[1] TANG C W, VANSLYKE S A. Organic Electroluminescent Diodes[J]. Applied Physics Letters, 1987, 51(12): 913–915.
[2] XIA S C, KWONG R C, ADAMOVICH V I, et al. OLED Device Operational Lifetime: Insights and Challenges[C] // Proceedings of the 2007 IEEE International Reliability Physics Symposium Proceedings 45th Annual, Phoenix: IEEE, 2007: 253–257.
[3] ERITT M, MAY C, LEO K, et al. OLED Manufacturing for Large Area Lighting Applications[J]. Thin Solid Films, 2010, 518(11): 3042–3045.
[4] PARK J W, SHIN D C, PARK S H. Large-Area OLED Lightings and Their Applications[J]. Semiconductor Science and Technology, 2011, 26(3): 034002.
[5] CUI L-S, DENG Y-L, TSANG D P-K, et al. Controlling Synergistic Oxidation Processes for Efficient and Stable Blue Thermally Activated Delayed Fluorescence Devices[J]. Advanced Materials, 2016, 28(35): 7620–7625.
[6] JEON S O, LEE K H, KIM J S, et al. High-Efficiency, Long-Lifetime Deep-Blue Organic Light-Emitting Diodes[J]. Nature Photonics, 2021, 15(3): 208–215.
[7] HUANG Y G, TAN G, GOU F, et al. Prospects and Challenges of Mini-LED and Micro-LED Displays[J]. Journal of the Society for Information Display, 2019, 27(7): 387–401.
[8] HUANG Y G, HSIANG E-L, DENG M-Y, et al. Mini-LED, Micro-LED and OLED Displays: Present Status and Future Perspectives[J]. Light: Science & Applications, 2020, 9(1): 105.
[9] LIU Z J, LIN C-H, HYUN B-R, et al. Micro-Light-Emitting Diodes with Quantum Dots in Display Technology[J]. Light: Science & Applications, 2020, 9(1): 83.
[10] HSIANG E-L, YANG Z Y, YANG Q, et al. Prospects and Challenges of Mini-LED, OLED, and Micro-LED Displays[J]. Journal of the Society for Information Display, 2021, 29(6): 446–465.
[11] BERA D, QIAN L, TSENG T K, et al. Quantum Dots and Their Multimodal Applications: A Review[J]. Materials, 2010, 3(4): 2260–2345.
[12] SUPRAN G J, SHIRASAKI Y, SONG K W, et al. QLEDs for Displays and Solid-State Lighting[J]. Mrs Bulletin, 2013, 38(9): 703–711.
[13] PIETRYGA J M, PARK Y-S, LIM J, et al. Spectroscopic and Device Aspects of Nanocrystal Quantum Dots[J]. Chemical Reviews, 2016, 116(18): 10513–10622.
[14] DAI X L, DENG Y Z, PENG X G, et al. Quantum-Dot Light-Emitting Diodes for Large-Area Displays: Towards the Dawn of Commercialization[J]. Advanced Materials, 2017, 29(14): 1607022.
[15] CHOI M K, YANG J, HYEON T, et al. Flexible Quantum Dot Light-Emitting Diodes for Next-Generation Displays[J]. npj Flexible Electronics, 2018, 2(1): 10.
[16] SUN Y Z, JIANG Y B, SUN X W, et al. Beyond OLED: Efficient Quantum Dot Light-Emitting Diodes for Display and Lighting Application[J]. Chemical Record, 2019, 19(8): 1729–1752.
[17] SHU Y F, LIN X, QIN H Y, et al. Quantum Dots for Display Applications[J]. Angewandte Chemie International Edition, 2020, 59(50): 22312–22323.
[18] DE ARQUER F P G, TALAPIN D V, KLIMOV V I, et al. Semiconductor Quantum Dots: Technological Progress and Future Challenges[J]. Science, 2021, 373(6555): eaaz8541.
[19] EFROS A L, BRUS L E. Nanocrystal Quantum Dots: From Discovery to Modern Development[J]. ACS Nano, 2021, 15(4): 6192–6210.
[20] YANG J, CHOI M K, YANG U J, et al. Toward Full-Color Electroluminescent Quantum Dot Displays[J]. Nano Letters, 2021, 21(1): 26–33.
[21] KIM J, ROH J, PARK M, et al. Recent Advances and Challenges of Colloidal Quantum Dot Light-Emitting Diodes for Display Applications[J]. Advanced Materials, n/a(n/a): 2212220.
[22] JANG H J, LEE J Y, BAEK G W, et al. Progress in the Development of The Display Performance of AR, VR, QLED and OLED Devices in Recent Years[J]. Journal of Information Display, 2022, 23(1): 1–17.
[23] LIU G Y, ZHANG S, XU L L, et al. Recent Advances of Eco-Friendly Quantum Dots Light-Emitting Diodes for Display[J]. Progress in Quantum Electronics, 2022, 86(1): 100415.
[24] ROSSETTI R, NAKAHARA S, BRUS L E. Quantum Size Effects in the Redox Potentials, Resonance Raman-Spectra, and Electronic-Spectra of Cds Crystallites in Aqueous-Solution[J]. Journal of Chemical Physics, 1983, 79(2): 1086–1088.
[25] MEDINTZ I L, UYEDA H T, GOLDMAN E R, et al. Quantum Dot Bioconjugates for Imaging, Labelling and Sensing[J]. Nature Materials, 2005, 4(6): 435–446.
[26] HAN C-Y, YANG H. Development of Colloidal Quantum Dots for Electrically Driven Light-Emitting Devices[J]. Journal of the Korean Ceramic Society, 2017, 54(6): 449–469.
[27] YANG Z W, GAO M Y, WU W J, et al. Recent Advances in Quantum Dot-Based Light-Emitting Devices: Challenges and Possible Solutions[J]. Materials Today, 2019, 24(1): 69–93.
[28] 钱伯初. 量子力学[M]. 北京: 高等教育出版社, 2006.
[29] LI T L, TENG H S. Solution Synthesis of High-Quality CuInS2 Quantum Dots as Sensitizers for TiO2 Photoelectrodes[J]. Journal of Materials Chemistry, 2010, 20(18): 3656–3664.
[30] 尹勇明, 孟鸿. 量子点、钙钛矿色转换全彩显示应用研究进展[J]. 发光学报, 2021, 42(4): 419–447.
