中文版 | English
题名

含Er钴基非晶合金的力学性能及热稳定性研究

其他题名
STUDY ON MECHANICAL PROPERTIES AND THERMAL STABILITY OF COBALT-BASED AMORPHOUS ALLOY CONTAINING Er
姓名
姓名拼音
QUAN Cuanlong
学号
12132063
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
0856 材料与化工
导师
任富增
导师单位
材料科学与工程系
外机构导师
张博
外机构导师单位
松山湖材料实验室
论文答辩日期
2023-05-15
论文提交日期
2023-06-30
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

钴基非晶合金具有高强度、高硬度、高弹性模量、低损耗、高磁导率等优势,是一种理想的结构与磁性功能材料,具有广阔的应用前景。然而,由于其非晶形成能力较低,同时缺乏对其力学与热力学性能的数据和研究,其大规模应用受到严重限制。在此背景下,本文基于前人的研究,选取高非晶形成能力、高强度的CoFeCrMoCBEr体系为研究对象,开展合理的成分设计,筛选出较优异的基础成分,并在其基础上通过调整Fe-C比进一步提高其强度,利用差示扫描量热法研究了该成分非晶合金的热稳定性。

首先,制备了三种成分的Co-Fe-Cr-Mo-C-B-Erx(x=1.5,2,2.5)系非晶合金,其中Co43Fe5Cr15Mo14C15B6Er2 BMG展现出最高的压缩强度(3.46 GPa)以及最宽的过冷液相区间,因此被确定为优异的基础成分。其断裂模式为由光滑镜区向外放射状的剪切带导致的脆性断裂,丰富的剪切带扩展是导致非晶合金高强度的一个重要因素,缺陷将引起剪切转变的严重局域化。

其次,在Co43Fe5Cr15Mo14C15B6Er2 BMG的基础上通过调整Fe-C原子比获得了更高强度的非晶合金,当Fe元素含量为6 at.%时合金的压缩强度最高,达到4.06 GPa,相比Co43Fe5Cr15Mo14C15B6Er2 BMG提高了约17%。断裂方式为层状刚性撕裂导致的脆性断裂,局部脉状花样说明了塑性变形被明显局域化,同时亦有互相平行的纳米波纹产生,这与非晶合金弹性变形阶段的变形行为有关,也是对应极度脆性金属玻璃断裂的显著结构特征。

最后,对Co基非晶合金的热稳定性进行了研究,发现随着加热速率的增大Co基非晶合金的玻璃化转变温度、晶化温度、晶化峰值温度均增大,利用Kissinger方程计算了晶化激活能约为372.9 kJ/mol;当等温退火温度为867 K时其晶化孕育时间约为12 mins,说明此体系非晶在过冷液相区具有较强的抵抗晶化能力,即具有较优异的热稳定性。

