμlar reprogramming of metastatic lung adenocarcinoma [J]. Nat Commun, 2020, 11(1): 2285.

[56] VANLANDEWIJCK M, HE L, MAE M A, et al. A molecμlar atlas of cell types and zonation in the brain vascμlature [J]. Nature, 2018, 554(7693): 475-80.

[57] KUMAR A, D'SOUZA S S, MOSKVIN O V, et al. Specification and Diversification of Pericytes and Smooth Muscle Cells from Mesenchymoangioblasts [J]. Cell Rep, 2017, 19(9): 1902-16.

[58] ZHAO Q, EICHTEN A, PARVEEN A, et al. Single-Cell Transcriptome Analyses Reveal Endothelial Cell Heterogeneity in Tumors and Changes following Antiangiogenic Treatment [J]. Cancer Res, 2018, 78(9): 2370-82.

[59] QIU X, MAO Q, TANG Y, et al. Reversed graph embedding resolves complex single-cell trajectories [J]. Nat Methods, 2017, 14(10): 979-82.

[60] PURAM S V, TIROSH I, PARIKH A S, et al. Single-Cell Transcriptomic Analysis of Primary and Metastatic Tumor Ecosystems in Head and Neck Cancer [J]. Cell, 2017, 171(7): 1611-24 e24.

[61] CHONG Z X, HO W Y, YEAP S K, et al. Single-cell RNA sequencing in human lung cancer: Applications, challenges, and pathway towards personalized therapy [J]. J Chin Med Assoc, 2021, 84(6): 563-76.

[62] LI Q, WANG R, YANG Z, et al. Molecμlar profiling of human non-small cell lung cancer by single-cell RNA-seq [J]. Genome Med, 2022, 14(1): 87.

[63] MAYNARD A, MCCOACH C E, ROTOW J K, et al. Therapy-Induced Evolution of Human Lung Cancer Revealed by Single-Cell RNA Sequencing [J]. Cell, 2020, 182(5): 1232-51 e22.

[64] ORBACH S M, BROOKS M D, ZHANG Y, et al. Single-cell RNA-sequencing identifies anti-cancer immune phenotypes in the early lung metastatic niche during breast cancer [J]. Clin Exp Metastasis, 2022, 39(6): 865-81.

[65] ARAN D, LOONEY A P, LIU L, et al. Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage [J]. Nat Immunol, 2019, 20(2): 163-72.

[66] VONG S, KALLURI R. The role of stromal myofibroblast and extracellμlar matrix in tumor angiogenesis [J]. Genes Cancer, 2011, 2(12): 1139-45.

[67] HINZ B, PHAN S H, THANNICKAL V J, et al. Recent developments in myofibroblast biology: paradigms for connective tissue remodeling [J]. Am J Pathol, 2012, 180(4): 1340-55.

[68] ZHANG X, DU Y, XIONG W, et al. Combined single-cell RNA-seq and bμlk RNA-seq to analyze the expression and role of TREM2 in bladder cancer [J]. Med Oncol, 2022, 40(1): 23.

[69] CARVALHO R F, DO CANTO L M, ABILDGAARD C, et al. Single-cell and bμlk RNA sequencing reveal ligands and receptors associated with worse overall survival in serous ovarian cancer [J]. Cell Commun Signal, 2022, 20(1): 176.

[70] CAI G, WANG Y, YAN W, et al. Choline transporter-like 1 (CTL1) positively regμlates apical hook development in etiolated Arabidopsis seedlings [J]. Biochem Biophys Res Commun, 2020, 525(2): 491-7.

[71] IWAO B, YARA M, HARA N, et al. Functional expression of choline transporter like-protein 1 (CTL1) and CTL2 in human brain microvascμlar endothelial cells [J]. Neurochem Int, 2016, 93: 40-50.

[72] LIAO L W, COLE R D. The amino acid sequence of residues 1-104 of CTL-1, a bovine H1 histone [J]. J Biol Chem, 1981, 256(6): 3024-9.

[73] O'REGAN S, MEUNIER F M. Selection and characterization of the choline transport mutation suppressor from Torpedo electric lobe, CTL1 [J]. Neurochem Res, 2003, 28(3-4): 551-5.

[74] MEUNIER F M, O'REGAN S. Expression of CTL1 in myelinating structures of Torpedo marmorata [J]. Neuroreport, 2002, 13(13): 1617-20.

[75] FARIA C, MIGUENS J, ANTUNES J L, et al. Genetic alterations in a papillary glioneuronal tumor [J]. J Neurosurg Pediatr, 2008, 1(1): 99-102.

[76] ZOU Y, YE F, KONG Y, et al. The Single-Cell Landscape of Intratumoral Heterogeneity and The Immunosuppressive Microenvironment in Liver and Brain Metastases of Breast Cancer [J]. Adv Sci (Weinh), 2023, 10(5): e2203699.

[77] PASTUSHENKO I, BRISEBARRE A, SIFRIM A, et al. Identification of the tumour transition states occurring during EMT [J]. Nature, 2018, 556(7702): 463-8.

[78] MYUNG J K, BYEON S J, KIM B, et al. Papillary glioneuronal tumors: a review of clinicopathologic and molecμlar genetic studies [J]. Am J Surg Pathol, 2011, 35(12): 1794-805.

[79] MICHEL V, BAKOVIC M. The ubiquitous choline transporter SLC44A1 [J]. Cent Nerv Syst Agents Med Chem, 2012, 12(2): 70-81.

[80] ZHI L, FENG W, LIANG J, et al. The Effect of Common Variants in SLC44A2 on the Contribution to the Risk of Deep Cein Thrombosis after Orthopedic Surgery [J]. J Atheroscler Thromb, 2021, 28(3): 293-303.

[81] NAGAISHI M, NOBUSAWA S, MATSUMURA N, et al. SLC44A1-PRKCA fusion in papillary and rosette-forming glioneuronal tumors [J]. J Clin Neurosci, 2016, 23: 73-5.

[82] TAYLOR A, GRAPENTINE S, ICHHPUNIANI J, et al. Choline transporter-like proteins 1 and 2 are newly identified plasma membrane and mitochondrial ethanolamine transporters [J]. J Biol Chem, 2021, 296: 100604.

所在学位评定分委会
生物学
国内图书分类号
R73-3
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/544689
专题南方科技大学医学院
推荐引用方式
GB/T 7714
张思雨. 基于单细胞转录组学解析肿瘤微环境对肺癌脑转移的作用[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032635-张思雨-南方科技大学医(2040KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[张思雨]的文章
百度学术
百度学术中相似的文章
[张思雨]的文章
必应学术
必应学术中相似的文章
[张思雨]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。