[31] WANG Y Y, FEDIN I, ZHANG H, et al. Direct Optical Lithography of Functional Inorganic Nanomaterials[J]. Science, 2017, 357(6349): 385–388.
[32] CHEN F, GUAN Z Y, TANG A W. Nanostructure and Device Architecture Engineering for High-Performance Quantum-Dot Light-Emitting Diodes[J]. Journal of Materials Chemistry C, 2018, 6(1): 10958–10981.
[33] YANG J, HAHM D, KIM K, et al. High-Resolution Patterning of Colloidal Quantum Dots via Non-Destructive, Light-Driven Ligand Crosslinking[J]. Nature Communications, 2020, 11(1): 2874.
[34] HAHM D, LIM J, KIM H, et al. Direct Patterning of Colloidal Quantum Dots with Adaptable Dual-Ligand Surface[J]. Nature Nanotechnology, 2022, 17(9): 952–958.
[35] CAMPBELL A J, BRADLEY D D C, LIDZEY D G. Space-Charge Limited Conduction with Traps in Poly(Phenylene Vinylene) Light Emitting Diodes[J]. Journal of Applied Physics, 1997, 82(12): 6326–6342.
[36] 唐兆兵. 量子点发光二极管的性能优化研究[D]. 长春: 中国科学院长春光学精密机械与物理研究所凝聚态物理学科博士学位论文, 2018: 16–21.
[37] HIKMET R A M, TALAPIN D V, WELLER H. Study of Conduction Mechanism and Electroluminescence in CdSe/ZnS Quantum Dot Composites[J]. Journal of Applied Physics, 2003, 93(6): 3509–3514.
[38] KIM S-K, KIM Y-S. Charge Carrier Injection and Transport in QLED Layer with Dynamic Equilibrium of Trapping/De-Trapping Carriers[J]. Journal of Applied Physics, 2019, 126(3): 035704.
[39] UOYAMA H, GOUSHI K, SHIZU K, et al. Highly Efficient Organic Light-Emitting Diodes from Delayed Fluorescence[J]. Nature, 2012, 492(7428): 234–238.
[40] 孙艺哲. 胶体量子点发光二极管的性能提升研究[D]. 北京大学微电子学与固体电子学学科博士学位论文, 2020.
[41] JIN W X, DENG Y Z, GUO B B, et al. On the Accurate Characterization of Quantum-Dot Light-Emitting Diodes for Display Applications[J]. npj Flexible Electronics, 2022, 6(1): 35.
[42] COLVIN V L, SCHLAMP M C, ALIVISATOS A P. Light-Emitting-Diodes Made from Cadmium Selenide Nanocrystals and a Semiconducting Polymer[J]. Nature, 1994, 370(6488): 354–357.
[43] ALIVISATOS A P. Semiconductor Clusters, Nanocrystals, and Quantum Dots[J]. Science, 1996, 271(5251): 933–937.
[44] BRUCHEZ M, MORONNE M, GIN P, et al. Semiconductor Nanocrystals as Fluorescent Biological Labels[J]. Science, 1998, 281(5385): 2013–2016.
[45] PENG X G, MANNA L, YANG W D, et al. Shape Control of CdSe Nanocrystals[J]. Nature, 2000, 404(6773): 59–61.
[46] LODAHL P, FLORIS VAN DRIEL A, NIKOLAEV I S, et al. Controlling the Dynamics of Spontaneous Emission from Quantum Dots by Photonic Crystals[J]. Nature, 2004, 430(7000): 654–657.
[47] KLIMOV V I, IVANOV S A, NANDA J, et al. Single-Exciton Optical Gain in Semiconductor Nanocrystals[J]. Nature, 2007, 447(7143): 441–446.
[48] CARUGE J M, HALPERT J E, WOOD V, et al. Colloidal Quantum-Dot Light-Emitting Diodes with Metal-Oxide Charge Transport Layers[J]. Nature Photonics, 2008, 2(4): 247–250.
[49] MASHFORD B S, STEVENSON M, POPOVIC Z, et al. High-Efficiency Quantum-Dot Light-Emitting Devices with Enhanced Charge Injection[J]. Nature Photonics, 2013, 7(5): 407–412.
[50] SHIRASAKI Y, SUPRAN G J, BAWENDI M G, et al. Emergence of Colloidal Quantum-Dot Light-Emitting Technologies[J]. Nature Photonics, 2013, 7(1): 13–23.
[51] BOURZAC K. Quantum Dots Go On Display[J]. Nature, 2013, 493(7432): 283–283.
[52] CHOI M K, YANG J, KANG K, et al. Wearable Red-Green-Blue Quantum Dot Light-Emitting Diode Array Using High-Resolution Intaglio Transfer Printing[J]. Nature Communications, 2015, 6(1): 7149.
[53] KIM B H, ONSES M S, LIM J B, et al. High-Resolution Patterns of Quantum Dots Formed by Electrohydrodynamic Jet Printing for Light-Emitting Diodes[J]. Nano Letters, 2015, 15(2): 969–973.
[54] JIANG C B, ZHONG Z M, LIU B Q, et al. Coffee-Ring-Free Quantum Dot Thin Film Using Inkjet Printing from a Mixed-Solvent System on Modified ZnO Transport Layer for Light-Emitting Devices[J]. ACS Applied Materials & Interfaces, 2016, 8(39): 26162–26168.
[55] KIM B H, NAM S, OH N, et al. Multilayer Transfer Printing for Pixelated, Multicolor Quantum Dot Light-Emitting Diodes[J]. ACS Nano, 2016, 10(5): 4920–4925.
[56] PARK J-S, KYHM J, KIM H H, et al. Alternative Patterning Process for Realization of Large-Area, Full-Color, Active Quantum Dot Display[J]. Nano Letters, 2016, 16(11): 6946–6953.
[57] GONG X W, YANG Z Y, WALTERS G, et al. Highly Efficient Quantum Dot Near-Infrared Light-Emitting Diodes[J]. Nature Photonics, 2016, 10(4): 253–257.
[58] WU K F, PARK Y-S, LIM J, et al. Towards Zero-Threshold Optical Gain Using Charged Semiconductor Quantum Dots[J]. Nature Nanotechnology, 2017, 12(12): 1140–1147.