关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2023-06
参考文献列表

[1] Vanderkolk, G.J.Miedema, A.R.Niessen, et al. On the composition range of amorphous binary transition metal alloys. [J].Journal of the Less-Common Metals, 1988(145):1-17
[2] LIQUN, MA, LIMIN, et al. Fe-based Metallic Glass with Significant Supercooled Liquid Region of Over 90 K [J]. Journal of Materials Science Letters, 1998:1893-1895.
[3] ZHANG B, WANG R J, ZHAO D Q, et al. Superior glass-forming ability through microalloying in cerium-based alloys [J]. Physical Review B, 2006, 73(9): 1-4.
[4] ZHANG B, ZHAO D Q, PAN M, et al. Formation of cerium-based bulk metallic glasses [J]. Acta Mater, 2006, 54(11): 3025-3032.
[5] DING H Y, SHAO Y, GONG P, et al. A senary TiZrHfCuNiBe high entropy bulk metallic glass with large glass-forming ability [J]. Materials Letters, 2014, 125: 151-153.
[6] ZHAO S F, YANG G N, DING H Y, et al. A quinary Ti-Zr-Hf-Be-Cu high entropy bulk metallic glass with a critical size of 12 mm [J]. Intermetallics, 2015, 61: 47-50.
[7] ASHBY M F, GREER A L. Metallic glasses as structural materials [J]. Scr Mater, 2006, 54(3): 321-326.
[8] WANG W H. Elastic moduli and behaviors of metallic glasses [J]. J Non-Cryst Solids, 2005, 351(16-17): 1481-1485.
[9] LI M X, SUN Y T, WANG C, et al. Data-driven discovery of a universal indicator for metallic glass forming ability [J]. Nature Materials, 2022, 21(2): 165-168.
[10] BEST J P, OSTERGAARD H E, LI B S, et al. Fracture and fatigue behaviour of a laser additive manufactured Zr-based bulk metallic glass [J]. Additive Manufacturing, 2020, 36: 1-25.
[11] LI N, ZHANG J J, XING W, et al. 3D printing of Fe-based bulk metallic glass composites with combined high strength and fracture toughness [J]. Materials & Design, 2018, 143: 285-296.
[12] LIU H S, JIANG Q, HUO J T, et al. Crystallization in additive manufacturing of metallic glasses: A review [J]. Additive Manufacturing, 2020, 36: 1-17.
[13] OUYANG D, ZHANG P C, ZHANG C, et al. Understanding of crystallization behaviors in laser 3D printing of bulk metallic glasses [J]. Applied Materials Today, 2021, 23: 1-7.
[14] ZHANG C, LI X M, LIU S Q, et al. 3D printing of Zr-based bulk metallic glasses and components for potential biomedical applications [J]. J Alloy Compd, 2019, 790: 963-973.
[15] HOWARD J, CARLSON K, CHIDAMBARAM D. High-temperature metallic glasses: Status, needs, and opportunities [J]. Phys Rev Mater, 2021, 5(4): 1-15.
[16] CHEN M W. Mechanical behavior of metallic glasses: Microscopic understanding of strength and ductility [J]. Ann Rev Mater Res, 2008, 38: 445-469.
[17] BEI H, LU Z P, GEORGE E P. Theoretical strength and the onset of plasticity in bulk metallic glasses investigated by nanoindentation with a spherical indenter [J]. Phys Rev Lett, 2004, 93(12): 1-4.
[18] LAI Y. Ternary Co-W-B bulk metallic glasses with ultrahigh strength [J]. Journal of Non-Crystalline Solids: A Journal Devoted to Oxide, Halide, Chalcogenide and Metallic Glasses, Amorphous Semiconductors, Non-Crystalline Films, Glass-Ceramics and Glassy Composites, 2020, 544(1):1-6.
[19] HUFNAGEL T C, SCHUH C A, FALK M L. Deformation of metallic glasses: Recent developments in theory, simulations, and experiments [J]. Acta Mater, 2016, 109: 375-393.
[20] NARASIMHAN R, TANDAIYA P, SINGH I, et al. Fracture in metallic glasses: mechanics and mechanisms [J]. Int J Fract, 2015, 191(1-2): 53-75.
[21] WANG W H, YANG Y, NIEH T G, et al. On the source of plastic flow in metallic glasses: Concepts and models [J]. Intermetallics, 2015, 67: 81-86.
[22] GREER A L, CHENG Y Q, MA E. Shear bands in metallic glasses [J]. Mater Sci Eng R-Rep, 2013, 74(4): 71-132.
[23] YU H B, WANG W H, SAMWER K. The β relaxation in metallic glasses: An overview [J]. Mater Today, 2013, 16(5): 183-191.
[24] YAVARI A R, LEWANDOWSKI J J, ECKERT J. Mechanical properties of bulk metallic glasses [J]. MRS Bull, 2007, 32(8): 635-638.
[25] ZHANG Z F, ECKERT J, SCHULTZ L. Difference in compressive and tensile fracture mechanisms of Zr59CU20Al10Ni8Ti3 bulk metallic glass [J]. Acta Mater, 2003, 51(4): 1167-1179.
[26] QU R T, ECKERT J, ZHANG Z F. Tensile fracture criterion of metallic glass [J]. J Appl Phys, 2011, 109(8): 1-12.
[27] SHAO Y, YANG G N, YAO K F, et al. Direct experimental evidence of nano-voids formation and coalescence within shear bands [J]. Appl Phys Lett, 2014, 105(18): 1-4.
[28] MAASS R, BIRCKIGT P, BORCHERS C, et al. Long range stress fields and cavitation along a shear band in a metallic glass: The local origin of fracture [J]. Acta Mater, 2015, 98: 94-102.
[29] MURALI P, NARASIMHAN R, GUO T F, et al. Shear bands mediate cavitation in brittle metallic glasses [J]. Scr Mater, 2013, 68(8): 567-570.
[30] QU R T, TONNIES D, TIAN L, et al. Size-dependent failure of the strongest bulk metallic glass [J]. Acta Mater, 2019, 178: 249-262.