[59] FAN F J, VOZNYY O, SABATINI R P, et al. Continuous-Wave Lasing in Colloidal Quantum Dot Solids Enabled by Facet-Selective Epitaxy[J]. Nature, 2017, 544(7648): 75–79.
[60] JI T J, JIN S, ZHANG H, et al. Full Color Quantum Dot Light-Emitting Diodes Patterned by Photolithography Technology[J]. Journal of the Society for Information Display, 2018, 26(3): 121–127.
[61] LIM J, PARK Y-S, KLIMOV V I. Optical Gain in Colloidal Quantum Dots Achieved with Direct-Current Electrical Pumping[J]. Nature Materials, 2018, 17(1): 42–49.
[62] MOON H, LEE C, LEE W, et al. Stability of Quantum Dots, Quantum Dot Films, and Quantum Dot Light-Emitting Diodes for Display Applications[J]. Advanced Materials, 2019, 31(34): 1804294.
[63] CHO H, PAN J-A, WU H, et al. Direct Optical Patterning of Quantum Dot Light-Emitting Diodes via In Situ Ligand Exchange[J]. Advanced Materials, 2020, 32(46): 2003805.
[64] KO J, CHANG J H, JEONG B G, et al. Direct Photolithographic Patterning of Colloidal Quantum Dots Enabled by UV-Crosslinkable and Hole-Transporting Polymer Ligands[J]. ACS Applied Materials & Interfaces, 2020, 12(37): 42153–42160.
[65] MEI W H, ZHANG Z Q, ZHANG A D, et al. High-Resolution, Full-Color Quantum Dot Light-Emitting Diode Display Fabricated via Photolithography Approach[J]. Nano Research, 2020, 13(9): 2485–2491.
[66] NAM T W, KIM M, WANG Y M, et al. Thermodynamic-Driven Polychromatic Quantum Dot Patterning for Light-Emitting Diodes beyond Eye-Limiting Resolution[J]. Nature Communications, 2020, 11(1): 3040.
[67] XIANG C Y, WU L J, LU Z Z, et al. High Efficiency and Stability of Ink-Jet Printed Quantum Dot Light Emitting Diodes[J]. Nature Communications, 2020, 11(1): 1646.
[68] ZHAO J Y, CHEN L X, LI D Z, et al. Large-Area Patterning of Full-Color Quantum Dot Arrays beyond 1000 Pixels per Inch by Selective Electrophoretic Deposition[J]. Nature Communications, 2021, 12(1): 4603.
[69] CHEN L N, QIN Z Y, CHEN S M. Ultrahigh Resolution Pixelated Top-Emitting Quantum-Dot Light-Emitting Diodes Enabled by Color-Converting Cavities[J]. Small Methods, 2022, 6(1): 2101090.
[70] FAN J P, QIAN L. Quantum Dot Patterning by Direct Photolithography[J]. Nature Nanotechnology, 2022, 17(9): 906–907.
[71] MENG T T, ZHENG Y T, ZHAO D L, et al. Ultrahigh-Resolution Quantum-Dot Light-Emitting Diodes[J]. Nature Photonics, 2022, 16(4): 297–303.
[72] JANG E, JANG H. Review: Quantum Dot Light-Emitting Diodes[J]. Chemical Reviews, 2023, n/a(n/a): 2c00695.
[73] CHUNG D S, DAVIDSON-HALL T, COTELLA G, et al. Significant Lifetime Enhancement in QLEDs by Reducing Interfacial Charge Accumulation via Fluorine Incorporation in the ZnO Electron Transport Layer[J]. Nano-Micro Letters, 2022, 14(1): 212.
[74] WON Y-H, CHO O, KIM T, et al. Highly Efficient and Stable InP/ZnSe/ZnS Quantum Dot Light-Emitting Diodes[J]. Nature, 2019, 575(7784): 634–638.
[75] JIA H R, WANG F Z, TAN Z A. Material and Device Engineering for High-Performance Blue Quantum Dot Light-Emitting Diodes[J]. Nanoscale, 2020, 12(25): 13186–13224.
[76] KIM T, KIM K-H, KIM S, et al. Efficient and Stable Blue Quantum Dot Light-Emitting Diode[J]. Nature, 2020, 586(7829): 385–389.
[77] QI H, WANG S J, JIANG X H, et al. Research Progress and Challenges of Blue Light-Emitting Diodes Based on II–VI Semiconductor Quantum Dots[J]. Journal of Materials Chemistry C, 2020, 8(30): 10160–10173.
[78] CHAN W C W, NIE S. Quantum Dot Bioconjugates for Ultrasensitive Nonisotopic Detection[J]. Science, 1998, 281(5385): 2016–2018.
[79] MCDANIEL H, FUKE N, MAKAROV N S, et al. An Integrated Approach to Realizing High-Performance Liquid-Junction Quantum Dot Sensitized Solar Cells[J]. Nature Communications, 2013, 4(1): 2887.
[80] ZHANG J, WILDMANN J S, DING F, et al. High Yield and Ultrafast Sources of Electrically Triggered Entangled-Photon Pairs Based on Strain-Tunable Quantum Dots[J]. Nature Communications, 2015, 6(1): 10067.
[81] GUAN X W, LI Z X, GENG X, et al. Emerging Trends of Carbon-Based Quantum Dots: Nanoarchitectonics and Applications[J]. Small, 2023, n/a(n/a): 2207181.
[82] COE S, WOO W-K, BAWENDI M, et al. Electroluminescence from Single Monolayers of Nanocrystals in Molecular Organic Devices[J]. Nature, 2002, 420(6917): 800–803.
[83] MUELLER A H, PETRUSKA M A, ACHERMANN M, et al. Multicolor Light-Emitting Diodes Based on Semiconductor Nanocrystals Encapsulated in GaN Charge Injection Layers[J]. Nano Letters, 2005, 5(6): 1039–1044.
[84] QIAN L, ZHENG Y, XUE J G, et al. Stable and Efficient Quantum-Dot Light-Emitting Diodes Based on Solution-Processed Multilayer Structures[J]. Nature Photonics, 2011, 5(9): 543–548.
[85] YANG Y X, ZHENG Y, CAO W R, et al. High-Efficiency Light-Emitting Devices Based on Quantum Dots with Tailored Nanostructures[J]. Nature Photonics, 2015, 9(4): 259–266.
[86] KWAK J, BAE W K, LEE D, et al. Bright and Efficient Full-Color Colloidal Quantum Dot Light-Emitting Diodes Using an Inverted Device Structure[J]. Nano Letters, 2012, 12(5): 2362–2366.
[87] DAI X L, ZHANG Z X, JIN Y Z, et al. Solution-Processed, High-Performance Light-Emitting Diodes Based on Quantum Dots[J]. Nature, 2014, 515(7525): 96–99.
[88] SONG J J, WANG O, SHEN H B, et al. Over 30% External Quantum Efficiency Light-Emitting Diodes by Engineering Quantum Dot-Assisted Energy Level Match for Hole Transport Layer[J]. Advanced Functional Materials, 2019, 29(33): 1808377.
[89] LEE T, KIM B J, LEE H, et al. Bright and Stable Quantum Dot Light-Emitting Diodes[J]. Advanced Materials, 2022, 34(4): 2106276.
[90] CHEN D S, CHEN D, DAI X L, et al. Shelf-Stable Quantum-Dot Light-Emitting Diodes with High Operational Performance[J]. Advanced Materials, 2020, 32(52): 2006178.
[91] DENG Y Z, PENG F, LU Y, et al. Solution-Processed Green and Blue Quantum-Dot Light-Emitting Diodes with Eliminated Charge Leakage[J]. Nature Photonics, 2022, 16(7): 505–511.
[92] SUN Y Z, SU Q, ZHANG H, et al. Investigation on Thermally Induced Efficiency Roll-Off: Toward Efficient and Ultrabright Quantum-Dot Light-Emitting Diodes[J]. ACS Nano, 2019, 13(10): 11433–11442.
[93] SHEN H B, GAO Q, ZHANG Y B, et al. Visible Quantum Dot Light-Emitting Diodes with Simultaneous High Brightness and Efficiency[J]. Nature Photonics, 2019, 13(3): 192–197.
[94] CHEN X T, LIN X F, ZHOU L K, et al. Blue Light-Emitting Diodes Based on Colloidal Quantum Dots with Reduced Surface-Bulk Coupling[J]. Nature Communications, 2023, 14(1): 284.
[95] LI H Y, BIAN Y Y, ZHANG W J, et al. High Performance InP-Based Quantum Dot Light-Emitting Diodes via the Suppression of Field-Enhanced Electron Delocalization[J]. Advanced Functional Materials, 2022, 32(38): 2204529.
[96] LI H Y, ZHANG W J, BIAN Y Y, et al. ZnF2-Assisted Synthesis of Highly Luminescent InP/ZnSe/ZnS Quantum Dots for Efficient and Stable Electroluminescence[J]. Nano Letters, 2022, 22(10): 4067–4073.
[97] CHAO W-C, CHIANG T-H, LIU Y-C, et al. High Efficiency Green InP Quantum Dot Light-Emitting Diodes by Balancing Electron and Hole Mobility[J]. Communications Materials, 2021, 2(1): 96.
[98] YU P, CAO S, SHAN Y L, et al. Highly Efficient Green InP-Based Quantum Dot Light-Emitting Diodes Regulated by Inner Alloyed Shell Component[J]. Light: Science & Applications, 2022, 11(1): 162.
[99] MOON H, LEE W, KIM J, et al. Composition-Tailored ZnMgO Nanoparticles for Electron Transport Layers of Highly Efficient and Bright InP-Based Quantum Dot Light Emitting Diodes[J]. Chemical Communications, 2019, 55(88): 13299–13302.
[100] WU Q Q, CAO F, WANG S, et al. Quasi-Shell-Growth Strategy Achieves Stable and Efficient Green InP Quantum Dot Light-Emitting Diodes[J]. Advanced Science, 2022, 9(21): 2200959.
[101] BAE W K, PARK Y-S, LIM J, et al. Controlling the Influence of Auger Recombination on the Performance of Quantum-Dot Light-Emitting Diodes[J]. Nature Communications, 2013, 4(1): 2661.
[102] SHIRASAKI Y, SUPRAN G J, TISDALE W A, et al. Origin of Efficiency Roll-Off in Colloidal Quantum-Dot Light-Emitting Diodes[J]. Physical Review Letters, 2013, 110(21): 217403.
[103] LIM J, PARK Y-S, WU K, et al. Droop-Free Colloidal Quantum Dot Light-Emitting Diodes[J]. Nano Letters, 2018, 18(10): 6645–6653.
[104] CORDERO S R, CARSON P J, ESTABROOK R A, et al. Photo-Activated Luminescence of CdSe Quantum Dot Monolayers[J]. The Journal of Physical Chemistry B, 2000, 104(51): 12137–12142.
[105] MüLLER J, LUPTON J, ROGACH A, et al. Air-Induced Fluorescence Bursts from Single Semiconductor Nanocrystals[J]. Applied Physics Letters, 2004, 85(3): 381–383.
[106] DEMBSKI S, GRAF C, KRüGER T, et al. Photoactivation of CdSe/ZnS Quantum Dots Embedded in Silica Colloids[J]. Small, 2008, 4(9): 1516–1526.
[107] MAHLER B, SPINICELLI P, BUIL S, et al. Towards Non-Blinking Colloidal Quantum Dots[J]. Nature Materials, 2008, 7(8): 659–664.
[108] INERBAEV T M, MASUNOV A E, KHONDAKER S I, et al. Quantum Chemistry of Quantum Dots: Effects of Ligands and Oxidation[J]. The Journal of Chemical Physics, 2009, 131(4): 044106.
[109] PECHSTEDT K, WHITTLE T, BAUMBERG J, et al. Photoluminescence of Colloidal CdSe/ZnS Quantum Dots: The Critical Effect of Water Molecules[J]. The Journal of Physical Chemistry C, 2010, 114(28): 12069–12077.
[110] LIM J, BAE W K, LEE D, et al. InP@ZnSeS, Core@Composition Gradient Shell Quantum Dots with Enhanced Stability[J]. Chemistry of Materials, 2011, 23(20): 4459–4463.
[111] LO S S, MIRKOVIC T, CHUANG C-H, et al. Emergent Properties Resulting from Type-II Band Alignment in Semiconductor Nanoheterostructures[J]. Advanced Materials, 2011, 23(2): 180–197.