[31] YANG G-N, SHAO Y, YAO K-F. Understanding the Fracture Behaviors of Metallic Glasses—An Overview [J]. Applied Sciences, 2019, 9(20):1-18.
[32] ZHANG Z F, ZHANG H, SHEN B L, et al. Shear fracture and fragmentation mechanisms of bulk metallic glasses [J]. Philos Mag Lett, 2006, 86(10): 643-650.
[33] MASUMOTO T, EGAMI T. DESIGNING THE COMPOSITION AND HEAT-TREATMENT OF MAGNETIC AMORPHOUS-ALLOYS [J]. Materials Science and Engineering, 1981, 48(2): 147-165.
[34] EGAMI T. STRUCTURAL RELAXATION IN METALLIC GLASSES [J]. Annals of the New York Academy of Sciences, 1981:1-5.
[35] GOLDSTEIN M. Structure and Mobility in Molecular and Atomic Glasses [J]. Annals of the New York Academy of ences, 1981, 371:1-5.
[36] SPILKA M, GRINER S, KANIA A. Influence of thermal activation on the changes of physical properties and structure of cobalt-based metallic glass [J]. Archives of Materials ence and Engineering, 2012, 56(2): 61-68.
[37] ZHANG T, YANG Q, JI Y F, et al. Centimeter-scale-diameter Co-based bulk metallic glasses with fracture strength exceeding 5000 MPa [J]. Chin Sci Bull, 2011, 56(36): 3972-3977.
[38] BAO F, LI Y-H, ZHU Z-W, et al. Enhancement of glass-forming ability and thermal stability of a soft magnetic Co75B25 metallic glass by micro-alloying Y and Nb [J]. Journal of Iron and Steel Research International, 2020, 28(5): 597-603.
[39] KIM J T, HONG S H, BIAN X L, et al. Effect of boron addition on thermal and mechanical properties of Co-Cr-Mo-C-(B) glass-forming alloys [J]. Intermetallics, 2018, 99: 1-7.
[40] LI R X, ZHANG Y. Entropy and glass formation [J]. Acta Phys Sin, 2017, 66(17): 1-9.
[41] FAN J T, ZHANG Z F, MAO S X, et al. Deformation and fracture behaviors of Co-based metallic glass and its composite with dendrites [J]. Intermetallics, 2009, 17(6): 445-452.
[42] MA X, LI Q, XIE L, et al. Effect of Ni addition on the properties of CoMoPB bulk metallic glasses [J]. J Non-Cryst Solids, 2022, 587:1- 8.
[43] LAI L M, HE R G, DING K L, et al. Ternary Co-Mo-B bulk metallic glasses with ultrahigh strength and good ductility [J]. J Non-Cryst Solids, 2019, 524: 1-7.
[44] CHEN Q J, SHEN J, ZHANG D L, et al. Mechanical performance and fracture behavior of Fe41Co7Cr15Mo14Y2C15B6 bulk metallic glass [J]. J Mater Res, 2007, 22(2): 358-363.
[45] WANG J F, LI R, HUA N B, et al. Co-based ternary bulk metallic glasses with ultrahigh strength and plasticity [J]. J Mater Res, 2011, 26(16): 2072-2079.
[46] WANG G Y, LIAW P K, SENKOV O N, et al. The Duality of Fracture Behavior in a Ca-based Bulk-Metallic Glass [J]. Metall Mater Trans A-Phys Metall Mater Sci, 2011, 42A(6): 1499-1503.
[47] WU F F, CHAN K C, JIANG S S, et al. Bulk metallic glass composite with good tensile ductility, high strength and large elastic strain limit [J]. Sci Rep, 2014, 4: 1-6.
[48] HUI X, LIN D Y, CHEN X H, et al. Structural mechanism for ultrahigh-strength Co-based metallic glasses [J]. Scr Mater, 2013, 68(5): 257-260.
[49] WANG J, HUANG L, ZHU S, et al. Glass-forming ability, fragility parameter, and mechanical properties of Co―Ir―Ta―B amorphous alloys [J]. Journal of Alloys & Compounds, 2013, 576: 375-379.
[50] CHANG C, SHEN B, INOUE A. Co–Fe–B–Si–Nb bulk glassy alloys with superhigh strength and extremely low magnetostriction [J]. Appl Phys Lett, 2006, 88(1): 2248-2252.
[51] WANG J, WANG L, GUAN S, et al. Effects of boron content on the glass-forming ability and mechanical properties of Co–B–Ta glassy alloys [J]. Journal of Alloys & Compounds, 2014, 617: 7-11.
[52] ZHAO Y, SHANG B S, ZHANG B, et al. Ultrastable metallic glass by room temperature aging [J]. Sci Adv, 2022, 8(33): 1-8.
[53] JIANG W X, ZHANG B. Isothermal crystallization in Ce70Ga6Cu24 bulk metallic glass [J]. 中国科学, 2014, 000(010): P.1870-1874.
[54] ZHUANG Y X, WANG W H. Effects of relaxation on glass transition and crystallization of ZrTiCuNiBe bulk metallic glass [J]. J Appl Phys, 2000, 87(11): 8209-8211.
[55] GAO Y L, SHEN J, SUN J F, et al. Nanocrystallization of Zr–Ti–Cu–Ni–Be bulk metallic glass [J]. Materials Letters, 2003, 57(16/17): 2341–2347.
[56] SUN Y D S, P.LI, Z.Q.LIU, J.S.CONG, M.Q.JIANG, M. Kinetics of crystallization process of Mg-Cu-Gd based bulk metallic glasses [J]. Journal of Non-Crystalline Solids: A Journal Devoted to Oxide, Halide, Chalcogenide and Metallic Glasses, Amorphous Semiconductors, Non-Crystalline Films, Glass-Ceramics and Glassy Composites, 2012, 358(8):1-5.
[57] NISHIYAMA N, INOUE A. Supercooling investigation and critical cooling rate for glass formation in Pd–Cu–Ni–P alloy [J]. Acta Mater, 1999, 47(5): 1487-1495.

所在学位评定分委会
材料与化工
国内图书分类号
TG139+.8
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/544696
专题工学院_材料科学与工程系
推荐引用方式
GB/T 7714
全昕龙. 含Er钴基非晶合金的力学性能及热稳定性研究[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132063-全昕龙-材料科学与工程(3631KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[全昕龙]的文章
百度学术
百度学术中相似的文章
[全昕龙]的文章
必应学术
必应学术中相似的文章
[全昕龙]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。