[112] GALLAND C, GHOSH Y, STEINBRüCK A, et al. Lifetime Blinking in Nonblinking Nanocrystal Quantum Dots[J]. Nature Communications, 2012, 3(1): 908.
[113] VIRIEUX H, LE TROEDEC M, CROS-GAGNEUX A, et al. InP/ZnS Nanocrystals: Coupling NMR and XPS for Fine Surface and Interface Description[J]. Journal of the American Chemical Society, 2012, 134(48): 19701–19708.
[114] ROWLAND C E, LIU W, HANNAH D C, et al. Thermal Stability of Colloidal InP Nanocrystals: Small Inorganic Ligands Boost High-Temperature Photoluminescence[J]. ACS Nano, 2014, 8(1): 977–985.
[115] KIM J-H, HAN C-Y, LEE K-H, et al. Performance Improvement of Quantum Dot-Light-Emitting Diodes Enabled by an Alloyed ZnMgO Nanoparticle Electron Transport Layer[J]. Chemistry of Materials, 2015, 27(1): 197–204.
[116] TAMANG S, LINCHENEAU C, HERMANS Y, et al. Chemistry of InP Nanocrystal Syntheses[J]. Chemistry of Materials, 2016, 28(8): 2491–2506.
[117] DUPONT D, TESSIER M D, SMET P F, et al. Indium Phosphide-Based Quantum Dots with Shell-Enhanced Absorption for Luminescent Down-Conversion[J]. Advanced Materials, 2017, 29(29): 1700686.
[118] PU C D, DAI X L, SHU Y F, et al. Electrochemically-Stable Ligands Bridge the Photoluminescence-Electroluminescence Gap of Quantum Dots[J]. Nature Communications, 2020, 11(1): 937.
[119] DAVIDSON-HALL T, AZIZ H. Perspective: Toward Highly Stable Electroluminescent Quantum Dot Light-Emitting Devices in the Visible Range[J]. Applied Physics Letters, 2020, 116(1): 010502.
[120] CHANG J H, PARK P, JUNG H, et al. Unraveling the Origin of Operational Instability of Quantum Dot Based Light-Emitting Diodes[J]. ACS Nano, 2018, 12(10): 10231–10239.
[121] CAO W R, XIANG C Y, YANG Y X, et al. Highly Stable Qleds with Improved Hole Injection via Quantum Dot Structure Tailoring[J]. Nature Communications, 2018, 9(1): 2608.
[122] YE Y X, ZHENG X R, CHEN D S, et al. Design of the Hole-Injection/Hole-Transport Interfaces for Stable Quantum-Dot Light-Emitting Diodes[J]. The Journal of Physical Chemistry Letters, 2020, 11(12): 4649–4654.
[123] XUE X L, DONG J Y, WANG S P, et al. Degradation of Quantum Dot Light Emitting Diodes, the Case under a Low Driving Level[J]. Journal of Materials Chemistry C, 2020, 8(6): 2014–2018.
[124] CHEN S, CAO W R, LIU T L, et al. On the Degradation Mechanisms of Quantum-Dot Light-Emitting Diodes[J]. Nature Communications, 2019, 10(1): 765.
[125] DENG Y Z, LIN X, FANG W, et al. Deciphering Exciton-Generation Processes in Quantum-Dot Electroluminescence[J]. Nature Communications, 2020, 11(1): 2309.
[126] WU Z H, LIU P, QU X W, et al. Identifying the Surface Charges and their Impact on Carrier Dynamics in Quantum-Dot Light-Emitting Diodes by Impedance Spectroscopy[J]. Advanced Optical Materials, 2021, 9(17): 2100389.
[127] KIM J, HAHM D, BAE W K, et al. Transient Dynamics of Charges and Excitons in Quantum Dot Light-Emitting Diodes[J]. Small, 2022, 18(29): 2202290.
[128] YU P L, YUAN Q L, ZHAO J L, et al. Electronic and Excitonic Processes in Quantum Dot Light-Emitting Diodes[J]. The Journal of Physical Chemistry Letters, 2022, 13(13): 2878–2884.
[129] JUNG H, PARK Y-S, AHN N, et al. Two-Band Optical Gain and Ultrabright Electroluminescence from Colloidal Quantum Dots at 1000 A cm−2[J]. Nature Communications, 2022, 13(1): 3734.
[130] PARK Y-S, ROH J, DIROLL B T, et al. Colloidal Quantum Dot Lasers[J]. Nature Reviews Materials, 2021, 6(5): 382–401.
[131] SCHUBERT E F. LIGHT-EMITTING DIODES[M]. New York: Cambridge University Press, 2006.
[132] SU Q, SUN Y Z, ZHANG H, et al. Origin of Positive Aging in Quantum-Dot Light-Emitting Diodes[J]. Advanced Science, 2018, 5(10): 1800549.
[133] ZHANG W J, CHEN X T, MA Y H, et al. Positive Aging Effect of ZnO Nanoparticles Induced by Surface Stabilization[J]. The Journal of Physical Chemistry Letters, 2020, 11(15): 5863–5870.
[134] CAMARGO P H, LEE Y H, JEONG U, et al. Cation Exchange: A Simple and Versatile Route to Inorganic Colloidal Spheres with the Same Size but Different Compositions and Properties[J]. Langmuir, 2007, 23(6): 2985–2992.
[135] MISZTA K, DORFS D, GENOVESE A, et al. Cation Exchange Reactions in Colloidal Branched Nanocrystals[J]. ACS Nano, 2011, 5(9): 7176–7183.
[136] PAN J Y, CHEN J, HUANG Q Q, et al. Size Tunable ZnO Nanoparticles to Enhance Electron Injection in Solution Processed QLEDs[J]. ACS Photonics, 2016, 3(2): 215–222.
[137] MOYEN E, KIM J H, KIM J, et al. ZnO Nanoparticles for Quantum-Dot-Based Light-Emitting Diodes[J]. ACS Applied Nano Materials, 2020, 3(6): 5203–5211.
[138] KIM H-M, KIM J, LEE J, et al. Inverted Quantum-Dot Light Emitting Diode Using Solution Processed p-Type WOx Doped PEDOT:PSS and Li Doped ZnO Charge Generation Layer[J]. ACS Applied Materials & Interfaces, 2015, 7(44): 24592–24600.
[139] SUN Y Z, JIANG Y B, PENG H R, et al. Efficient Quantum Dot Light-Emitting Diodes with A Zn0.85Mg0.15O Interfacial Modification Layer[J]. Nanoscale, 2017, 9(26): 8962–8969.
[140] SUN Y Z, WANG W G, ZHANG H, et al. High-Performance Quantum Dot Light-Emitting Diodes Based on Al-Doped ZnO Nanoparticles Electron Transport Layer[J]. ACS Applied Materials & Interfaces, 2018, 10(22): 18902–18909.
[141] KIM H-M, YOUN J-H, SEO G-J, et al. Inverted Quantum-Dot Light-Emitting Diodes with Solution-Processed Aluminium-Zinc Oxide as a Cathode Buffer[J]. Journal of Materials Chemistry C, 2013, 1(8): 1567–1573.
[142] CHEN D S, MA L Y, CHEN Y H, et al. Electrochemically Stable Ligands of ZnO Electron-Transporting Layers for Quantum-Dot Light-Emitting Diodes[J]. Nano Letters, 2023, 23(3): 1061–1067.
[143] CHO I, JUNG H, JEONG B G, et al. Multifunctional Dendrimer Ligands for High-Efficiency, Solution-Processed Quantum Dot Light-Emitting Diodes[J]. ACS Nano, 2017, 11(1): 684–692.
[144] CHEN F, LIU Z Y, GUAN Z Y, et al. Chloride-Passivated Mg-Doped ZnO Nanoparticles for Improving Performance of Cadmium-Free, Quantum-Dot Light-Emitting Diodes[J]. ACS Photonics, 2018, 5(9): 3704–3711.
[145] CHOI J, KIM Y, JO J W, et al. Chloride Passivation of ZnO Electrodes Improves Charge Extraction in Colloidal Quantum Dot Photovoltaics[J]. Advanced Materials, 2017, 29(33): 1702350.
[146] YE Z, CHEN M Y, CHEN X Y, et al. Solution-Processed Quantum-Dot Light-Emitting Diodes Combining Ultrahigh Operational Stability, Shelf Stability, and Luminance[J]. npj Flexible Electronics, 2022, 6(1): 96.
[147] ZHANG H, SUI N, CHI X C, et al. Ultrastable Quantum-Dot Light-Emitting Diodes by Suppression of Leakage Current and Exciton Quenching Processes[J]. ACS Applied Materials & Interfaces, 2016, 8(45): 31385–31391.
[148] FU Y, JIANG W, KIM D, et al. Highly Efficient and Fully Solution-Processed Inverted Light-Emitting Diodes with Charge Control Interlayers[J]. ACS Applied Materials & Interfaces, 2018, 10(20): 17295–17300.
[149] WANG F Z, SUN W D, LIU P, et al. Achieving Balanced Charge Injection of Blue Quantum Dot Light-Emitting Diodes through Transport Layer Doping Strategies[J]. The Journal of Physical Chemistry Letters, 2019, 10(5): 960–965.
[150] REDECKER M, BRADLEY D D C, INBASEKARAN M, et al. High Mobility Hole Transport Fluorene-Triarylamine Copolymers[J]. Advanced Materials, 1999, 11(3): 241–246.
[151] HO M D, KIM D, KIM N, et al. Polymer and Small Molecule Mixture for Organic Hole Transport Layers in Quantum Dot Light-Emitting Diodes[J]. ACS Applied Materials & Interfaces, 2013, 5(23): 12369–12374.
[152] YEH H J J, SMITH J S. Fluidic Self-Assembly for the Integration of Gaas Light-Emitting-Diodes on Si Substrates[J]. IEEE Photonics Technology Letters, 1994, 6(6): 706–708.
[153] KRAMES M R, CHRISTENSON G, COLLINS D, et al. High-Brightness AlGaInN Light-Emitting Diodes[J]. Light-Emitting Diodes: Research, Manufacturing, and Applications Iv, 2000, 3938(1): 2–12.
[154] PANDEY A K, NUNZI J M. Rubrene/Fullerene Heterostructures with A Half-Gap Electroluminescence Threshold and Large Photovoltage[J]. Advanced Materials, 2007, 19(21): 3613–3617.
[155] XIANG C Y, PENG C, CHEN Y, et al. Origin of Sub-Bandgap Electroluminescence in Organic Light-Emitting Diodes[J]. Small, 2015, 11(40): 5439–5443.
[156] ENGMANN S, BARITO A J, BITTLE E G, et al. Higher Order Effects in Organic LEDs with Sub-Bandgap Turn-On[J]. Nature Communications, 2019, 10(1): 227.
[157] QIAN L, ZHENG Y, CHOUDHURY K R, et al. Electroluminescence from Light-Emitting Polymer/ZnO Nanoparticle Heterojunctions at Sub-Bandgap Voltages[J]. Nano Today, 2010, 5(5): 384–389.
[158] LUO H X, ZHANG W J, LI M L, et al. Origin of Subthreshold Turn-On in Quantum-Dot Light-Emitting Diodes[J]. ACS Nano, 2019, 13(7): 8229–8236.
[159] KIRCHARTZ T, RAU U. What Makes a Good Solar Cell?[J]. Advanced Energy Materials, 2018, 8(28): 1703385.
[160] SANTHANAM P, GRAY D J, RAM R J. Thermoelectrically Pumped Light-Emitting Diodes Operating above Unity Efficiency[J]. Physical Review Letters, 2012, 108(9): 097403.
[161] HUANG D N, SANTHANAM P, RAM R J. Low-Power Communication with a Photonic Heat Pump[J]. Optics Express, 2014, 22(S7): A1650–A1658.
[162] KURITZKY L Y, WEISBUCH C, SPECK J S. Prospects for 100% Wall-Plug Efficient III-Nitride LEDs[J]. Optics Express, 2018, 26(13): 16600–16608.
[163] SADI T, RADEVICI I, OKSANEN J. Thermophotonic Cooling with Light-Emitting Diodes[J]. Nature Photonics, 2020, 14(4): 205–214.
[164] YE Z K, LIN X, WANG N, et al. Phonon-Assisted Up-Conversion Photoluminescence Of Quantum Dots[J]. Nature Communications, 2021, 12(1): 4283.
[165] LIN X, DAI X L, YE Z K, et al. Highly-Efficient Thermoelectric-Driven Light-Emitting Diodes Based on Colloidal Quantum Dots[J]. Nano Research, 2022, 15(10): 9402–9409.
[166] 刘恩科,朱秉升,罗晋生. 半导体物理学[M]. 北京: 电子工业出版社, 2011.
[167] ALTAZIN S, CLERC R, GWOZIECKI R, et al. Physics of the Frequency Response of Rectifying Organic Schottky Diodes[J]. Journal of Applied Physics, 2014, 115(6): 064509.
[168] WU J L, CHEN L X, ZHAO Y S, et al. Temperature-Dependent Recombination Dynamics and Electroluminescence Characteristics of Colloidal CdSe/ZnS Core/Shell Quantum Dots[J]. Applied Physics Letters, 2021, 119(7): 073303.
[169] LEI S Y, YU K L, XIAO B, et al. Temperature-Dependent Transition of Charge Transport Iin Core/Shell Structured Colloidal Quantum Dot Thin Films: From Poole-Frenkel Emission to Variable-Range Hopping[J]. Applied Physics Letters, 2022, 121(6): 063301.
[170] RHEE S, CHANG J H, HAHM D, et al. Tailoring the Electronic Landscape of Quantum Dot Light-Emitting Diodes for High Brightness and Stable Operation[J]. ACS Nano, 2020, 14(12): 17496–17504.
[171] ZHANG Y F, FORREST S R. Triplets Contribute to Both an Increase and Loss in Fluorescent Yield in Organic Light Emitting Diodes[J]. Physical Review Letters, 2012, 108(26): 267404.
[172] YUAN Q L, WANG T, WANG R, et al. Exploring the Emission Mechanism of Dichromatic White-Light Quantum-Dot Light-Emitting Diodes Using Wavelength-Resolved Transient Electroluminescence Analysis[J]. Optics Letters, 2020, 45(23): 6370–6373.
[173] CHEN J F, SONG D D, ZHAO S L, et al. Highly Efficient all-Solution Processed Blue Quantum Dot Light-Emitting Diodes Based on Balanced Charge Injection Achieved by Double Hole Transport Layers[J]. Organic Electronics, 2021, 94(1): 106169.
[174] ZHU X W, LIU Y Y, LIU H H, et al. Optimization of Carrier Transport Layer: a Simple But Effective Approach toward Achieving High Efficiency all-Solution Processed InP Quantum Dot Light Emitting Diodes[J]. Organic Electronics, 2021, 96(1): 106256.
[175] DING K, CHEN H T, FAN L W, et al. Polyethylenimine Insulativity-Dominant Charge-Injection Balance for Highly Efficient Inverted Quantum Dot Light-Emitting Diodes[J]. ACS Applied Materials & Interfaces, 2017, 9(23): 20231–20238.
[176] CHO H, PARK S, SHIN H, et al. Highly Efficient Deep Blue Cd-Free Quantum Dot Light-Emitting Diodes by a p-Type Doped Emissive Layer[J]. Small, 2020, 16(40): 2002109.
[177] CHEN Z N, SU Q, QIN Z Y, et al. Effect and Mechanism of Encapsulation on Aging Characteristics of Quantum-Dot Light-Emitting Diodes[J]. Nano Research, 2021, 14(1): 320–327.
[178] YUAN Q L, WANG T, YU P L, et al. A Review on the Electroluminescence Properties of Quantum-Dot Light-Emitting Diodes[J]. Organic Electronics, 2021, 90(1): 106086.
[179] QU X W, MA J R, LIU P, et al. On the Voltage Behavior of Quantum Dot Light-Emitting Diode[J]. Nano Research, 2022, n/a(n/a): https://doi.org/10.1007/s12274-022-5106-8.
[180] 黄德修. 半导体光电子学[M]. 北京: 电子工业出版社, 2013.
[181] O’CONNOR D V, PHILLIPS D. Time-Correlated Single Photon Counting[M]. London: Academic PRESS, 1984.
[182] CHEN Z N, QIN Z Y, SU S K, et al. The Influence of H2O and O2 on the Optoelectronic Properties of Inverted Quantum-Dot Light-Emitting Diodes[J]. Nano Research, 2021, 14(11): 4140–4145.
[183] HUANG X Y, SU S K, SU Q, et al. The Influence of The Hole Transport Layers on the Performance of Blue and Color Tunable Quantum Dot Light-Emitting Diodes[J]. Journal of the Society for Information Display, 2018, 26(8): 470–476.
[184] JUNG H, AHN N, KLIMOV V I. Prospects and Challenges of Colloidal Quantum Dot Laser Diodes[J]. Nature Photonics, 2021, 15(9): 643–655.
[185] CHEN B, LI D Y, WANG F. InP Quantum Dots: Synthesis and Lighting Applications[J]. Small, 2020, 16(32): 2002454.
[186] WU Z H, LIU P, ZHANG W D, et al. Development of InP Quantum Dot-Based Light-Emitting Diodes[J]. ACS Energy Letters, 2020, 5(4): 1095–1106.
[187] BECHU A, GHOSHAL S, MOORES A, et al. Are Substitutes to Cd-Based Quantum Dots in Displays More Sustainable, Effective, and Cost Competitive? An Alternatives Assessment Approach[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(7): 2294–2307.
[188] WANG H C, ZHANG H, CHEN H Y, et al. Cadmium-Free InP/ZnSeS/ZnS Heterostructure-Based Quantum Dot Light-Emitting Diodes with a ZnMgO Electron Transport Layer and a Brightness of Over 10000 cd m−2[J]. Small, 2017, 13(13): 1603962.
[189] THOMAS A, SANDEEP K, SOMASUNDARAN S M, et al. How Trap States Affect Charge Carrier Dynamics of CdSe and InP Quantum Dots: Visualization through Complexation with Viologen[J]. ACS Energy Letters, 2018, 3(10): 2368–2375.
[190] TESSIER M D, BAQUERO E A, DUPONT D, et al. Interfacial Oxidation and Photoluminescence of InP-Based Core/Shell Quantum Dots[J]. Chemistry of Materials, 2018, 30(19): 6877–6883.
[191] LI Y, HOU X Q, DAI X L, et al. Stoichiometry-Controlled InP-Based Quantum Dots: Synthesis, Photoluminescence, and Electroluminescence[J]. Journal of the American Chemical Society, 2019, 141(16): 6448–6452.
[192] LI D, KRISTAL B, WANG Y J, et al. Enhanced Efficiency of InP-Based Red Quantum Dot Light-Emitting Diodes[J]. ACS Applied Materials & Interfaces, 2019, 11(37): 34067–34075.
[193] SHIN D-W, SUH Y-H, LEE S, et al. Waterproof Flexible InP@ZnSeS Quantum Dot Light-Emitting Diode[J]. Advanced Optical Materials, 2020, 8(6): 1901362.
[194] ZHANG H, MA X Y, LIN Q L, et al. High-Brightness Blue InP Quantum Dot-Based Electroluminescent Devices: The Role of Shell Thickness[J]. The Journal of Physical Chemistry Letters, 2020, 11(3): 960–967.
[195] WANG Y C, CHEN Z J, WANG T, et al. Efficient Structure for InP/ZnS-Based Electroluminescence Device by Embedding the Emitters in the Electron-Dominating Interface[J]. The Journal of Physical Chemistry Letters, 2020, 11(5): 1835–1839.
[196] JANG E, KIM Y, WON Y-H, et al. Environmentally Friendly InP-Based Quantum Dots for Efficient Wide Color Gamut Displays[J]. ACS Energy Letters, 2020, 5(4): 1316–1327.
[197] KIM K-H, JO J-H, JO D-Y, et al. Cation-Exchange-Derived InGaP Alloy Quantum Dots toward Blue Emissivity[J]. Chemistry of Materials, 2020, 32(8): 3537–3544.
[198] ZHANG W D, DING S H, ZHUANG W D, et al. InP/ZnS/ZnS Core/Shell Blue Quantum Dots for Efficient Light-Emitting Diodes[J]. Advanced Functional Materials, 2020, 30(49): 2005303.
[199] YEOM J E, SHIN D H, LAMPANDE R, et al. Good Charge Balanced Inverted Red InP/ZnSe/ZnS-Quantum Dot Light-Emitting Diode with New High Mobility and Deep HOMO Level Hole Transport Layer[J]. ACS Energy Letters, 2020, 5(12): 3868–3875.
[200] LIU P, LOU Y J, DING S H, et al. Green InP/ZnSeS/ZnS Core Multi-Shelled Quantum Dots Synthesized with Aminophosphine for Effective Display Applications[J]. Advanced Functional Materials, 2021, 31(11): 2008453.
[201] HAN M G, LEE Y, KWON H-I, et al. InP-Based Quantum Dot Light-Emitting Diode with a Blended Emissive Layer[J]. ACS Energy Letters, 2021, 6(4): 1577–1585.
[202] YU P, SHAN Y L, CAO S, et al. Inorganic Solid Phosphorus Precursor of Sodium Phosphaethynolate for Synthesis of Highly Luminescent InP-Based Quantum Dots[J]. ACS Energy Letters, 2021, 6(8): 2697–2703.
[203] GAO P L, ZHANG Y, QI P, et al. Efficient InP Green Quantum-Dot Light-Emitting Diodes Based on Organic Electron Transport Layer[J]. Advanced Optical Materials, 2022, 10(24): 2202066.
[204] LIM J, PARK M, BAE W K, et al. Highly Efficient Cadmium-Free Quantum Dot Light-Emitting Diodes Enabled by the Direct Formation of Excitons within InP@ZnSeS Quantum Dots[J]. ACS Nano, 2013, 7(10): 9019–9026.
[205] LEE T, HAHM D, KIM K, et al. Highly Efficient and Bright Inverted Top-Emitting InP Quantum Dot Light-Emitting Diodes Introducing a Hole-Suppressing Interlayer[J]. Small, 2019, 15(50): 1905162.
[206] KIM H, LEE W, MOON H, et al. Interlayer Doping with P-Type Dopant for Charge Balance in Indium Phosphide (InP)-Based Quantum Dot Light-Emitting Diodes[J]. Optics Express, 2019, 27(16): A1287–A1296.
[207] LEE C Y, NAIK MUDE N, LAMPANDE R, et al. Efficient Cadmium-Free Inverted Red Quantum Dot Light-Emitting Diodes[J]. ACS Applied Materials & Interfaces, 2019, 11(40): 36917–36924.
[208] YOON S-Y, LEE Y-J, YANG H, et al. Performance Enhancement of InP Quantum Dot Light-Emitting Diodes via a Surface-Functionalized ZnMgO Electron Transport Layer[J]. ACS Energy Letters, 2022, 7(7): 2247–2255.
[209] CAO F, WANG S, WANG F J, et al. A Layer-by-Layer Growth Strategy for Large-Size InP/ZnSe/ZnS Core-Shell Quantum Dots Enabling High-Efficiency Light-Emitting Diodes[J]. Chemistry of Materials, 2018, 30(21): 8002–8007.
[210] JO J H, KIM J H, LEE K H, et al. High-Efficiency Red Electroluminescent Device based on Multishelled InP Quantum Dots[J]. Optics Letters, 2016, 41(17): 3984–3987.
[211] ZHANG H, HU N, ZENG Z P, et al. High-Efficiency Green InP Quantum Dot-Based Electroluminescent Device Comprising Thick-Shell Quantum Dots[J]. Advanced Optical Materials, 2019, 7(7): 1801602.
[212] CHENG Y, GUI Z X, QIAO R X, et al. Electronic Structural Insight into High-Performance Quantum Dot Light-Emitting Diodes[J]. Advanced Functional Materials, 2022, 32(48): 2207974.
[213] NOWY S, REN W, ELSCHNER A, et al. Impedance Spectroscopy as a Probe for the Degradation of Organic Light-Emitting Diodes[J]. Journal of Applied Physics, 2010, 107(5): 054501.
[214] ZHANG L, NAKANOTANI H, ADACHI C. Capacitance-Voltage Characteristics of a 4,4′-Bis[(N-carbazole)Styryl]Biphenyl Based Organic Light-Emitting Diode: Implications for Characteristic Times and Their Distribution[J]. Applied Physics Letters, 2013, 103(9): 093301.
修改评论